Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

What can we learn from mice lacking pro-survival BCL-2 proteins to advance BH3 mimetic drugs for cancer therapy?

Abstract

In many human cancers the control of apoptosis is dysregulated, for instance as a result of the overexpression of pro-survival BCL-2 proteins. This promotes tumorigenesis by protecting nascent neoplastic cells from stress and renders malignant cells resistant to anti-cancer agents. Therefore, several BH3 mimetic drugs targeting distinct pro-survival proteins have been developed. The BCL-2 inhibitor Venetoclax/ABT-199, has been approved for treatment of certain blood cancers and tens of thousands of patients have already been treated effectively with this drug. To advance the clinical development of MCL-1 and BCL-XL inhibitors, a more detailed understanding of their distinct and overlapping roles in the survival of malignant as well as non-transformed cells in healthy tissues is required. Here, we discuss similarities and differences in pro-survival BCL-2 protein structure, subcellular localisation and binding affinities to the pro-apoptotic BCL-2 family members. We summarise the findings from gene-targeting studies in mice to discuss the specific roles of distinct pro-survival BCL-2 family members during embryogenesis and the survival of non-transformed cells in healthy tissues in adults. Finally, we elaborate how these findings align with or differ from the observations from the clinical development and use of BH3 mimetic drugs targeting different pro-survival BCL-2 proteins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The regulation of the mitochondrial apoptotic pathway by pro-survival BCL-2 proteins.
Fig. 2: Subcellular localisation of the pro-survival BCL-2 proteins.
Fig. 3: Expression profile of pro-survival BCL-2 family members in solid tissues.
Fig. 4: mRNA expression profile of pro-survival BCL-2 family members in haematopoietic cell populations.

Data availability

There are no primary data presented in this review article.

References

  1. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49–63.

    Article  CAS  PubMed  Google Scholar 

  3. Green DR. The coming decade of cell death research: five riddles. Cell. 2019;177:1094–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ke FFS, Vanyai HK, Cowan AD, Delbridge ARD, Whitehead L, Grabow S, et al. Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK. Cell. 2018;173:1217–30 e1217.

    Article  CAS  PubMed  Google Scholar 

  5. Llambi F, Wang YM, Victor B, Yang M, Schneider DM, Gingras S, et al. BOK is a non-canonical BCL-2 family effector of apoptosis regulated by ER-associated degradation. Cell. 2016;165:421–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Puthalakath H, Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 2002;9:505–12.

    Article  CAS  PubMed  Google Scholar 

  7. Cartron PF, Gallenne T, Bougras G, Gautier F, Manero F, Vusio P, et al. The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell. 2004;16:807–18.

    Article  CAS  PubMed  Google Scholar 

  8. Marani M, Tenev T, Hancock D, Downward J, Lemoine NR. Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis. Mol Cell Biol. 2002;22:3577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 2007;315:856–9.

    Article  CAS  PubMed  Google Scholar 

  10. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993;53:4701–14.

    CAS  PubMed  Google Scholar 

  11. Lithgow T, van Driel R, Bertram JF, Strasser A. The protein product of the oncogene Bcl-2 is a component of the nuclear envelope, the endoplasmic reticulum, and the outer mitochondrial membrane. Cell Growth Differ. 1994;5:411–7.

    CAS  PubMed  Google Scholar 

  12. Janiak F, Leber B, Andrews DW. Assembly of Bcl-2 into microsomal and outer mitochondrial membranes. J Biol Chem. 1994;269:9842–9.

    Article  CAS  PubMed  Google Scholar 

  13. Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF. Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol. 2005;25:3117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakajima W, Hicks MA, Tanaka N, Krystal GW, Harada H. Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell Death Dis. 2014;5:e1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weng SY, Yang CY, Li CC, Sun TP, Tung SY, Yen JJ, et al. Synergism between p53 and Mcl-1 in protecting from hepatic injury, fibrosis and cancer. J Hepatol. 2011;54:685–94.

    Article  CAS  PubMed  Google Scholar 

  16. Yang T, Kozopas KM, Craig RW. The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J Cell Biol. 1995;128:1173–84.

    Article  CAS  PubMed  Google Scholar 

  17. Jamil S, Sobouti R, Hojabrpour P, Raj M, Kast J, Duronio V. A proteolytic fragment of Mcl-1 exhibits nuclear localization and regulates cell growth by interaction with Cdk1. Biochem J. 2005;387:659–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsu YT, Youle RJ. Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem. 1997;272:13829–34.

    Article  CAS  PubMed  Google Scholar 

  19. Malone CD, Hasan SM, Roome RB, Xiong J, Furlong M, Opferman JT, et al. Mcl-1 regulates the survival of adult neural precursor cells. Mol Cell Neurosci. 2012;49:439–47.

    Article  CAS  PubMed  Google Scholar 

  20. Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F, et al. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev. 2003;17:1475–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Reilly LA, Print C, Hausmann G, Moriishi K, Cory S, Huang DC, et al. Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death Differ. 2001;8:486–94.

    Article  PubMed  CAS  Google Scholar 

  22. Werner AB, de Vries E, Tait SW, Bontjer I, Borst J. Bcl-2 family member Bfl-1/A1 sequesters truncated bid to inhibit is collaboration with pro-apoptotic Bak or Bax. J Biol Chem. 2002;277:22781–8.

    Article  CAS  PubMed  Google Scholar 

  23. Guedes RP, Rocha E, Mahiou J, Moll HP, Arvelo MB, Taube JM, et al. The C-terminal domain of A1/Bfl-1 regulates its anti-inflammatory function in human endothelial cells. Biochim Biophys Acta. 2013;1833:1553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kucharczak JF, Simmons MJ, Duckett CS, Gelinas C. Constitutive proteasome-mediated turnover of Bfl-1/A1 and its processing in response to TNF receptor activation in FL5.12 pro-B cells convert it into a prodeath factor. Cell Death Differ. 2005;12:1225–39.

    Article  CAS  PubMed  Google Scholar 

  25. Adams KW, Cooper GM. Rapid turnover of mcl-1 couples translation to cell survival and apoptosis. J Biol Chem. 2007;282:6192–200.

    Article  CAS  PubMed  Google Scholar 

  26. Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell. 2006;21:749–60.

    Article  CAS  PubMed  Google Scholar 

  27. Blagosklonny MV, Alvarez M, Fojo A, Neckers LM. bcl-2 protein downregulation is not required for differentiation of multidrug resistant HL60 leukemia cells. Leuk Res. 1996;20:101–7.

    Article  CAS  PubMed  Google Scholar 

  28. Rooswinkel RW, van de Kooij B, de Vries E, Paauwe M, Braster R, Verheij M, et al. Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood. 2014;123:2806–15.

    Article  CAS  PubMed  Google Scholar 

  29. Herold MJ, Zeitz J, Pelzer C, Kraus C, Peters A, Wohlleben G, et al. The stability and anti-apoptotic function of A1 are controlled by its C terminus. J Biol Chem. 2006;281:13663–71.

    Article  CAS  PubMed  Google Scholar 

  30. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell. 2005;17:393–403.

    Article  CAS  PubMed  Google Scholar 

  31. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell. 2005;17:525–35.

    Article  CAS  PubMed  Google Scholar 

  32. Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature. 2003;426:671–6.

    Article  CAS  PubMed  Google Scholar 

  33. Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN. The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J. 1982;1:681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boumela I, Assou S, Haouzi D, Dechaud H, Ait-Ahmed O, Hamamah S. Developmental regulated expression of anti- and pro-apoptotic BCL-2 family genes during human early embryonic development. Curr Med Chem. 2014;21:1361–9.

    Article  CAS  PubMed  Google Scholar 

  35. Russell HR, Lee Y, Miller HL, Zhao J, McKinnon PJ. Murine ovarian development is not affected by inactivation of the bcl-2 family member diva. Mol Cell Biol. 2002;22:6866–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ke N, Godzik A, Reed JC. Bcl-B, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak. J Biol Chem. 2001;276:12481–4.

    Article  CAS  PubMed  Google Scholar 

  37. Lee R, Chen J, Matthews CP, McDougall JK, Neiman PE. Characterization of NR13-related human cell death regulator, Boo/Diva, in normal and cancer tissues. Biochim Biophys Acta. 2001;1520:187–94.

    Article  CAS  PubMed  Google Scholar 

  38. Song Q, Kuang Y, Dixit VM. Vincenz C. Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J. 1999;18:167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Opferman JT, Kothari A. Anti-apoptotic BCL-2 family members in development. Cell Death Differ. 2018;25:37–45.

    Article  CAS  PubMed  Google Scholar 

  40. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993;75:229–40.

    Article  CAS  PubMed  Google Scholar 

  41. Abe-Dohmae S, Harada N, Yamada K, Tanaka R. Bcl-2 gene is highly expressed during neurogenesis in the central nervous system. Biochem Biophys Res Commun. 1993;191:915–21.

    Article  CAS  PubMed  Google Scholar 

  42. Arbour N, Vanderluit JL, Le Grand JN, Jahani-Asl A, Ruzhynsky VA, Cheung EC, et al. Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage. J Neurosci. 2008;28:6068–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Merry DE, Veis DJ, Hickey WF, Korsmeyer SJ. bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development. 1994;120:301–11.

    Article  CAS  PubMed  Google Scholar 

  44. Michaelidis TM, Sendtner M, Cooper JD, Airaksinen MS, Holtmann B, Meyer M, et al. Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron. 1996;17:75–89.

    Article  CAS  PubMed  Google Scholar 

  45. Motoyama N, Kimura T, Takahashi T, Watanabe T, Nakano T. bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J Exp Med. 1999;189:1691–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Nakayama K, et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science. 1995;267:1506–10.

    Article  CAS  PubMed  Google Scholar 

  47. Roth KA, Motoyama N, Loh DY. Apoptosis of bcl-x-deficient telencephalic cells in vitro. J Neurosci. 1996;16:1753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shindler KS, Latham CB, Roth KA. Bax deficiency prevents the increased cell death of immature neurons in bcl-x-deficient mice. J Neurosci. 1997;17:3112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Savitt JM, Jang SS, Mu W, Dawson VL, Dawson TM. Bcl-x is required for proper development of the mouse substantia nigra. J Neurosci. 2005;25:6721–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rinkenberger JL, Horning S, Klocke B, Roth K, Korsmeyer SJ. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev. 2000;14:23–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Flemmer RT, Connolly SP, Geizer BA, Opferman JT, Vanderluit JL. The role of Mcl-1 in embryonic neural precursor cell apoptosis. Front Cell Dev Biol. 2021;9:659531.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang X, Bathina M, Lynch J, Koss B, Calabrese C, Frase S, et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev. 2013;27:1351–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sjostedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020, 367.

  54. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteom. 2005;4:1920–32.

    Article  CAS  Google Scholar 

  55. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  PubMed  CAS  Google Scholar 

  56. Kamada S, Shimono A, Shinto Y, Tsujimura T, Takahashi T, Noda T, et al. bcl-2 deficiency in mice leads to pleiotropic abnormalities: accelerated lymphoid cell death in thymus and spleen, polycystic kidney, hair hypopigmentation, and distorted small intestine. Cancer Res. 1995;55:354–9.

    CAS  PubMed  Google Scholar 

  57. Mak S-S, Moriyama M, Nishioka E, Osawa M, Nishikawa S-I. Indispensable role of Bcl2 in the development of the melanocyte stem cell. Dev Biol. 2006;291:144–53.

    Article  CAS  PubMed  Google Scholar 

  58. Yamamura K, Kamada S, Ito S, Nakagawa K, Ichihashi M, Tsujimoto Y. Accelerated disappearance of melanocytes in bcl-2-deficient mice. Cancer Res. 1996;56:3546–50.

    CAS  PubMed  Google Scholar 

  59. Wojciechowski S, Tripathi P, Bourdeau T, Acero L, Grimes HL, Katz JD, et al. Bim/Bcl-2 balance is critical for maintaining naive and memory T cell homeostasis. J Exp Med. 2007;204:1665–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bouillet P, Cory S, Zhang LC, Strasser A, Adams JM. Degenerative disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim. Dev Cell. 2001;1:645–53.

    Article  CAS  PubMed  Google Scholar 

  61. Ceizar M, Dhaliwal J, Xi Y, Smallwood M, Kumar KL, Lagace DC. Bcl-2 is required for the survival of doublecortin-expressing immature neurons. Hippocampus. 2016;26:211–9.

    Article  CAS  PubMed  Google Scholar 

  62. Wang S, Sorenson CM, Sheibani N. Attenuation of retinal vascular development and neovascularization during oxygen-induced ischemic retinopathy in Bcl-2-/- mice. Dev Biol. 2005;279:205–19.

    Article  CAS  PubMed  Google Scholar 

  63. Rucker EB 3rd, Dierisseau P, Wagner KU, Garrett L, Wynshaw-Boris A, Flaws JA, et al. Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol Endocrinol. 2000;14:1038–52.

    Article  CAS  PubMed  Google Scholar 

  64. Brinkmann K, Waring P, Glaser SP, Wimmer V, Cottle DL, Tham MS, et al. BCL-XL exerts a protective role against anemia caused by radiation-induced kidney damage. EMBO J. 2020;39:e105561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Takehara T, Tatsumi T, Suzuki T, Rucker EB 3rd, Hennighausen L, Jinushi M, et al. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology. 2004;127:1189–97.

    Article  CAS  PubMed  Google Scholar 

  66. Carrington EM, McKenzie MD, Jansen E, Myers M, Fynch S, Kos C, et al. Islet beta-cells deficient in Bcl-xL develop but are abnormally sensitive to apoptotic stimuli. Diabetes. 2009;58:2316–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Staversky RJ, Vitiello PF, Yee M, Callahan LM, Dean DA, O’Reilly MA. Epithelial ablation of Bcl-XL increases sensitivity to oxygen without disrupting lung development. Am J Respir Cell Mol Biol. 2010;43:376–85.

    Article  CAS  PubMed  Google Scholar 

  68. Thomas RL, Roberts DJ, Kubli DA, Lee Y, Quinsay MN, Owens JB, et al. Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes Dev. 2013;27:1365–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seibler J, Zevnik B, Kuter-Luks B, Andreas S, Kern H, Hennek T, et al. Rapid generation of inducible mouse mutants. Nucleic Acids Res. 2003;31:e12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Perciavalle RM, Opferman JT. Delving deeper: MCL-1’s contributions to normal and cancer biology. Trends Cell Biol. 2013;23:22–9.

    Article  CAS  PubMed  Google Scholar 

  71. Fu NY, Sukumaran SK, Kerk SY, Yu VC. Baxbeta: a constitutively active human Bax isoform that is under tight regulatory control by the proteasomal degradation mechanism. Mol Cell. 2009;33:15–29.

    Article  CAS  PubMed  Google Scholar 

  72. Vick B, Weber A, Urbanik T, Maass T, Teufel A, Krammer PH, et al. Knockout of myeloid cell leukemia-1 induces liver damage and increases apoptosis susceptibility of murine hepatocytes. Hepatology. 2009;49:627–36.

    Article  CAS  PubMed  Google Scholar 

  73. Hikita H, Takehara T, Shimizu S, Kodama T, Li W, Miyagi T, et al. Mcl-1 and Bcl-xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver. Hepatology. 2009;50:1217–26.

    Article  CAS  PubMed  Google Scholar 

  74. Healy ME, Boege Y, Hodder MC, Bohm F, Malehmir M, Scherr AL, et al. MCL1 is Required for Maintenance of Intestinal Homeostasis and Prevention of Carcinogenesis in Mice. Gastroenterology. 2020;159:183–99.

    Article  CAS  PubMed  Google Scholar 

  75. Jain R, Sheridan JM, Policheni A, Heinlein M, Gandolfo LC, Dewson G, et al. A critical epithelial survival axis regulated by MCL-1 maintains thymic function in mice. Blood. 2017;130:2504–15.

    Article  CAS  PubMed  Google Scholar 

  76. Fu NY, Rios AC, Pal B, Soetanto R, Lun AT, Liu K, et al. EGF-mediated induction of Mcl-1 at the switch to lactation is essential for alveolar cell survival. Nat Cell Biol. 2015;17:365–75.

    Article  CAS  PubMed  Google Scholar 

  77. Watson EC, Whitehead L, Adams RH, Dewson G, Coultas L. Endothelial cell survival during angiogenesis requires the pro-survival protein MCL1. Cell Death Differ. 2016;23:1371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Print CG, Loveland KL, Gibson L, Meehan T, Stylianou A, Wreford N, et al. Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci USA. 1998;95:12424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ross AJ, Waymire KG, Moss JE, Parlow AF, Skinner MK, Russell LD, et al. Testicular degeneration in Bclw-deficient mice. Nat Genet. 1998;18:251–6.

    Article  CAS  PubMed  Google Scholar 

  80. Schenk RL, Tuzlak S, Carrington EM, Zhan Y, Heinzel S, Teh CE, et al. Characterisation of mice lacking all functional isoforms of the pro-survival BCL-2 family member A1 reveals minor defects in the haematopoietic compartment. Cell Death Differ. 2017;24:534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tuzlak S, Schenk RL, Vasanthakumar A, Preston SP, Haschka MD, Zotos D, et al. The BCL-2 pro-survival protein A1 is dispensable for T cell homeostasis on viral infection. Cell Death Differ. 2017;24:523–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. de Graaf CA, Choi J, Baldwin TM, Bolden JE, Fairfax KA, Robinson AJ, et al. Haemopedia: an expression atlas of murine hematopoietic cells. Stem Cell Rep. 2016;7:571–82.

    Article  Google Scholar 

  83. Uhlen M, Karlsson MJ, Zhong W, Tebani A, Pou C, Mikes J, et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. 2019;366:6472.

    Article  CAS  Google Scholar 

  84. Choi J, Baldwin TM, Wong M, Bolden JE, Fairfax KA, Lucas EC, et al. Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans. Nucleic Acids Res. 2019;47:D780–5.

    Article  CAS  PubMed  Google Scholar 

  85. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011;144:296–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nakayama K, Nakayama K, Negishi I, Kuida K, Shinkai Y, Louie MC, et al. Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science. 1993;261:1584–8.

    Article  CAS  PubMed  Google Scholar 

  87. Grossmann M, O’Reilly LA, Gugasyan R, Strasser A, Adams JM, Gerondakis S. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 2000;19:6351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nakayama K, Nakayama K, Negishi I, Kuida K, Sawa H, Loh DY. Targeted disruption of Bcl-2 alpha beta in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc Natl Acad Sci USA. 1994;91:3700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dunkle A, Dzhagalov I, Gordy C, He YW. Transfer of CD8+ T cell memory using Bcl-2 as a marker. J Immunol. 2013;190:940–7.

    Article  CAS  PubMed  Google Scholar 

  90. Kurtulus S, Tripathi P, Moreno-Fernandez ME, Sholl A, Katz JD, Grimes HL, et al. Bcl-2 allows effector and memory CD8+ T cells to tolerate higher expression of Bim. J Immunol. 2011;186:5729–37.

    Article  CAS  PubMed  Google Scholar 

  91. Viant C, Guia S, Hennessy RJ, Rautela J, Pham K, Bernat C, et al. Cell cycle progression dictates the requirement for BCL2 in natural killer cell survival. J Exp Med. 2017;214:491–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Debrincat MA, Pleines I, Lebois M, Lane RM, Holmes ML, Corbin J, et al. BCL-2 is dispensable for thrombopoiesis and platelet survival. Cell Death Dis. 2015;6:e1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma A, Pena JC, Chang B, Margosian E, Davidson L, Alt FW, et al. Bclx regulates the survival of double-positive thymocytes. Proc Natl Acad Sci USA. 1995;92:4763–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang N, He YW. The antiapoptotic protein Bcl-xL is dispensable for the development of effector and memory T lymphocytes. J Immunol. 2005;174:6967–73.

    Article  CAS  PubMed  Google Scholar 

  95. Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L, et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 1997;25:4323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Choi YW, Henrard D, Lee I, Ross SR. The mouse mammary tumor virus long terminal repeat directs expression in epithelial and lymphoid cells of different tissues in transgenic mice. J Virol. 1987;61:3013–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ross SR, Hsu CL, Choi Y, Mok E, Dudley JP. Negative regulation in correct tissue-specific expression of mouse mammary tumor virus in transgenic mice. Mol Cell Biol. 1990;10:5822–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Stewart TA, Hollingshead PG, Pitts SL. Multiple regulatory domains in the mouse mammary tumor virus long terminal repeat revealed by analysis of fusion genes in transgenic mice. Mol Cell Biol. 1988;8:473–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wagner KU, Claudio E, Rucker EB 3rd, Riedlinger G, Broussard C, Schwartzberg PL, et al. Conditional deletion of the Bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly. Development. 2000;127:4949–58.

    Article  CAS  PubMed  Google Scholar 

  100. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007;128:1173–86.

    Article  CAS  PubMed  Google Scholar 

  101. Josefsson EC, James C, Henley KJ, Debrincat MA, Rogers KL, Dowling MR, et al. Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets. J Exp Med. 2011;208:2017–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Debrincat MA, Josefsson EC, James C, Henley KJ, Ellis S, Lebois M, et al. Mcl-1 and Bcl-x(L) coordinately regulate megakaryocyte survival. Blood. 2012;119:5850–8.

    Article  CAS  PubMed  Google Scholar 

  103. Kodama T, Hikita H, Kawaguchi T, Shigekawa M, Shimizu S, Hayashi Y, et al. Mcl-1 and Bcl-xL regulate Bak/Bax-dependent apoptosis of the megakaryocytic lineage at multistages. Cell Death Differ. 2012;19:1856–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brinkmann K, Grabow S, Hyland CD, Teh CE, Alexander WS, Herold MJ, et al. The combination of reduced MCL-1 and standard chemotherapeutics is tolerable in mice. Cell Death Differ. 2017;24:2032–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K, et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science. 2005;307:1101–4.

    Article  CAS  PubMed  Google Scholar 

  106. Vikstrom I, Carotta S, Lüthje K, Peperzak V, Jost PJ, Glaser S, et al. Mcl-1 is essential for germinal center formation and B cell memory. Science. 2010;330:1095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sathe P, Delconte RB, Souza-Fonseca-Guimaraes F, Seillet C, Chopin M, Vandenberg CJ, et al. Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nat Commun. 2014;5:4539.

    Article  CAS  PubMed  Google Scholar 

  108. Carrington EM, Zhang JG, Sutherland RM, Vikstrom IB, Brady JL, Soo P, et al. Prosurvival Bcl-2 family members reveal a distinct apoptotic identity between conventional and plasmacytoid dendritic cells. Proc Natl Acad Sci USA. 2015;112:4044–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Turnis ME, Kaminska E, Smith KH, Kartchner BJ, Vogel P, Laxton JD, et al. Requirement for antiapoptotic MCL-1 during early erythropoiesis. Blood. 2021;137:1945–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dzhagalov I, St John A, He YW. The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood. 2007;109:1620–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Steimer DA, Boyd K, Takeuchi O, Fisher JK, Zambetti GP, Opferman JT. Selective roles for antiapoptotic MCL-1 during granulocyte development and macrophage effector function. Blood. 2009;113:2805–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gibson L, Holmgreen SP, Huang DC, Bernard O, Copeland NG, Jenkins NA, et al. bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncogene. 1996;13:665–75.

    CAS  PubMed  Google Scholar 

  113. Adams CM, Kim AS, Mitra R, Choi JK, Gong JZ, Eischen CM. BCL-W has a fundamental role in B cell survival and lymphomagenesis. J Clin Invest. 2017;127:635–50.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Adams CM, Mitra R, Gong JZ, Eischen CM. Non-Hodgkin and Hodgkin lymphomas select for overexpression of BCLW. Clin Cancer Res. 2017;23:7119–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Diepstraten ST, Chang C, Tai L, Gong JN, Lan P, Dowell AC, et al. BCL-W is dispensable for the sustained survival of select Burkitt lymphoma and diffuse large B-cell lymphoma cell lines. Blood Adv. 2020;4:356–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Karsan A, Yee E, Harlan JM. Endothelial cell death induced by tumor necrosis factor-alpha is inhibited by the Bcl-2 family member, A1. J Biol Chem. 1996;271:27201–4.

    Article  CAS  PubMed  Google Scholar 

  117. Karsan A, Yee E, Kaushansky K, Harlan JM. Cloning of human Bcl-2 homologue: inflammatory cytokines induce human A1 in cultured endothelial cells. Blood. 1996;87:3089–96.

    Article  CAS  PubMed  Google Scholar 

  118. Lin EY, Orlofsky A, Berger MS, Prystowsky MB. Characterization of A1, a novel hemopoietic-specific early-response gene with sequence similarity to bcl-2. J Immunol. 1993;151:1979–88.

    CAS  PubMed  Google Scholar 

  119. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev. 1999;13:382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gangoda L, Schenk RL, Best SA, Nedeva C, Louis C, D’Silva DB, et al. Absence of pro-survival A1 has no impact on inflammatory cell survival in vivo during acute lung inflammation and peritonitis. Cell Death Differ. 2022;29:96–104.

    Article  CAS  PubMed  Google Scholar 

  121. Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 2018;25:27–36.

    Article  CAS  PubMed  Google Scholar 

  122. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol. 2012;30:488–96.

    Article  CAS  PubMed  Google Scholar 

  123. Wilson WH, O'Connor OA, Czuczman MS, LaCasce LS, Gerecitano JF, Leonard JP, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11:1149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ackler S, Mitten MJ, Foster K, Oleksijew A, Refici M, Tahir SK, et al. The Bcl-2 inhibitor ABT-263 enhances the response of multiple chemotherapeutic regimens in hematologic tumors in vivo. Cancer Chemother Pharm. 2010;66:869–80.

    Article  CAS  Google Scholar 

  125. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–81.

    Article  CAS  PubMed  Google Scholar 

  126. Shoemaker AR, Mitten MJ, Adickes J, Ackler S, Refici M, Ferguson D, et al. Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin Cancer Res. 2008;14:3268–77.

    Article  CAS  PubMed  Google Scholar 

  127. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8.

    Article  CAS  PubMed  Google Scholar 

  128. Koehler MF, Bergeron P, Choo EF, Lau K, Ndubaku C, Dudley D, et al. Structure-guided rescaffolding of selective antagonists of BCL-XL. ACS Med Chem Lett. 2014;5:662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM, et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol. 2013;9:390–7.

    Article  CAS  PubMed  Google Scholar 

  130. Sleebs BE, Kersten WJ, Kulasegaram S, Nikolakopoulos G, Hatzis E, Moss RM, et al. Discovery of potent and selective benzothiazole hydrazone inhibitors of Bcl-XL. J Med Chem. 2013;56:5514–40.

    Article  CAS  PubMed  Google Scholar 

  131. Tao ZF, Hasvold L, Wang L, Wang X, Petros AM, Park CH, et al. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med Chem Lett. 2014;5:1088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25:1938–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang X, He Y, Zhang P, Budamagunta V, Lv D, Thummuri D, et al. Discovery of IAP-recruiting BCL-XL PROTACs as potent degraders across multiple cancer cell lines. Eur J Med Chem. 2020;199:112397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang X, Thummuri D, Liu X, Hu W, Zhang P, Khan S, et al. Discovery of PROTAC BCL-XL degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem. 2020;192:112186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhao X, Ogunwobi OO, Liu C. Survivin inhibition is critical for Bcl-2 inhibitor-induced apoptosis in hepatocellular carcinoma cells. PLoS One. 2011;6:e21980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Merino D, Khaw SL, Glaser SP, Anderson DJ, Belmont LD, Wong C, et al. Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood. 2012;119:5807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.

    Article  CAS  PubMed  Google Scholar 

  138. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2016;374:311–22.

    Article  CAS  PubMed  Google Scholar 

  139. Davids MS, Hallek M, Wierda W, Roberts AW, Stilgenbauer S, Jones JA, et al. Comprehensive safety analysis of venetoclax monotherapy for patients with relapsed/refractory chronic lymphocytic leukemia. Clin Cancer Res. 2018;24:4371–9.

    Article  CAS  PubMed  Google Scholar 

  140. Davids MS, von Keudell G, Portell CA, Cohen JB, Fisher DC, Foss F, et al. Revised dose ramp-up to mitigate the risk of tumor lysis syndrome when initiating venetoclax in patients with mantle cell lymphoma. J Clin Oncol. 2018;36:3525–7.

    Article  CAS  Google Scholar 

  141. Reda G, Cassin R, Dovrtelova G, Matteo C, Giannotta J, D’Incalci M, et al. Venetoclax penetrates in cerebrospinal fluid and may be effective in chronic lymphocytic leukemia with central nervous system involvement. Haematologica. 2019;104:e222–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Strasser GLKAA. Toward targeting antiapoptotic MCL-1 for cancer therapy. Annu Rev Cancer Biol. 2020;4:299–313.

    Article  Google Scholar 

  143. Caenepeel S, Brown SP, Belmontes B, Moody G, Keegan KS, Chui D, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Disco. 2018;8:1582–97.

    Article  CAS  Google Scholar 

  144. Szlavik Z, Csekei M, Paczal A, Szabo ZB, Sipos S, Radics G, et al. Discovery of 04315, a potent and selective Mcl-1 inhibitor. J Med Chem. 2020;63:13762–95.

    Article  CAS  PubMed  Google Scholar 

  145. Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9:5341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kelly GL, Grabow S, Glaser SP, Fitzsimmons L, Aubrey BJ, Okamoto T, et al. Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev. 2014;28:58–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Safety, tolerability, pharmacokinetics and efficacy of AMG 397 in subjects with selected relapsed or refractory hematological malignancies. Clinicaltrials.gov.au 2018–2019.

  148. FDA places trials of MCL-1 inhibitor on clinical hold. Ash Clinical News; 2019.

  149. FDA places clinical hold on trials of AZD5991 following cardiac complications. Ash Clinical News; 2021.

  150. Study of AZD5991 alone or in combination with venetoclax in relapsed or refractory haematologic malignancies. Clinicaltrialsgov 2022.

  151. Spencer A, Rosenberg AS, Jakubowiak A, Raje N, Chatterjee M, Trudel S, et al. A Phase 1, first-in-human study of AMG 176, a selective MCL-1 inhibitor, in patients with relapsed or refractory multiple myeloma. Clin Lymphoma, Myeloma Leuk. 2019;19:E53–4.

    Article  Google Scholar 

  152. Bohler S, Afreen S, Fernandez-Orth J, Demmerath EM, Molnar C, Wu Y, et al. Inhibition of the anti-apoptotic protein MCL-1 severely suppresses human hematopoiesis. Haematologica. 2021;106:3136–48.

    CAS  PubMed  Google Scholar 

  153. Weeden CE, Ah-Cann C, Holik AZ, Pasquet J, Garnier JM, Merino D, et al. Dual inhibition of BCL-XL and MCL-1 is required to induce tumour regression in lung squamous cell carcinomas sensitive to FGFR inhibition. Oncogene. 2018;37:4475–88.

    Article  CAS  PubMed  Google Scholar 

  154. Yamashita J, Datta NS, Chun YH, Yang D-Y, Carey AA, Kreider JM, et al. Role of Bcl2 in osteoclastogenesis and PTH anabolic actions in bone. J Bone Miner Res. 2008;23:621–32.

    Article  CAS  PubMed  Google Scholar 

  155. Walton KD, Wagner KU, Rucker EB 3rd, Shillingford JM, Miyoshi K, Hennighausen L. Conditional deletion of the bcl-x gene from mouse mammary epithelium results in accelerated apoptosis during involution but does not compromise cell function during lactation. Mech Dev. 2001;109:281–93.

    Article  CAS  PubMed  Google Scholar 

  156. Hon H, Rucker EB 3rd, Hennighausen L, Jacob J. bcl-xL is critical for dendritic cell survival in vivo. J Immunol. 2004;173:4425–32.

    Article  CAS  PubMed  Google Scholar 

  157. Peperzak V, Vikström I, Walker J, Glaser SP, LePage M, Coquery CM, et al. Mcl-1 is essential for the survival of plasma cells [published correction appears in Nat Immunol. 2013 Aug;14(8):877]. Nat Immunol. 2013;14:290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jakubowska MA, Kerkhofs M, Martines C, Efremov DG, Gerasimenko JV, Gerasimenko OV, et al. ABT-199 (Venetoclax), a BH3-mimetic Bcl-2 inhibitor, does not cause Ca2+ -signalling dysregulation or toxicity in pancreatic acinar cells. Br J Pharmacol. 2019;176:4402–15.

    Article  CAS  PubMed  Google Scholar 

  159. Robinson EJ, Aguiar SP, Kouwenhoven WM, Starmans DS, von Oerthel L, Smidt MP, van der Heide LP. Survival of midbrain dopamine neurons depends on the Bcl2 factor Mcl1. Cell Death Discov. 2018;4:107.

Download references

Acknowledgements

We thank Dr Marco Herold for discussion of the data that are reviewed here. We thank Dr Andrew Roberts for sharing his experience from clinical treatment of patients with Venetoclax and Dr David Huang for sharing his insights into the stability of BAX protein.

Funding

The work by the authors was supported by grants and fellowships from the Deutsche Krebshilfe (Dr Mildred Scheel post-doctoral fellowship to KB), the National Health and Medical Research Council (Program Grant #1113133, Fellowship 1116937, Investigator Grant #2007887, Synergy Grant #2010275; all to AS) and the Leukaemia and Lymphoma Society (SCOR Grant #7015-18 to AS).

Author information

Authors and Affiliations

Authors

Contributions

KB and AS discussed and interpreted all primary research papers mentioned in this review. KB wrote the manuscript with the help of AS. KB designed Figs. 1 and 2. CdG analysed publicly available gene expression data and designed Figs. 3 and 4. AN and KB produced Table 4 and AN described the findings about on-target toxicities of BH3 mimetic drugs in patients and pre-clinical tests in mice.

Corresponding authors

Correspondence to Kerstin Brinkmann or Andreas Strasser.

Ethics declarations

Competing interests

All authors are employees of The Walter and Eliza Hall Institute (WEHI). WEHI receives royalties and milestone payments from the sale of Venetoclax. AS has received funding for his research from Servier and has served on a strategic advisory board from Servier.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by G. Melino

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brinkmann, K., Ng, A.P., de Graaf, C.A. et al. What can we learn from mice lacking pro-survival BCL-2 proteins to advance BH3 mimetic drugs for cancer therapy?. Cell Death Differ 29, 1079–1093 (2022). https://doi.org/10.1038/s41418-022-00987-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-022-00987-0

This article is cited by

Search

Quick links