Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

To not love thy neighbor: mechanisms of cell competition in stem cells and beyond

Abstract

Cell competition describes the process in which cells of greater fitness are capable of sensing and instructing elimination of lesser fit mutant cells. Since its discovery in Drosophila, cell competition has been established as a critical regulator of organismal development, homeostasis, and disease progression. It is therefore unsurprising that stem cells (SCs), which are central to these processes, harness cell competition to remove aberrant cells and preserve tissue integrity. Here, we describe pioneering studies of cell competition across a variety of cellular contexts and organisms, with the ultimate goal of better understanding competition in mammalian SCs. Furthermore, we explore the modes through which SC competition takes place and how this facilitates normal cellular function or contributes to pathological states. Finally, we discuss how understanding of this critical phenomenon will enable targeting of SC-driven processes, including regeneration and tumor progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of cell competition.
Fig. 2: Examples of competitive cell elimination modes.
Fig. 3: Examples of cellular interactions during competition.
Fig. 4: Schematic representations of the bystander effect.

References

  1. Fuchs Y, Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015;16:329–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soteriou D, Fuchs Y. A matter of life and death: stem cell survival in tissue regeneration and tumour formation. Nat Rev Cancer. 2018;18:187–201.

    Article  CAS  PubMed  Google Scholar 

  3. Koren E, Fuchs Y. Modes of regulated cell death in cancer. Cancer Discov. 2021;11:245–65.

    Article  CAS  PubMed  Google Scholar 

  4. Morata G. Cell competition: a historical perspective. Dev Biol. 2021;476:33–40.

    Article  CAS  PubMed  Google Scholar 

  5. Levayer R, Moreno E. Mechanisms of cell competition: themes and variations. J Cell Biol. 2013;200:689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cosentino K, García-Sáez AJ. Bax and Bak pores: are we closing the circle? Trends Cell Biol. 2017;27:266–75.

    Article  CAS  PubMed  Google Scholar 

  7. Walczak H. Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb Perspect Biol. 2013;5:a008698.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Morata G, Ripoll P. Minutes: mutants of drosophila autonomously affecting cell division rate. Dev Biol. 1975;42:211–21.

    Article  CAS  PubMed  Google Scholar 

  9. Simpson P, Morata G. Differential mitotic rates and patterns of growth in compartments in the Drosophila wing. Dev Biol. 1981;85:299–308.

    Article  CAS  PubMed  Google Scholar 

  10. Cohen B, Simcox AA, Cohen SM. Allocation of the thoracic imaginal primordia in the Drosophila embryo. Development. 1993;117:597–608.

    Article  CAS  PubMed  Google Scholar 

  11. Marygold SJ, Roote J, Reuter G, Lambertsson A, Ashburner M, Millburn GH, et al. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol. 2007;8:R216.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lindsley DL, Grell EH. Genetic variations of Drosophila melanogaster. Science 1968;162:993–993.

    Google Scholar 

  13. Moreno E, Basler K, Morata G. Cells compete for Decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature. 2002;416:755–9.

    Article  CAS  PubMed  Google Scholar 

  14. Moreno E, Basler K. DMyc transforms cells into super-competitors. Cell. 2004;117:117–29.

    Article  CAS  PubMed  Google Scholar 

  15. de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA. Drosophila Myc regulates organ size by inducing cell competition. Cell 2004;117:107–16.

    Article  PubMed  Google Scholar 

  16. Tolwinski NS. Introduction: Drosophila-a model system for developmental biology. J Dev Biol. 2017;5:9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baker NE. Emerging mechanisms of cell competition. Nat Rev Genet. 2020;21:683–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanna JH, Saha K, Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell. 2010;143:508–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Evans M, Kaufman M. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  CAS  PubMed  Google Scholar 

  20. Sionov RV, Haupt Y. The cellular response to p53: the decision between life and death. Oncogene. 1999;18:6145–57.

    Article  CAS  PubMed  Google Scholar 

  21. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2:594–604.

    Article  CAS  PubMed  Google Scholar 

  22. Tarkowski AK, Witkowska A, Opas J. Development of cytochalasin B-induced tetraploid and diploid/tetraploid mosaic mouse embryos. J Embryol Exp Morphol. 1977;41:47–64.

    CAS  PubMed  Google Scholar 

  23. Nagy A, Gocza E, Merentes Diaz E, Prideaux VR, Ivanyi E, Markkl M, et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development. 1990;110:815–21.

    Article  CAS  PubMed  Google Scholar 

  24. Horii T, Yamamoto M, Morita S, Kimura M, Nagao Y, Hatada I. P53 suppresses tetraploid development in mice. Sci Rep. 2015;5:8907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bowling S, di Gregorio A, Sancho M, Pozzi S, Aarts M, Signore M, et al. P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nat Commun. 2018;9:1763.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang G, Xiea Y, Zhou Y, Xiang C, Chen L, Zhang C, et al. P53 pathway is involved in cell competition during mouse embryogenesis. Proc Natl Acad Sci USA. 2017;114:498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dejosez M, Ura H, Brandt VL, Zwaka TP. Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen. Science. 2013;341:1511–4.

    Article  CAS  PubMed  Google Scholar 

  28. Sancho M, Di-Gregorio A, George N, Pozzi S, Sánchez JM, Pernaute B, et al. Competitive interactions eliminate unfit embryonic stem cells at the onset of differentiation. Dev Cell. 2013;26:19–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clavería C, Giovinazzo G, Sierra R, Torres M. Myc-driven endogenous cell competition in the early mammalian embryo. Nature. 2013;500:39–44.

    Article  PubMed  Google Scholar 

  30. Hashimoto M, Sasaki H. Epiblast formation by TEAD-YAP-dependent expression of pluripotency factors and competitive elimination of unspecified cells. Dev Cell. 2019;50:139–54.

    Article  CAS  PubMed  Google Scholar 

  31. Díaz-Díaz C, Fernandez de Manuel L, Jimenez-Carretero D, Montoya MC, Clavería C, Torres M. Pluripotency surveillance by Myc-driven competitive elimination of differentiating cells. Dev Cell. 2017;4:585–99.

    Article  Google Scholar 

  32. Ellis SJ, Gomez NC, Levorse J, Mertz AF, Ge Y, Fuchs E. Distinct modes of cell competition shape mammalian tissue morphogenesis. Nature. 2019;569:497–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mesa KR, Rompolas P, Zito G, Myung P, Sun TY, Brown S, et al. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature. 2015;522:94–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, di Gregorio A, et al. Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. Nat Metab. 2021;3:1091–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Telang S, Lane AN, Nelson KK, Arumugam S, Chesney J. The oncoprotein H-RasV12 increases mitochondrial metabolism. Mol Cancer. 2007;6:77.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jam FA, Morimune T, Tsukamura A, Tano A, Tanaka Y, Mori Y, et al. Neuroepithelial cell competition triggers loss of cellular juvenescence. Sci Rep. 2020;10:18044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kucinski I, Dinan M, Kolahgar G, Piddini E. Chronic activation of JNK JAK/STAT and oxidative stress signalling causes the loser cell status. Nat Commun. 2017;8:136.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nagata R, Nakamura M, Sanaki Y, Igaki T. Cell competition is driven by autophagy. Dev Cell. 2019;51:99–112.

    Article  CAS  PubMed  Google Scholar 

  39. Baumgartner ME, Dinan MP, Langton PF, Kucinski I, Piddini E. Proteotoxic stress is a driver of the loser status and cell competition. Nat Cell Biol. 2021;23:136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Recasens-Alvarez C, Alexandre C, Kirkpatrick J, Nojima H, Huels DJ, Snijders AP, et al. Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition. Nat Cell Biol. 2021;23:127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Langton PF, Baumgartner ME, Logeay R, Piddini E. Xrp1 and Irbp18 trigger a feed-forward loop of proteotoxic stress to induce the loser status. PLoS Genet. 2021;17:e1009946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee CH, Kiparaki M, Blanco J, Folgado V, Ji Z, Kumar A, et al. A regulatory response to ribosomal protein mutations controls translation, growth, and cell competition. Dev Cell. 2018;46:456–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baillon L, Germani F, Rockel C, Hilchenbach J, Basler K. Xrp1 is a transcription factor required for cell competition-driven elimination of loser cells. Sci Rep. 2018;8:17712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ochi N, Nakamura M, Nagata R, Wakasa N, Nakano R, Igaki T. Cell competition is driven by Xrp1-mediated phosphorylation of eukaryotic initiation factor 2α. PLoS Genet. 2021;17:e1009958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kiparaki M, Khan C, Folgado-Marco V, Chuen J, Moulos P, Baker NE. The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function. Elife 2022;11:e71705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ji Z, Chuen J, Kiparaki M, Baker N. Cell competition removes segmental aneuploid cells from drosophila imaginal disc-derived tissues based on ribosomal protein gene dose. Elife. 2021;10:e61172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tseng CY, Burel M, Cammer M, Harsh S, Flaherty MS, Baumgartner S, et al. chinmo-mutant spermatogonial stem cells cause mitotic drive by evicting non-mutant neighbors from the niche. Dev Cell. 2022;57:80–94.

    Article  CAS  PubMed  Google Scholar 

  48. Marusyk A, Porter CC, Zaberezhnyy V, DeGregori J. Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol. 2010;8:e1000324.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bondar T, Medzhitov R. p53-Mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell. 2010;6:309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Watanabe H, Ishibashi K, Mano H, Kitamoto S, Sato N, Hoshiba K, et al. Mutant p53-expressing cells undergo necroptosis via cell competition with the neighboring normal epithelial cells. Cell Rep. 2018;23:3721–9.

    Article  CAS  PubMed  Google Scholar 

  51. Norman M, Wisniewska KA, Lawrenson K, Pablo GM, Tada M, Kajita M, et al. Loss of scribble causes cell competition in mammalian cells. J Cell Sci. 2012;125:59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wagstaff L, Goschorska M, Kozyrska K, Duclos G, Kucinski I, Chessel A, et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun. 2016;7:11373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol. 2009;10:207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mascré G, Dekoninck S, Drogat B, Youssef KK, Brohée S, Sotiropoulou PA, et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature. 2012;489:257–62.

    Article  PubMed  Google Scholar 

  55. Kato T, Liu N, Morinaga H, Asakawa K, Muraguchi T, Muroyama Y, et al. Dynamic stem cell selection safeguards the genomic integrity of the epidermis. Dev Cell. 2021;56:3309–20.

    Article  CAS  PubMed  Google Scholar 

  56. Liu N, Matsumura H, Kato T, Ichinose S, Takada A, Namiki T, et al. Stem cell competition orchestrates skin homeostasis and ageing. Nature. 2019;568:344–50.

    Article  CAS  PubMed  Google Scholar 

  57. Penzo-Méndez AI, Chen YJ, Li J, Witze ES, Stanger BZ. Spontaneous cell competition in immortalized mammalian cell lines. PLoS ONE. 2015;10:e0132437.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Colom B, Herms A, Hall MWJ, Dentro SC, King C, Sood RK, et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature. 2021;598:510–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown S, Pineda CM, Xin T, Boucher J, Suozzi KC, Park S, et al. Correction of aberrant growth preserves tissue homeostasis. Nature 2017;548:334–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moya IM, Castaldo SA, van den Mooter L, Soheily S, Sansores-Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;336:1029–34.

    Article  Google Scholar 

  61. Martins VC, Busch K, Juraeva D, Blum C, Ludwig C, Rasche V, et al. Cell competition is a tumour suppressor mechanism in the thymus. Nature. 2014;509:465–70.

    Article  CAS  PubMed  Google Scholar 

  62. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martincorena I, Campbell P. Somatic mutation in cancer and normal cells. Science. 2015;349:1478–83.

    Article  Google Scholar 

  64. Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ, et al. Somatic mutant clones colonize the human esophagus with age. Science. 2018;362:911–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yizhak K, Aguet F, Kim J, Hess JM, Kübler K, Grimsby J, et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science. 2019;364:eaaw0726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kajita M, Fujita Y. EDAC: Epithelial defence against cancer - cell competition between normal and transformed epithelial cells in mammals. J Biochem. 2015;158:15–23.

    Article  CAS  PubMed  Google Scholar 

  67. Kajita M, Sugimura K, Ohoka A, Burden J, Suganuma H, Ikegawa M, et al. Filamin acts as a key regulator in epithelial defence against transformed cells. Nat Commun. 2014;5:4428.

    Article  CAS  PubMed  Google Scholar 

  68. Cho M, Thompson D, Cramer C, Vidmar T, Scieszka J. The Madin Darby canine kidney (MDCK) epithelial cell monolayer as a model cellular transport barrier. Pharm Res. 1989;6:71–7.

    Article  CAS  PubMed  Google Scholar 

  69. Hogan C, Dupré-Crochet S, Norman M, Kajita M, Zimmermann C, Pelling AE, et al. Characterization of the interface between normal and transformed epithelial cells. Nat Cell Biol. 2009;11:460–7.

    Article  CAS  PubMed  Google Scholar 

  70. Kajita M, Hogan C, Harris AR, Dupre-Crochet S, Itasaki N, Kawakami K, et al. Interaction with surrounding normal epithelial cells influences signalling pathways and behaviour of Src-transformed cells. J Cell Sci. 2010;123:171–80.

    Article  CAS  PubMed  Google Scholar 

  71. Leung CT, Brugge JS. Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature. 2012;482:410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chiba T, Ishihara E, Miyamura N, Narumi R, Kajita M, Fujita Y, et al. MDCK cells expressing constitutively active Yes-associated protein (YAP) undergo apical extrusion depending on neighboring cell status. Sci Rep. 2016;6:28383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tamori Y, Bialucha CU, Tian AG, Kajita M, Huang YC, Norman M, et al. Involvement of Lgl and mahjong/VprBP in cell competition. PLoS Biol. 2010;8:e1000422.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ohoka A, Kajita M, Ikenouchi J, Yako Y, Kitamoto S, Kon S, et al. EPLIN is a crucial regulator for extrusion of RasV12- transformed cells. J Cell Sci. 2015;128:781–9.

    CAS  PubMed  Google Scholar 

  75. Tanimura N, Fujita Y. Epithelial defense against cancer (EDAC). Semin Cancer Biol. 2020;63:44–48.

    Article  PubMed  Google Scholar 

  76. Kon S, Ishibashi K, Katoh H, Kitamoto S, Shirai T, Tanaka S, et al. Cell Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes. Nat Cell Biol. 2017;19:530–41.

    Article  CAS  PubMed  Google Scholar 

  77. Akter E, Tasaki Y, Mori Y, Nakai K, Hachiya K, Lin H, et al. Non Non-degradable autophagic vacuoles are indispensable for cell competition. Cell Rep. 2022;40:111292.

    Article  CAS  PubMed  Google Scholar 

  78. Menéndez J, Pérez-Garijo A, Calleja M, Morata G. A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc Natl Acad Sci USA. 2010;107:14651–6.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mamada H, Sato T, Ota M, Sasaki H. Cell competition in mouse NIH3T3 embryonic fibroblasts is controlled by the activity of Tead family proteins and Myc. J Cell Sci. 2015;128:790–803.

    CAS  PubMed  Google Scholar 

  80. di Giacomo S, Sollazzo M, de Biase D, Ragazzi M, Bellosta P, Pession A, et al. Human cancer cells signal their competitive fitness through MYC activity. Sci Rep. 2017;7:12568.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Price CJ, Stavish D, Gokhale PJ, Stevenson BA, Sargeant S, Lacey J, et al. Genetically variant human pluripotent stem cells selectively eliminate wild-type counterparts through YAP-mediated cell competition. Dev Cell. 2021;56:2455–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Neerven SM, de Groot NE, Nijman LE, Scicluna BP, van Driel MS, Lecca MC, et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature. 2021;594:436–41.

    Article  PubMed  Google Scholar 

  83. Pronobis MI, Rusan NM, Peifer M. A novel GSK3-regulated APC:Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient βcatenin destruction. Elife. 2015;4:e08022.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Krotenberg Garcia A, Fumagalli A, Le HQ, Jackstadt R, Lannagan TRM, Sansom OJ, et al. Active elimination of intestinal cells drives oncogenic growth in organoids. Cell Rep. 2021;36:109307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sasaki A, Nagatake T, Egami R, Gu G, Takigawa I, Ikeda W, et al. Obesity suppresses cell-competition-mediated apical elimination of RasV12-transformed cells from epithelial tissues. Cell Rep. 2018;23:974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Slaughter DP, Southwick HW, Smejkal W. “Field cancerization” in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6:963–8.

    Article  CAS  PubMed  Google Scholar 

  87. Braakhuis BJM, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63:1723–30.

    Google Scholar 

  88. Aster JC, Pear WS, Blacklow SC. The varied roles of Notch in cancer. Annu Rev Pathol. 2017;12:245–75.

    Article  CAS  PubMed  Google Scholar 

  89. Alcolea MP, Greulich P, Wabik A, Frede J, Simons BD, Jones PH. Differentiation imbalance in single oesophageal progenitor cells causes clonal immortalization and field change. Nat Cell Biol. 2014;16:612–9.

    Article  Google Scholar 

  90. Vermeulen L, Morrissey E, van der Heijden M, Nicholson AM, Sottoriva A, Buczacki S, et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science. 2013;342:995–8.

    Article  CAS  PubMed  Google Scholar 

  91. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science. 2010;327:1385–9.

    Article  CAS  PubMed  Google Scholar 

  92. Snippert HJ, Schepers AG, van Es JH, Simons BD, Clevers H. Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep. 2014;15:62–69.

    Article  CAS  PubMed  Google Scholar 

  93. Rhiner C, López-Gay JM, Soldini D, Casas-Tinto S, Martín FA, Lombardía L, et al. Flower forms an extracellular code that reveals the fitness of a cell to its neighbors in Drosophila. Dev Cell. 2010;18:985–98.

    Article  CAS  PubMed  Google Scholar 

  94. Merino MM, Rhiner C, Portela M, Moreno E. “Fitness fingerprints” mediate physiological culling of unwanted neurons in drosophila. Curr Biol. 2013;23:1300–9.

    Article  CAS  PubMed  Google Scholar 

  95. Merino MM, Rhiner C, Lopez-Gay JM, Buechel D, Hauert B, Moreno E. Elimination of unfit cells maintains tissue health and prolongs lifespan. Cell. 2015;160:461–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Moreno E, Fernandez-Marrero Y, Meyer P, Rhiner C. Brain regeneration in Drosophila involves comparison of neuronal fitness. Curr Biol. 2015;25:955–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Madan E, Pelham CJ, Nagane M, Parker TM, Canas-Marques R, Fazio K, et al. Flower isoforms promote competitive growth in cancer. Nature. 2019;572:260–4.

    Article  CAS  PubMed  Google Scholar 

  98. Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 2007;131:966–79.

    Article  CAS  PubMed  Google Scholar 

  99. Li W, Baker NE. Engulfment is required for cell competition. Cell. 2007;129:1215–25.

    Article  CAS  PubMed  Google Scholar 

  100. Lolo FN, Casas-Tintó S, Moreno E. Cell competition time line: winners kill losers, which are extruded and engulfed by hemocytes. Cell Rep. 2012;2:526–39.

    Article  CAS  PubMed  Google Scholar 

  101. Bozkurt E, Düssmann H, Salvucci M, Cavanagh BL, van Schaeybroeck S, Longley D, et al. Trail signaling promotes entosis in colorectal cancer. J Cell Biol. 2021;220:e202010030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fadok PM, Voelker DR, Campbell PA, Cohen JJ. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148:2207–16.

    Article  CAS  PubMed  Google Scholar 

  103. Sun Q, Cibas ES, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res. 2014;24:1288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rizzotto D, Villunger A. P53 clears aneuploid cells by entosis. Cell Death Differ. 2021;28:818–20.

    Article  PubMed  Google Scholar 

  105. Mackay HL, Moore D, Hall C, Birkbak NJ, Jamal-Hanjani M, Karim SA, et al. Genomic instability in mutant p53 cancer cells upon entotic engulfment. Nat Commun. 2018;9:3070.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lyng FM, Seymour CB, Mothersill C. Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for bystander-induced genomic instability? Radiat Res. 2002;157:365–70.

    Article  CAS  PubMed  Google Scholar 

  107. Seymour CB, Mothersill C. Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose-response curve. Radiat Res. 2000;153:508–11.

    Article  CAS  PubMed  Google Scholar 

  108. Pérez-Garijo A, Fuchs Y, Steller H. Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. Elife. 2013;2013:e01004.

    Article  Google Scholar 

  109. Haynie JL, Bryant PJ. The effects of X-rays on the proliferation dynamics of cells in the imaginal wing disc of Drosophila melanogaster. Wilehm Roux’s Arch Dev Biol. 1977;183:85–100.

    Article  Google Scholar 

  110. Pérez-Garijo A, Martín FA, Morata G. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development. 2004;131:5591–8.

    Article  PubMed  Google Scholar 

  111. Ryoo HD, Gorenc T, Steller H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the wingless signaling pathways. Dev Cell. 2004;7:491–501.

    Article  CAS  PubMed  Google Scholar 

  112. Huh JR, Guo M, Hay BA. Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol. 2004;14:1262–6.

    Article  CAS  PubMed  Google Scholar 

  113. Tamori Y, Deng WM. Tissue repair through cell competition and compensatory cellular hypertrophy in postmitotic epithelia. Dev Cell. 2013;25:350–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ballesteros-Arias L, Saavedra V, Morata G. Cell competition may function either as tumour-suppressing or as tumour-stimulating factor in Drosophila. Oncogene. 2014;33:4377–84.

    Article  CAS  PubMed  Google Scholar 

  115. Harrison DE. Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood. 1980;55:77–81.

    Article  CAS  PubMed  Google Scholar 

  116. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Germ line stem cell competition in postnatal mouse testes 1. Biol Reprod. 2002;66:1491–7.

    Article  CAS  PubMed  Google Scholar 

  117. Kanatsu-Shinohara M, Takashima S, Shinohara T. Transmission distortion by loss of p21 or p27 cyclin-dependent kinase inhibitors following competitive spermatogonial transplantation. Proc Natl Acad Sci USA. 2010;107:6210–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Smith-Berdan S, Nguyen A, Hassanein D, Zimmer M, Ugarte F, Ciriza J, et al. Robo4 cooperates with Cxcr4 to specify hematopoietic stem cell localization to bone marrow niches. Cell Stem Cell. 2011;8:72–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283:845–8.

    Article  CAS  PubMed  Google Scholar 

  120. Umemoto T, Yamato M, Ishihara J, Shiratsuchi Y, Utsumi M, Morita Y, et al. Integrin-v3 regulates thrombopoietin-mediated maintenance of hematopoietic stem cells. Blood. 2012;119:83–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1:685–97.

    Article  CAS  PubMed  Google Scholar 

  122. Wang Z, Li G, Tse W, Bunting KD. Conditional deletion of STAT5 in adult mouse hematopoietic stem cells causes loss of quiescence and permits efficient nonablative stem cell replacement. Blood. 2008;113:4856–65.

    Article  Google Scholar 

  123. Oertel M, Menthena A, Dabeva MD, Shafritz DA. Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology. 2006;130:507–20.

    Article  PubMed  Google Scholar 

  124. Menthena A, Koehler CI, Sandhu JS, Yovchev MI, Hurston E, Shafritz DA, et al. Activin A, p15INK4b signaling, and cell competition promote stem/progenitor cell repopulation of livers in aging rats. Gastroenterology. 2011;140:1009–1020.

    Article  CAS  PubMed  Google Scholar 

  125. Schwall R, Robbins K, Jardieu P, Chang L, Lai C, Terrell T. Activin induces cell death in hepatocytes in vivo and in vitro. Hepatology. 1993;18:347–56.

    CAS  PubMed  Google Scholar 

  126. Hully JR, Chang L, Schwall RH, Widmer RH, Terrell TG. Induction of apoptosis in the murine liver with recombinant human activin A. Hepatology. 1994;4:854–62.

    Article  Google Scholar 

  127. Ding J, Yannam GR, Roy-Chowdhury N, Hidvegi T, Basma H, Rennard SI, et al. Spontaneous hepatic repopulation in transgenic mice expressing mutant human α1-antitrypsin by wild-type donor hepatocytes. J Clin Investig. 2011;121:1930–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zheng C, Hu Y, Sakurai M, Pinzon-Arteaga CA, Li J, Wei Y, et al. Cell competition constitutes a barrier for interspecies chimerism. Nature. 2021;592:272–6.

    Article  CAS  PubMed  Google Scholar 

  129. Villa del Campo C, Clavería C, Sierra R, Torres M. Cell competition promotes phenotypically silent cardiomyocyte replacement in the mammalian heart. Cell Rep. 2014;8:1741–51.

    Article  CAS  PubMed  Google Scholar 

  130. Yamauchi H, Matsumaru T, Morita T, Ishikawa S, Maenaka K, Takigawa I, et al. The cell competition-based high-throughput screening identifies small compounds that promote the elimination of RasV12-transformed cells from epithelia. Sci Rep. 2015;5:15336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fernandez-Antoran D, Piedrafita G, Murai K, Ong SH, Herms A, Frezza C, et al. Outcompeting p53-mutant cells in the normal esophagus by redox manipulation. Cell Stem Cell. 2019;25:329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bruens L, Ellenbroek SIJ, Suijkerbuijk SJE, Azkanaz M, Hale AJ, Toonen P, et al. Calorie restriction increases the number of competing stem cells and decreases mutation retention in the intestine. Cell Rep. 2020;32:107937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose contributions we could not adequately cite due to space constraints. We thank Fuchs lab members for helpful discussion and input. Figures and graphical abstract were generated using BioRender.

Funding

YF was supported by the EMBO Young Investigator program, ICRF (15-771-RCDA) grants, ISF individual 2124/19, and IPMP 1019045 2029637 grants, and ICRF acceleration AG-17-917.

Author information

Authors and Affiliations

Authors

Contributions

MY and YF wrote and approved the final paper.

Corresponding author

Correspondence to Yaron Fuchs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusupova, M., Fuchs, Y. To not love thy neighbor: mechanisms of cell competition in stem cells and beyond. Cell Death Differ 30, 979–991 (2023). https://doi.org/10.1038/s41418-023-01114-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01114-3

Search

Quick links