Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNMT1-mediated lncRNA IFFD controls the follicular development via targeting GLI1 by sponging miR-370

Abstract

DNA methylation and long noncoding RNAs (lncRNAs) exhibit an indispensable role in follicular development. However, the specific mechanisms regarding lncRNAs mediated by DNA methylation in follicular development remain unclearly. In this study, we found that inhibiting the expression of DNMT1 promoted granulosa cells (GCs) apoptosis to inhibit follicular development. A novel follicular development-associated lncRNA named inhibitory factor of follicular development (IFFD) was mediated by DNMT1 and showed to arrest follicular development by inhibiting GCs proliferation and estrogen (E2) secretion but promoting GCs apoptosis. Mechanistically, the deactivated Cas9-TET1 demonstrated that the hypomethylation in −1261/−1254 region of IFFD promoted the transcription of IFFD by recruiting SP1. IFFD induced the expression of GLI family zinc finger 1 through competitive binding miR-370, thereby up-regulating the expression of CASP3 to promote GCs apoptosis, as well as downregulating the expressions of PCNA and CYP19A1 to inhibit GCs proliferation and E2 secretion. Collectively, DNMT1-mediated IFFD might be a novel target for the regulation of follicular development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNMT1 regulates the proliferation and apoptosis of GCs.
Fig. 2: DNMT1-mediated the expression of IFFD as ceRNA for miR370-GLI1 in GCs.
Fig. 3: IFFD as ceRNA for miR-370-GLI1 regulates the proliferation and apoptosis of GCs.
Fig. 4: DNMT1 blocks the binding of SP1 to inhibit the transcription of IFFD.
Fig. 5: IFFD as ceRNA for miR-370-GLI1 regulates follicular development in pigs.
Fig. 6: IFFD as ceRNA for miR-370-Gli1 controls follicular development in mice.

Data availability

The RNA-seq data supporting the results of this study have been deposited in the NCBI BioProject database under accession number PRJNA906921.

References

  1. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21:200–14.

    CAS  Google Scholar 

  2. Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev. 2012;58:44–50.

    Article  CAS  Google Scholar 

  3. Kumariya S, Ubba V, Jha RK, Gayen JR. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective. Autophagy. 2021;17:2706–33.

    Article  CAS  Google Scholar 

  4. Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update. Endocr Rev. 2018;39:1–20.

    Article  Google Scholar 

  5. Jin M, Yu Y, Huang H. An update on primary ovarian insufficiency. Sci China Life Sci. 2012;55:677–86.

    Article  CAS  Google Scholar 

  6. Richards JS. From follicular development and ovulation to ovarian cancers: an unexpected journey. Vitam Horm. 2018;107:453–72.

    Article  CAS  Google Scholar 

  7. Azziz R. PCOS in 2015: new insights into the genetics of polycystic ovary syndrome. Nat Rev Endocrinol. 2016;12:183.

    Article  Google Scholar 

  8. De Vos M, Devroey P, Fauser BCJM. Primary ovarian insufficiency. Lancet. 2010;376:911–21.

    Article  Google Scholar 

  9. Visser JA, Schipper I, Laven JSE, Themmen APN. Anti-Mullerian hormone: an ovarian reserve marker in primary ovarian insufficiency. Nat Rev Endocrinol. 2012;8:331–41.

    Article  CAS  Google Scholar 

  10. Zhou X, He Y, Li N, Bai G, Pan X, Zhang Z, et al. DNA methylation mediated RSPO2 to promote follicular development in mammals. Cell Death Dis. 2021;12:653.

    Article  CAS  Google Scholar 

  11. Yeung CK, Wang G, Yao Y, Liang J, Tenny Chung CY, Chuai M, et al. BRE modulates granulosa cell death to affect ovarian follicle development and atresia in the mouse. Cell Death Dis. 2017;8:e2697.

    Article  CAS  Google Scholar 

  12. Khristi V, Chakravarthi VP, Singh P, Ghosh S, Pramanik A, Ratri A, et al. ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation. Mol Cell Endocrinol. 2018;474:214–26.

    Article  CAS  Google Scholar 

  13. Zhang H, Luo Q, Lu X, Yin N, Zhou D, Zhang L, et al. Effects of hPMSCs on granulosa cell apoptosis and AMH expression and their role in the restoration of ovary function in premature ovarian failure mice. Stem Cell Res Ther. 2018;9:20.

    Article  CAS  Google Scholar 

  14. Pan Z, Zhang J, Li Q, Li Y, Shi F, Xie Z, et al. Current advances in epigenetic modification and alteration during mammalian ovarian folliculogenesis. J Genet Genomics. 2012;39:111–23.

    Article  CAS  Google Scholar 

  15. Liu YN, Qin Y, Wu B, Peng H, Li M, Luo H, et al. DNA methylation in polycystic ovary syndrome: emerging evidence and challenges. Reprod Toxicol. 2022;111:11–19.

    Article  Google Scholar 

  16. He C, Wang K, Gao Y, Wang C, Li L, Liao Y, et al. Roles of noncoding RNA in reproduction. Front Genet. 2021;12:777510.

    Article  CAS  Google Scholar 

  17. Herman JG, Baylin SB. Mechanisms of disease: gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–54.

    Article  CAS  Google Scholar 

  18. Lomniczi A, Loche A, Castellano JM, Ronnekleiv OK, Bosch M, Kaidar G, et al. Epigenetic control of female puberty. Nat Neurosci. 2013;16:281–9.

    Article  CAS  Google Scholar 

  19. Kawai T, Richards JS, Shimada M. The cell type-specific expression of lhcgr in mouse ovarian cells: evidence for a DNA-demethylation-dependent mechanism. Endocrinology. 2018;159:2062–74.

    Article  CAS  Google Scholar 

  20. Kawai T, Richards JS, Shimada M. Large-scale DNA demethylation occurs in proliferating ovarian granulosa cells during mouse follicular development. Commun Biol. 2021;4:1334.

    Article  CAS  Google Scholar 

  21. Jandura A, Krause HM. The new RNA world: growing evidence for long noncoding RNA functionality. Trends Genet. 2017;33:665–76.

    Article  CAS  Google Scholar 

  22. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–52.

    Article  CAS  Google Scholar 

  23. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.

    Article  CAS  Google Scholar 

  24. Zhang D, Tang HY, Tan L, Zhao DM. MALAT1 is involved in the pathophysiological process of PCOS by modulating TGFbeta signaling in granulosa cells. Mol Cell Endocrinol. 2020;499:110589.

    Article  CAS  Google Scholar 

  25. Zhao J, Xu J, Wang W, Zhao H, Liu H, Liu X, et al. Long non-coding RNA LINC-01572:28 inhibits granulosa cell growth via a decrease in p27 (Kip1) degradation in patients with polycystic ovary syndrome. Ebiomedicine. 2018;36:526–38.

    Article  Google Scholar 

  26. Geng X, Zhao J, Huang J, Li S, Chu W, Wang WS, et al. lnc-MAP3K13-7:1 inhibits ovarian GC proliferation in PCOS via DNMT1 downregulation-mediated CDKN1A promoter hypomethylation. Mol Ther. 2021;29:1279–93.

    Article  CAS  Google Scholar 

  27. Adriaens C, Rambow F, Bervoets G, Silla T, Mito M, Chiba T, et al. The long noncoding RNA NEAT1_1 is seemingly dispensable for normal tissue homeostasis and cancer cell growth. RNA. 2019;25:1681–95.

    Article  CAS  Google Scholar 

  28. Nakagawa S, Shimada M, Yanaka K, Mito M, Arai T, Takahashi E, et al. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development. 2014;141:4618–27.

    Article  CAS  Google Scholar 

  29. Wijgerde M, Ooms M, Hoogerbrugge JW, Grootegoed JA. Hedgehog signaling in mouse ovary: Indian hedgehog and desert hedgehog from granulosa cells induce target gene expression in developing theca cells. Endocrinology. 2005;146:3558–66.

    Article  CAS  Google Scholar 

  30. Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S. Interactions between androgens, FSH, anti-Mullerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22:709–24.

    Article  CAS  Google Scholar 

  31. Chen J, Wu L, Xu H, Cheng S. 5-Aza-CdR regulates RASSF1A By inhibiting DNMT1 to affect colon cancer cell proliferation, migration and apoptosis. Cancer Manag Res. 2019;11:9517–28.

    Article  CAS  Google Scholar 

  32. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28.

    Article  CAS  Google Scholar 

  33. Ma Y, Yang Y, Wang F, Moyer MP, Wei Q, Zhang P, et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/beta-catenin signalling pathway via suppression of activator protein 2alpha. Gut. 2016;65:1494–504.

    Article  CAS  Google Scholar 

  34. Sang B, Zhang YY, Guo ST, Kong LF, Cheng Q, Liu GZ, et al. Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence. Proc Natl Acad Sci USA. 2018;115:E11661–E11670.

    Article  CAS  Google Scholar 

  35. Yu T, Zhao Y, Hu Z, Li J, Chu D, Zhang J, et al. MetaLnc9 facilitates lung cancer metastasis via a PGK1-activated AKT/mTOR pathway. Cancer Res. 2017;77:5782–94.

    Article  CAS  Google Scholar 

  36. Philipsen S, Suske G. A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res. 1999;27:2991–3000.

    Article  CAS  Google Scholar 

  37. Sekiguchi T, Mizutani T, Yamada K, Yazawa T, Kawata H, Yoshino M, et al. Transcriptional regulation of the epiregulin gene in the rat ovary. Endocrinology. 2002;143:4718–29.

    Article  CAS  Google Scholar 

  38. Yu C, Li M, Wang Y, Liu Y, Yan C, Pan J, et al. MiR-375 mediates CRH signaling pathway in inhibiting E2 synthesis in porcine ovary. Reproduction. 2016;153:63–73.

  39. Carlevaro-Fita J, Johnson R. Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol Cell. 2019;73:869–83.

    Article  CAS  Google Scholar 

  40. Cirillo F, Catellani C, Lazzeroni P, Sartori C, Nicoli A, Amarri S, et al. MiRNAs regulating insulin sensitivity are dysregulated in polycystic ovary syndrome (PCOS) ovaries and are associated with markers of inflammation and insulin sensitivity. Front Endocrinol. 2019;10:879.

    Article  Google Scholar 

  41. Casarini L, Crepieux P. Molecular mechanisms of action of FSH. Front Endocrinol. 2019;10:305.

    Article  Google Scholar 

  42. Jing D, Li C, Yao K, Xie X, Wang P, Zhao H, et al. The vital role of Gli1(+) mesenchymal stem cells in tissue development and homeostasis. J Cell Physiol. 2021;236:6077–89.

  43. Russell MC, Cowan RG, Harman RM, Walker AL, Quirk SM. The hedgehog signaling pathway in the mouse ovary. Biol Reprod. 2007;77:226–36.

    Article  CAS  Google Scholar 

  44. Galvin KE, Ye H, Erstad DJ, Feddersen R, Wetmore C. Gli1 induces G2/M arrest and apoptosis in hippocampal but not tumor-derived neural stem cells. Stem Cells. 2008;26:1027–36.

    Article  CAS  Google Scholar 

  45. Liu C, Peng J, Matzuk MM, Yao HH. Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat Commun. 2015;6:6934.

    Article  CAS  Google Scholar 

  46. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.

    Article  CAS  Google Scholar 

  47. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.

    Article  CAS  Google Scholar 

  48. Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45:W12–W16.

    Article  CAS  Google Scholar 

  49. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41:e166.

    Article  CAS  Google Scholar 

  50. Wucher V, Legeai F, Hedan B, Rizk G, Lagoutte L, Leeb T, et al. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res. 2017;45:e57.

    CAS  Google Scholar 

  51. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the earmarked fund for China Agriculture Research System (CARS-35), the National Natural Science Foundation of China (32072694), the Guangdong Basic and Applied Basic Research Foundation (2021A1515012396), and the Science and Technology Project of Guangzhou (202002030071).

Author information

Authors and Affiliations

Authors

Contributions

XZ, ZZ, HZ, JL, and XY conceived the study. XZ, YH, GB, HQ, and YL conducted in vivo experiments. XZ, YH, BH, and NL conducted in vitro experiments. XZ and XP conducted the RNA-seq data analysis. XZ summarized results and wrote the manuscript.

Corresponding authors

Correspondence to Jiaqi Li or Xiaolong Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All experiments were conducted with strict reference to the Regulations for Administration of Affairs Concerning Experimental Animals, and approved by the Animal Care and Use Committee of South China Agricultural University with approval number: SYXK 2019-0136.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by M. Hardwick

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., He, Y., Pan, X. et al. DNMT1-mediated lncRNA IFFD controls the follicular development via targeting GLI1 by sponging miR-370. Cell Death Differ 30, 576–588 (2023). https://doi.org/10.1038/s41418-022-01103-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-022-01103-y

Search

Quick links