Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Caspase-8 as a novel mediator linking Src kinase signaling to enhanced glioblastoma malignancy

Abstract

Caspase-8 is a cysteine protease that plays an essential role in apoptosis. Consistently with its canonical proapoptotic function, cancer cells may genetically or epigenetically downregulate its expression. Unexpectedly, Caspase-8 is often retained in cancer, suggesting the presence of alternative mechanisms that may be exploited by cancer cells to their own benefit. In this regard, we reported that Src tyrosine kinase, which is aberrantly activated in many tumors, promotes Caspase-8 phosphorylation on Tyrosine 380 (Y380) preventing its full activation. Here, we investigated the significance of Caspase-8 expression and of its phosphorylation on Y380 in glioblastoma, a brain tumor where both Caspase-8 expression and Src activity are often aberrantly upregulated. Transcriptomic analyses identified inflammatory response as a major target of Caspase-8, and in particular, NFκB signaling as one of the most affected pathways. More importantly, we could show that Src-dependent phosphorylation of Caspase-8 on Y380 drives the assembly of a multiprotein complex that triggers NFκB activation, thereby inducing the expression of inflammatory and pro-angiogenic factors. Remarkably, phosphorylation on Y380 sustains neoangiogenesis and resistance to radiotherapy. In summary, our work identifies a novel interplay between Src kinase and Caspase-8 that allows cancer cells to hijack Caspase-8 to sustain tumor growth.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Unbiased transcriptome analysis reveals Caspase-8 dependent modulation of the inflammatory response in glioblastoma.
Fig. 2: Caspase-8 expression modulates NFκB independently of its enzymatic activity.
Fig. 3: Src activity sustains NFκB p65 nuclear localization and promotes its transcriptional activity.
Fig. 4: Src-dependent phosphorylation of Caspase-8 on Y380 contributes to recruitment of NFκB p65 to a multiprotein complex promoting its activation.
Fig. 5: Src-dependent phosphorylation of Caspase-8 on Y380 is required for the pro-angiogenesis activity of Caspase-8.
Fig. 6: Src-dependent phosphorylation of Caspase-8 on Y380 promotes glioblastoma cells resistance to ionizing radiation (IR).
Fig. 7: Schematic illustration of the role of Src-mediated phosphorylation of Caspase-8 on Y380 in glioblastoma.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

References

  1. Network CGAR. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  3. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bjorge JD, Jakymiw A, Fujita DJ. Selected glimpses into the activation and function of Src kinase. Oncogene. 2000;19:5620–35.

    Article  CAS  PubMed  Google Scholar 

  6. Ahluwalia MS, de Groot J, Liu WM, Gladson CL. Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. Cancer Lett. 2010;298:139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Du J, Bernasconi P, Clauser KR, Mani DR, Finn SP, Beroukhim R, et al. Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat Biotechnol. 2009;27:77–83.

    Article  CAS  PubMed  Google Scholar 

  8. Cirotti C, Contadini C, Barilà D. SRC kinase in glioblastoma: news from an old acquaintance. Cancers. 2020;12:1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stupack DG. Caspase-8 as a therapeutic target in cancer. Cancer Lett. 2013;332:133–40.

    Article  CAS  PubMed  Google Scholar 

  10. Fianco G, Mongiardi MP, Levi A, De Luca T, Desideri M, Trisciuoglio D, et al. Caspase-8 contributes to angiogenesis and chemotherapy resistance in glioblastoma. Elife. 2017;6:e22593.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Müller I, Strozyk E, Schindler S, Beissert S, Oo HZ, Sauter T, et al. Cancer cells employ nuclear Caspase-8 to overcome the p53-dependent G2/M checkpoint through cleavage of USP28. Mol Cell. 2020;77:970–84. e977.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fianco G, Contadini C, Ferri A, Cirotti C, Stagni V, Barilà D. Caspase-8: a novel target to overcome resistance to chemotherapy in glioblastoma. Int J Mol Sci. 2018;19:3798.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fulda S. Cell death-based treatment of glioblastoma. Cell Death Dis. 2018;9:121.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cursi S, Rufini A, Stagni V, Condo I, Matafora V, Bachi A, et al. Src kinase phosphorylates caspase-8 on Tyr380: a novel mechanism of apoptosis suppression. Embo J. 2006;25:1895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Powley IR, Hughes MA, Cain K, MacFarlane M. Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex. Oncogene. 2016;35:5629–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Torres VA, Mielgo A, Barila D, Anderson DH, Stupack D. Caspase 8 promotes peripheral localization and activation of Rab5. J Biol Chem. 2008;283:36280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barbero S, Barila D, Mielgo A, Stagni V, Clair K, Stupack D. Identification of a critical tyrosine residue in caspase 8 that promotes cell migration. J Biol Chem. 2008;283:13031–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barbero S, Mielgo A, Torres V, Teitz T, Shields DJ, Mikolon D, et al. Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. Cancer Res. 2009;69:3755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keller N, Ozmadenci D, Ichim G, Stupack D. Caspase-8 function, and phosphorylation, in cell migration. Semin Cell Dev Biol. 2018;82:105–17.

    Article  CAS  PubMed  Google Scholar 

  20. Fianco G, Cenci C, Barilà D. Caspase-8 expression and its Src-dependent phosphorylation on Tyr380 promote cancer cell neoplastic transformation and resistance to anoikis. Exp Cell Res. 2016;347:114–22.

    Article  CAS  PubMed  Google Scholar 

  21. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  PubMed  Google Scholar 

  22. Wingender E, Dietze P, Karas H, Knüppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 1996;24:238–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Minata M, Audia A, Shi J, Lu S, Bernstock J, Pavlyukov MS, et al. Phenotypic plasticity of invasive edge glioma stem-like cells in response to ionizing radiation. Cell Rep. 2019;26:1893–905. e1897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci USA. 2013;110:8644–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Humphreys L, Espona-Fiedler M, Longley DB. FLIP as a therapeutic target in cancer. FEBS J. 2018;285:4104–23.

    Article  CAS  PubMed  Google Scholar 

  26. Oztürk S, Schleich K, Lavrik IN. Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. Exp Cell Res. 2012;318:1324–31.

    Article  PubMed  Google Scholar 

  27. Henry CM, Martin SJ. Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol Cell. 2017;65:715–29. e715.

    Article  CAS  PubMed  Google Scholar 

  28. Chaudhary PM, Eby MT, Jasmin A, Kumar A, Liu L, Hood L. Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene. 2000;19:4451–60.

    Article  CAS  PubMed  Google Scholar 

  29. Su H, Bidère N, Zheng L, Cubre A, Sakai K, Dale J, et al. Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science. 2005;307:1465–8.

    Article  CAS  PubMed  Google Scholar 

  30. Bidère N, Snow AL, Sakai K, Zheng L, Lenardo MJ. Caspase-8 regulation by direct interaction with TRAF6 in T cell receptor-induced NF-kappaB activation. Curr Biol. 2006;16:1666–71.

    Article  PubMed  Google Scholar 

  31. Rébé C, Cathelin S, Launay S, Filomenko R, Prévotat L, L’Ollivier C, et al. Caspase-8 prevents sustained activation of NF-kappaB in monocytes undergoing macrophagic differentiation. Blood. 2007;109:1442–50.

    Article  PubMed  Google Scholar 

  32. Moen SH, Westhrin M, Zahoor M, Nørgaard NN, Hella H, Størdal B, et al. Caspase-8 regulates the expression of pro- and anti-inflammatory cytokines in human bone marrow-derived mesenchymal stromal cells. Immun Inflamm Dis. 2016;4:327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keller N, Mares J, Zerbe O, Grütter MG. Structural and biochemical studies on procaspase-8: new insights on initiator caspase activation. Structure. 2009;17:438–48.

    Article  CAS  PubMed  Google Scholar 

  34. Keller N, Grütter MG, Zerbe O. Studies of the molecular mechanism of caspase-8 activation by solution NMR. Cell Death Differ. 2010;17:710–8.

    Article  CAS  PubMed  Google Scholar 

  35. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24:331–46.

    Article  CAS  PubMed  Google Scholar 

  36. Pordanjani SM, Hosseinimehr SJ. The Role of NF-kB inhibitors in cell response to radiation. Curr Med Chem. 2016;23:3951–63.

    Article  CAS  PubMed  Google Scholar 

  37. Alhalabi OT, Fletcher MNC, Hielscher T, Kessler T, Lokumcu T, Baumgartner U, et al. A novel patient stratification strategy to enhance the therapeutic efficacy of dasatinib in glioblastoma. Neuro Oncol. 2021;24:39–51.

    Article  PubMed Central  Google Scholar 

  38. Stagni V, Mingardi M, Santini S, Giaccari D, Barila D. ATM kinase activity modulates cFLIP protein levels: potential interplay between DNA damage signalling and TRAIL-induced apoptosis. Carcinogenesis. 2010;31:1956–63.

    Article  CAS  PubMed  Google Scholar 

  39. D’Antonio M, D’Onorio De Meo P, Pallocca M, Picardi E, D’Erchia AM, Calogero RA, et al. RAP: RNA-Seq Analysis Pipeline, a new cloud-based NGS web application. BMC Genomics. 2015;16:S3.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Maria Pia Gentileschi for kindly providing technical support for irradiation experiments and all the members of our lab for critical reading of the manuscript and for helpful discussion.

Funding

This work has been supported by research grants from Associazione Italiana per la Ricerca sul Cancro AIRC-IG2016-n.19069, AIRC-IG2021-n.26230, and Italian Ministry of Health, RF-2016-02362022 to DB; CCo work also been supported by AIRC-IG2016-n.19069 and AIRC-IG2021-n.26230, AF PhD fellowship was supported from MUR; MDM was supported by a FIRC-AIRC fellowship for Italy. The research leading to these results has received funding from AIRC under IG 2020 - ID. 24315 project – P.I. DDB; CCi has been supported by a FIRC-AIRC fellowship for Italy “Filomena Todini”. This work was also supported by United States National Institutes of Health (NIH) grants NS080939, NS116802, and CA258248 (FF).

Author information

Authors and Affiliations

Authors

Contributions

CCo performed most of the experiments, data analysis, interpretation and contributed to write the article; AF performed experiments with ionizing radiation; MDM performed angiogenesis studies; CCi performed cell death analysis experiments and qRT-PCR experiments; DDB designed angiogenesis studies; FDN performed the RNAseq experiments; MP, MF, FS performed bioinformatic analyses; GD and AC performed Luminex experiments; EV designed Luminex experiments; NK generated Caspase-8 lentiviral constructs; SM, DK conducted in vivo experiments; DS contributed to write the manuscript and to analyze the data; FF contributed to in vivo experimental design, data analysis and manuscript editing; DB designed the experiments, evaluated the data and wrote the paper.

Corresponding author

Correspondence to Daniela Barilà.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All procedures involving mice handling and care conformed to protocols approved by the Regina Elena National Cancer Institute (Rome, Italy) in compliance with national (D.L. N.116, G.U., suppl. 40, 18-2-1992 and N. 26, G.U. March 4, 2014) and international (EEC Council Directive 2010/63/EU, OJ L 276/33, 22-09-2010; National Institutes of Health Guide for the Care and Use of Laboratory Animals, US National Research Council, 2011) law and policies. The study was approved by the Italian Ministry of Health (approval number:342/2019-PR).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by M. Piacentini

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Contadini, C., Ferri, A., Di Martile, M. et al. Caspase-8 as a novel mediator linking Src kinase signaling to enhanced glioblastoma malignancy. Cell Death Differ (2022). https://doi.org/10.1038/s41418-022-01093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-022-01093-x

Search

Quick links