Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oligomeric CHMP7 mediates three-way ER junctions and ER-mitochondria interactions

Abstract

In metazoans the endoplasmic reticulum (ER) undergoes extensive remodeling during the cell cycle. The endosomal sorting complexes required for transport (ESCRT) protein CHMP7 coordinates ESCRT-III dependent nuclear envelope reformation during mitotic exit. However, potential roles of ER-associated CHMP7 at non-mitotic stages remain unclear. Here we discovered a new role of CHMP7 in mediating three-way ER and ER-mitochondrial membrane contact sites (MCSs). We showed that CHMP7 localizes to multiple cellular membranes including the ER, mitochondrial-associated membranes (MAMs) and the outer mitochondrial membrane (OMM) via its N-terminal membrane-binding domain. CHMP7 undergoes dynamic assembly at three-way ER junctions and ER-mitochondrial MCSs through hydrophobic interactions among α helix-1 and α helix-2 of the C-terminal CHMP-like domain, which was required for tethering different organelles in vivo. Furthermore, CHMP7 mediates the formation of three-way ER junctions in parallel with Atlastins (ATLs). Importantly, CHMP7 also regulates ER-mitochondrial interactions and its depletion affects mitochondrial division independently of ESCRT complex. Taken together, our results suggest a direct role of CHMP7 in the formation of the ER contacts in interphase.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The localization of CHMP7 relative to the ER, and ER-mitochondrial MCSs.
Fig. 2: Dynamic assembly of CHMP7 at the three-way ER and ER-mitochondrial MCSs.
Fig. 3: The assembly of CHMP7 at ER contacts requires helices 1&2 of CT domain.
Fig. 4: The hydrophobic residues of the two α helices are responsible for CHMP7 assembly at contacts.
Fig. 5: CHMP7 regulates the formation of 3-way ER junctions.
Fig. 6: CHMP7 regulates ER-mitochondrial interactions.
Fig. 7: CHMP7 affects mitochondrial division.
Fig. 8: The working model of CHMP7 at ER contacts.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Baumann O, Walz B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol. 2001;205:149–214.

    Article  CAS  Google Scholar 

  2. English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol. 2013;5:a013227.

    Article  Google Scholar 

  3. Hu J, Prinz WA, Rapoport TA. Weaving the web of ER tubules. Cell 2011;147:1226–31.

    Article  CAS  Google Scholar 

  4. Lee C, Chen LB. Dynamic behavior of endoplasmic reticulum in living cells. Cell 1988;54:37–46.

    Article  CAS  Google Scholar 

  5. Waterman-Storer CM, Salmon ED. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr Biol. 1998;8:798–806.

    Article  CAS  Google Scholar 

  6. Prinz WA, Toulmay A, Balla T. The functional universe of membrane contact sites. Nat Rev Mol Cell Biol. 2020;21:7–24.

    Article  CAS  Google Scholar 

  7. Wu H, Carvalho P, Voeltz GK. Here, there, and everywhere: The importance of ER membrane contact sites. Science. 2018;361:eaan5835.

    Article  Google Scholar 

  8. Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 2009;138:549–61.

    Article  CAS  Google Scholar 

  9. Liu TY, Bian X, Romano FB, Shemesh T, Rapoport TA, Hu J. Cis and trans interactions between atlastin molecules during membrane fusion. Proc Natl Acad Sci USA. 2015;112:E1851–60.

    CAS  Google Scholar 

  10. Wang S, Romano FB, Field CM, Mitchison TJ, Rapoport TA. Multiple mechanisms determine ER network morphology during the cell cycle in Xenopus egg extracts. J Cell Biol. 2013;203:801–14.

    Article  CAS  Google Scholar 

  11. Wang S, Tukachinsky H, Romano FB, Rapoport TA. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network. Elife. 2016;5:e18605.

    Article  Google Scholar 

  12. Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, Faust JE, et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 2009;460:978–83.

    Article  CAS  Google Scholar 

  13. Chen S, Desai T, McNew JA, Gerard P, Novick PJ, Ferro-Novick S. Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum. Proc Natl Acad Sci USA. 2015;112:418–23.

    Article  CAS  Google Scholar 

  14. Zhou X, He Y, Huang X, Guo Y, Li D, Hu J. Reciprocal regulation between lunapark and atlastin facilitates ER three-way junction formation. Protein Cell. 2019;10:510–25.

    Article  CAS  Google Scholar 

  15. Saheki Y, De Camilli P. Endoplasmic reticulum-plasma membrane contact sites. Annu Rev Biochem. 2017;86:659–84.

    Article  CAS  Google Scholar 

  16. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 2006;174:915–21.

    Article  CAS  Google Scholar 

  17. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. ER tubules mark sites of mitochondrial division. Science. 2011;334:358–62.

    Article  CAS  Google Scholar 

  18. Eisenberg-Bord M, Shai N, Schuldiner M, Bohnert M. A tether is a tether is a tether: tethering at membrane contact sites. Dev Cell. 2016;39:395–409.

    Article  CAS  Google Scholar 

  19. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science. 2009;325:477–81.

    Article  CAS  Google Scholar 

  20. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 2008;456:605–10.

    Article  Google Scholar 

  21. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006;175:901–11.

    Article  CAS  Google Scholar 

  22. Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 2011;30:556–68.

    Article  CAS  Google Scholar 

  23. De Vos KJ, Morotz GM, Stoica R, Tudor EL, Lau KF, Ackerley S, et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet. 2012;21:1299–311.

    Article  Google Scholar 

  24. Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P, Lees JA, et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol. 2018;217:3625–39.

    Article  CAS  Google Scholar 

  25. Gatta AT, Olmos Y, Stoten CL, Chen Q, Rosenthal PB, Carlton JG. CDK1 controls CHMP7-dependent nuclear envelope reformation. Elife. 2021;10:e59999.

    Article  CAS  Google Scholar 

  26. Lee IJ, Stokasimov E, Dempsey N, Varberg JM, Jacob E, Jaspersen SL, et al. Factors promoting nuclear envelope assembly independent of the canonical ESCRT pathway. J Cell Biol. 2020;219:e201908232.

    Article  CAS  Google Scholar 

  27. von Appen A, LaJoie D, Johnson IE, Trnka MJ, Pick SM, Burlingame AL, et al. LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation. Nature. 2020;582:115–8.

    Article  Google Scholar 

  28. Olmos Y, Perdrix-Rosell A, Carlton JG. Membrane Binding by CHMP7 Coordinates ESCRT-III-Dependent Nuclear Envelope Reformation. Curr Biol. 2016;26:2635–41.

    Article  CAS  Google Scholar 

  29. Horii M, Shibata H, Kobayashi R, Katoh K, Yorikawa C, Yasuda J, et al. CHMP7, a novel ESCRT-III-related protein, associates with CHMP4b and functions in the endosomal sorting pathway. Biochem J. 2006;400:23–32.

    Article  CAS  Google Scholar 

  30. Rowland AA, Voeltz GK. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol. 2012;13:607–25.

    Article  CAS  Google Scholar 

  31. Ji WK, Hatch AL, Merrill RA, Strack S, Higgs HN. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. Elife 2015;4:e11553.

    Article  Google Scholar 

  32. Niu L, Ma T, Yang F, Yan B, Tang X, Yin H, et al. Atlastin-mediated membrane tethering is critical for cargo mobility and exit from the endoplasmic reticulum. Proc Natl Acad Sci USA. 2019;116:14029–38.

    Article  CAS  Google Scholar 

  33. Gao Y, Xiong J, Chu QZ, Ji WK. PDZD8-mediated lipid transfer at contacts between the ER and late endosomes/lysosomes is required for neurite outgrowth. J Cell Sci. 2022;135:jcs255026.

    Article  CAS  Google Scholar 

  34. Ji WK, Chakrabarti R, Fan X, Schoenfeld L, Strack S, Higgs HN. Receptor-mediated Drp1 oligomerization on endoplasmic reticulum. J Cell Biol. 2017;216:4123–39.

    Article  CAS  Google Scholar 

  35. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol. 2010;191:1141–58.

    Article  CAS  Google Scholar 

  36. Abrisch RG, Gumbin SC, Wisniewski BT, Lackner LL, Voeltz GK. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J Cell Biol. 2020;219:e201911122.

    Article  CAS  Google Scholar 

  37. Liu X, Guo X, Niu L, Li X, Sun F, Hu J, et al. Atlastin-1 regulates morphology and function of endoplasmic reticulum in dendrites. Nat Commun. 2019;10:568.

    Article  CAS  Google Scholar 

  38. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160:189–200.

    Article  CAS  Google Scholar 

  39. Cali T, Ottolini D, Negro A, Brini M. alpha-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem. 2012;287:17914–29.

    Article  CAS  Google Scholar 

  40. Area-Gomez E, Del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, de Groof AJ, Madra M, et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 2012;31:4106–23.

    Article  CAS  Google Scholar 

  41. Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P. Presenilin 2 modulates endoplasmic reticulum-mitochondria coupling by tuning the antagonistic effect of mitofusin 2. Cell Rep. 2016;15:2226–38.

    Article  CAS  Google Scholar 

  42. Hedskog L, Pinho CM, Filadi R, Ronnback A, Hertwig L, Wiehager B, et al. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci USA. 2013;110:7916–21.

    Article  CAS  Google Scholar 

  43. Coyne AN, Baskerville V, Zaepfel BL, Dickson DW, Rigo F, Bennett F, et al. Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. Sci Transl Med. 2021;13:eabe1923.

    Article  CAS  Google Scholar 

  44. Dagda RK, Zhu J, Kulich SM, Chu CT. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy. 2008;4:770–82.

    Article  CAS  Google Scholar 

  45. Kumar S, Ciraolo G, Hinge A, Filippi MD. An efficient and reproducible process for transmission electron microscopy (TEM) of rare cell populations. J Immunol Methods. 2014;404:87–90.

    Article  CAS  Google Scholar 

  46. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ping Liu (the Optical Bioimaging Core Facility of WNLO-HUST), Linfang Yang (Huazhong University of Science and Technology) for imaging assistance, and Wenjun Pu (Shenzhen Bay Laboratory) for technical help with CHMP7 Halo KI.

Funding

JX was supported by National Natural Science Foundation of China (81901166). LD was supported by the Guangdong Basic and Applied Basic Research Foundation (2020A1515110542) and Shenzhen Bay Laboratory Open Fund (SZBL2020090501004). WJ was supported by National Natural Science Foundation of China (32122025; 91854109), and the Program for HUST Academic Frontier Youth Team (2018QYTD11).

Author information

Authors and Affiliations

Authors

Contributions

QC, JW, YD, TZ, JX, WJ, LD and conceived the project and designed the experiments. QC, JW, YD, TZ performed the experiments. QC, JW, YD, TZ, AS, JX, WJ, LD analyzed and interpreted the data. WJ prepared the manuscript with inputs and approval from all authors.

Corresponding authors

Correspondence to Juan Xiong, Wei-Ke Ji or Lin Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All experimental procedures involving animals were approved by Animal Use and Care Committee of Huazhong University of Science and Technology, Wuhan, China. All animal care and use followed the guidelines of the Animal Care and Use Committee of Huazhong University of Science and Technology. During all procedures of experiments, the number of animals and their suffering by treatments were minimized.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by L. Scorrano

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Q., Wang, J., Du, Y. et al. Oligomeric CHMP7 mediates three-way ER junctions and ER-mitochondria interactions. Cell Death Differ 30, 94–110 (2023). https://doi.org/10.1038/s41418-022-01048-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-022-01048-2

Search

Quick links