Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA 5mC and RNA m6A modification successively facilitates the initiation and perpetuation stages of HSC activation in liver fibrosis progression

Abstract

Hepatic stellate cells (HSC) are key effector cells in liver fibrosis. Upon stimulation, the quiescent HSC undergoes complex morphological and functional changes to transdifferentiate into activated collagen-producing myofibroblasts. DNA/RNA methylations (5mC/m6A) are both implicated to participate in hepatic fibrosis, yet their respective roles and specific targets in HSC activation remain elusive. Here, we demonstrate that 5mC is indispensable for the initiation stage of HSC activation (myofibroblast transdifferentiation), whereas m6A is essential for the perpetuation stage of HSC activation (excessive ECM production). Mechanistically, DNA 5mC hypermethylation on the promoter of SOCS3 and PPARγ genes leads to STAT3-mediated metabolic reprogramming and lipid loss in the initiation stage. RNA m6A hypermethylation on the transcripts of major collagen genes enhances the mRNA stability in a YTHDF1-dependent manner, which contributes to massive ECM production. Vitamin A-coupled YTHDF1 siRNA alleviates CCl4-induced liver fibrosis in mice through HSC-specific inhibition of collagen production. HIF-1α, which is transactivated by STAT3, serves as a bridge linking the initiation and the perpetuation stages through transactivating YTHDF1. These findings indicate successive roles of DNA 5mC and RNA m6A modification in the progression of HSC activation, which provides new drug targets for epigenetic therapy of liver fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The time-course analysis characterizes the initiation and perpetuation stages of HSC activation.
Fig. 2: 5mC/m6A modification exhibits stage-specific increase during HSC activation.
Fig. 3: STAT3 is activated in the initiation stage via 5mC-mediated SOCS3 suppression.
Fig. 4: YTHDF1-mediated m6A mechanism contributes to excessive collagen production.
Fig. 5: HIF-1α links the initiation and the perpetuation stages through transactivating YTHDF1.
Fig. 6: Proposed working model of the proposed mechanism in this study.

Similar content being viewed by others

Data availability

Data supporting the present study are available from the corresponding author upon reasonable request.

References

  1. Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64:1577–86.

    Article  PubMed  Google Scholar 

  2. Kumar R, Priyadarshi RN, Anand U. Non-alcoholic fatty liver disease: growing burden, adverse outcomes and associations. J Clin Transl Hepatol. 2020;8:76–86.

    PubMed  Google Scholar 

  3. Hu Y, Feng Y, Zhang L, Jia Y, Cai D, Qian SB, et al. GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m(6)A on lipogenic mRNAs. RNA Biol. 2020;17:930–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hyun J, Jung Y. DNA methylation in nonalcoholic fatty liver disease. Int J Mol Sci. 2020;21:8138.

  5. Feng Y, Dong H, Sun B, Hu Y, Yang Y, Jia Y, et al. METTL3/METTL14 transactivation and m(6)A-dependent TGF-β1 translation in activated Kupffer cells. Cell Mol Gastroenterol Hepatol. 2021;12:839–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Page A, Paoli P, Moran Salvador E, White S, French J, Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol. 2016;64:661–73.

    Article  CAS  PubMed  Google Scholar 

  7. Fan C, Ma Y, Chen S, Zhou Q, Jiang H, Zhang J, et al. Comprehensive analysis of the transcriptome-wide m6A methylation modification difference in liver fibrosis mice by high-throughput m6A sequencing. Front Cell Dev Biol. 2021;9:767051.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169:1327–41.e23.

  9. Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67:2254–70.

    Article  CAS  PubMed  Google Scholar 

  10. Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6)-methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65:529–43.

    Article  CAS  PubMed  Google Scholar 

  11. Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol. 2013;3:1473–92.

    Article  PubMed  Google Scholar 

  12. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397–411.

    Article  CAS  PubMed  Google Scholar 

  13. Dewidar B, Meyer C, Dooley S, Meindl-Beinker AN. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells. 2019;8:1419.

  14. Trivedi P, Wang S, Friedman SL. The power of plasticity-metabolic regulation of hepatic stellate cells. Cell Metab. 2021;33:242–57.

    Article  CAS  PubMed  Google Scholar 

  15. Friedman SL, Pinzani M. Hepatic fibrosis 2022: unmet needs and a blueprint for the future. Hepatology. 2022;75:473–88.

    Article  CAS  PubMed  Google Scholar 

  16. Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW, Mann DA. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death Differ. 2007;14:275–85.

    Article  CAS  PubMed  Google Scholar 

  17. Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang JJ, Wang J, Yang Y, Yang Y, Li J, Lu D, et al. ALKBH5 ameliorated liver fibrosis and suppressed HSCs activation via triggering PTCH1 activation in an m(6)A dependent manner. Eur J Pharmacol. 2022;922:174900.

    Article  CAS  PubMed  Google Scholar 

  19. Shen M, Li Y, Wang Y, Shao J, Zhang F, Yin G, et al. N(6)-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol. 2021;47:102151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen M, Guo M, Li Y, Wang Y, Qiu Y, Shao J, et al. m(6)A methylation is required for dihydroartemisinin to alleviate liver fibrosis by inducing ferroptosis in hepatic stellate cells. Free Radic Biol Med. 2022;182:246–59.

    Article  CAS  PubMed  Google Scholar 

  21. Ghiassi-Nejad Z, Hernandez-Gea V, Woodrell C, Lang UE, Dumic K, Kwong A, et al. Reduced hepatic stellate cell expression of Kruppel-like factor 6 tumor suppressor isoforms amplifies fibrosis during acute and chronic rodent liver injury. Hepatology. 2013;57:786–96.

    Article  CAS  PubMed  Google Scholar 

  22. Aparicio-Vergara M, Tencerova M, Morgantini C, Barreby E, Aouadi M. Isolation of Kupffer cells and hepatocytes from a single mouse liver. Methods Mol Biol. 2017;1639:161–71.

    Article  CAS  PubMed  Google Scholar 

  23. Mederacke I, Dapito DH, Affò S, Uchinami H, Schwabe RF. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc. 2015;10:305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008;26:431–42.

    Article  CAS  PubMed  Google Scholar 

  25. Cai D, Yuan M, Jia Y, Liu H, Hu Y, Zhao R. Maternal gestational betaine supplementation-mediated suppression of hepatic cyclin D2 and presenilin1 gene in newborn piglets is associated with epigenetic regulation of the STAT3-dependent pathway. J Nutr Biochem. 2015;26:1622–31.

    Article  CAS  PubMed  Google Scholar 

  26. Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18:1427–31.

    Article  CAS  PubMed  Google Scholar 

  27. Li T, Zhuang Y, Yang W, Xie Y, Shang W, Su S, et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts. FASEB J. 2021;35:e21162.

    CAS  PubMed  Google Scholar 

  28. Xiao Y, Wang Y, Tang Q, Wei L, Zhang X, Jia G. An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N(6)-methyladenosine modification. Angew Chem. 2018;57:15995–16000.

    Article  CAS  Google Scholar 

  29. Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S, et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J. 2012;31:1985–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poli V, Camporeale A. STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance. Front Oncol. 2015;5:121.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Carow B, Rottenberg ME. SOCS3, a major regulator of infection and inflammation. Front Immunol. 2014;5:58.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee YK, Park JE, Lee M, Hardwick JP. Hepatic lipid homeostasis by peroxisome proliferator-activated receptor gamma 2. Liver Res. 2018;2:209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161:1388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodríguez-Sanabria JS, Escutia-Gutiérrez R, Rosas-Campos R, Armendáriz-Borunda JS, Sandoval-Rodríguez A. An update in epigenetics in metabolic-associated fatty liver disease. Front Med. 2021;8:770504.

    Article  Google Scholar 

  35. Chen YT, Shen JY, Chen DP, Wu CF, Guo R, Zhang PP, et al. Identification of cross-talk between m(6)A and 5mC regulators associated with onco-immunogenic features and prognosis across 33 cancer types. J Hematol Oncol. 2020;13:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaelin WG Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell. 2013;153:56–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2021;13:877–919.

  38. Goel A, Mathupala SP, Pedersen PL. Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem. 2003;278:15333–40.

    Article  CAS  PubMed  Google Scholar 

  39. Wolf A, Agnihotri S, Munoz D, Guha A. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol Dis. 2011;44:84–91.

    Article  CAS  PubMed  Google Scholar 

  40. Huang L, Hu B, Ni J, Wu J, Jiang W, Chen C, et al. Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis. J Exp Clin Cancer Res. 2016;35:27.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dees C, Pötter S, Zhang Y, Bergmann C, Zhou X, Luber M, et al. TGF-β-induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J Clin Investig. 2020;130:2347–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei A, Gao Q, Chen F, Zhu X, Chen X, Zhang L, et al. Inhibition of DNA methylation de-represses peroxisome proliferator-activated receptor-γ and attenuates pulmonary fibrosis. Br J Pharmacol. 2022;179:1304–18.

    Article  CAS  PubMed  Google Scholar 

  43. Bian EB, Zhao B, Huang C, Wang H, Meng XM, Wu BM, et al. New advances of DNA methylation in liver fibrosis, with special emphasis on the crosstalk between microRNAs and DNA methylation machinery. Cell Signal. 2013;25:1837–44.

    Article  CAS  PubMed  Google Scholar 

  44. Zeybel M, Hardy T, Wong YK, Mathers JC, Fox CR, Gackowska A, et al. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med. 2012;18:1369–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hardy T, Zeybel M, Day CP, Dipper C, Masson S, McPherson S, et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut. 2017;66:1321–8.

    Article  CAS  PubMed  Google Scholar 

  46. Chen X, Li WX, Chen Y, Li XF, Li HD, Huang HM, et al. Suppression of SUN2 by DNA methylation is associated with HSCs activation and hepatic fibrosis. Cell Death Dis. 2018;9:1021.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Feng Y, Li Y, Jiang W, Hu Y, Jia Y, Zhao R. GR-mediated transcriptional regulation of m(6)A metabolic genes contributes to diet-induced fatty liver in hens. J Anim Sci Biotechnol. 2021;12:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pan X, Bi Y, Cheng M, Qian Z, Wang L, You H, et al. METTL3 facilitates hepatic fibrosis progression via m6A-YTHDF2 dependent silencing of GPR161. BioRxiv. 2021. https://doi.org/10.1101/2021.12.15.472749.

  49. Li Y, Kang X, Zhou Z, Pan L, Chen H, Liang X, et al. The m(6)A methyltransferase Mettl3 deficiency attenuates hepatic stellate cell activation and liver fibrosis. Mol Ther. 2022;S1525-0016:00441–5.

    Google Scholar 

  50. Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 2019;10:1858.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang S, Gan M, Chen C, Zhang Y, Kong J, Zhang H, et al. Methyl CpG binding protein 2 promotes colorectal cancer metastasis by regulating N(6)-methyladenosine methylation through methyltransferase-like 14. Cancer Sci. 2021;112:3243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu S, Zhang L, Deng J, Guo B, Li F, Wang Y, et al. A novel micropeptide encoded by Y-linked LINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma. Cancer Res. 2020;80:2790–803.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32272962, 31972638), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

RZ and YF formulated the idea and designed the experiments. YF, SG and YZ performed and analyzed most of the experiments. HD and YH helped with animal work and provided technical help. JQ, LW and YJ performed some experiments and helped with data analysis. RZ and YF wrote the manuscript.

Corresponding author

Correspondence to Ruqian Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The animal experiment was approved by the Animal Ethics Committee of Nanjing Agricultural University. The sampling procedure followed the “Guidelines on Ethical Treatment of Experimental Animals” (2006) No. 398 set by the Ministry of Science and Technology, China.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Guo, S., Zhao, Y. et al. DNA 5mC and RNA m6A modification successively facilitates the initiation and perpetuation stages of HSC activation in liver fibrosis progression. Cell Death Differ 30, 1211–1220 (2023). https://doi.org/10.1038/s41418-023-01130-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01130-3

This article is cited by

Search

Quick links