Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Upregulation of Wilms’ Tumor 1 in epicardial cells increases cardiac fibrosis in dystrophic mice

Abstract

Cardiomyopathy is a primary cause of mortality in Duchenne muscular dystrophy (DMD) patients. Mechanistic understanding of cardiac fibrosis holds the key to effective DMD cardiomyopathy treatments. Here we demonstrate that upregulation of Wilms’ tumor 1 (Wt1) gene in epicardial cells increased cardiac fibrosis and impaired cardiac function in 8-month old mdx mice lacking the RNA component of telomerase (mdx/mTR−/−). Levels of phosphorylated IƙBα and p65 significantly rose in mdx/mTR−/− dystrophic hearts and Wt1 expression declined in the epicardium of mdx/mTR−/− mice when nuclear factor κB (NF-κB) and inflammation were inhibited by metformin. This demonstrates that Wt1 expression in epicardial cells is dependent on inflammation-triggered NF-κB activation. Metformin effectively prevented cardiac fibrosis and improved cardiac function in mdx/mTR−/− mice. Our study demonstrates that upregulation of Wt1 in epicardial cells contributes to fibrosis in dystrophic hearts and metformin-mediated inhibition of NF-κB can ameliorate the pathology, and thus showing clinical potential for dystrophic cardiomyopathy. Translational Perspective: Cardiomyopathy is a major cause of mortality in Duchenne muscular dystrophy (DMD) patients. Promising exon-skipping treatments are moving to the clinic, but getting sufficient dystrophin expression in the heart has proven challenging. The present study shows that Wilms’ Tumor 1 (Wt1) upregulation in epicardial cells is primarily responsible for cardiac fibrosis and dysfunction of dystrophic mice and likely of DMD patients. Metformin effectively prevents cardiac fibrosis and improves cardiac function in dystrophic mice, thus representing a treatment option for DMD patients on top of existing therapies.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Evaluation of Wt1 expression in the hearts of 8-month old mdx/mTR−/− mice.
Fig. 2: In vitro characterization of epicardial cells and examination of cardiac fibrosis in 8-month old mdx/mTR−/− mice.
Fig. 3: Systemic investigation of the effect of Wt1 over-expression on cardiac fibrosis and function in mdx/mTR−/− mice.
Fig. 4: Examination on NF-κB activation and Wt1 expression in different ages of mdx/mTR−/− mice.
Fig. 5: Investigation of NF-κB activation and Wt1 expression in metformin -treated mdx/mTR−/− mice.
Fig. 6: Measurements of cardiac fibrosis and function in metformin-treated mdx/mTR−/− mice.
Fig. 7: Schematic to depict the mechanism of action underpinning Wt1-mediated cardiac fibrosis in dystrophic hearts.

Data and materials availability

The data underlying this article are available in the article and in its online supplementary material.

References

  1. Verhaart IEC, Aartsma-Rus A. Therapeutic developments for Duchenne muscular dystrophy. Nat Rev Neurol. 2019;15:373–86.

    Article  PubMed  Google Scholar 

  2. Kamdar F, Garry DJ. Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol. 2016;67:2533–46.

    Article  CAS  PubMed  Google Scholar 

  3. Silva MC, Magalhaes TA, Meira ZM, Rassi CH, Andrade AC, Gutierrez PS, et al. Myocardial fibrosis progression in duchenne and becker muscular dystrophy: A randomized clinical trial. JAMA Cardiol. 2017;2:190–9.

    Article  PubMed  Google Scholar 

  4. Hinderer S, Schenke-Layland K. Cardiac fibrosis - A short review of causes and therapeutic strategies. Adv Drug Deliv Rev. 2019;146:77–82.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou L, Lu H. Targeting fibrosis in Duchenne muscular dystrophy. J Neuropathol Exp Neurol. 2010;69:771–6.

    Article  PubMed  Google Scholar 

  6. Mavrogeni S, Markousis-Mavrogenis G, Papavasiliou A, Kolovou G. Cardiac involvement in Duchenne and Becker muscular dystrophy. World J Cardiol. 2015;7:410–4.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smits AM, Dronkers E, Goumans MJ. The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate. Pharm Res. 2018;127:129–40.

    Article  CAS  Google Scholar 

  8. Simoes FC, Riley PR. The ontogeny, activation and function of the epicardium during heart development and regeneration. Development. 2018, 145.

  9. Gittenberger-de Groot AC, Winter EM, Poelmann RE. Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia. J Cell Mol Med. 2010;14:1056–60.

    PubMed  Google Scholar 

  10. Braitsch CM, Yutzey KE. Transcriptional control of cell lineage development in epicardium-derived cells. J Dev Biol. 2013;1:92–111.

    Article  PubMed  Google Scholar 

  11. Fang M, Xiang FL, Braitsch CM, Yutzey KE. Epicardium-derived fibroblasts in heart development and disease. J Mol Cell Cardiol. 2016;91:23–27.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou B, Pu WT. Genetic Cre-loxP assessment of epicardial cell fate using Wt1-driven Cre alleles. Circ Res. 2012;111:e276–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schlueter J, Brand T. Epicardial progenitor cells in cardiac development and regeneration. J Cardiovasc Transl Res. 2012;5:641–53.

    Article  PubMed  Google Scholar 

  14. Zhou B, Honor LB, He H, Ma Q, Oh JH, Butterfield C, et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest. 2011;121:1894–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sacco A, Mourkioti F, Tran R, Choi J, Llewellyn M, Kraft P, et al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell. 2010;143:1059–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dehbi M, Hiscott J, Pelletier J. Activation of the wt1 Wilms’ tumor suppressor gene by NF-kappaB. Oncogene. 1998;16:2033–9.

    Article  CAS  PubMed  Google Scholar 

  17. Guo Z, Jing R, Rao Q, Zhang L, Gao Y, Liu F, et al. Immortalized common marmoset (Callithrix jacchus) hepatic progenitor cells possess bipotentiality in vitro and in vivo. Cell Disco. 2018;4:23.

    Article  Google Scholar 

  18. Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med. 2018, 10.

  19. Mackay AD, Marchant ED, Munk DJ, Watt RK, Hansen JM, Thomson DM, et al. Multitissue analysis of exercise and metformin on doxorubicin-induced iron dysregulation. Am J Physiol Endocrinol Metab. 2019;316:E922–E930.

    Article  CAS  PubMed  Google Scholar 

  20. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ. The molecular basis of muscular dystrophy in the mdx mouse: A point mutation. Science. 1989;244:1578–80.

    Article  CAS  PubMed  Google Scholar 

  21. Tarbit E, Singh I, Peart JN, Rose’Meyer RB. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Fail Rev. 2019;24:1–15.

    Article  CAS  PubMed  Google Scholar 

  22. Privratsky JR, Newman PJ. PECAM-1: Regulator of endothelial junctional integrity. Cell Tissue Res. 2014;355:607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell. 2001;12:2730–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bax NA, van Oorschot AA, Maas S, Braun J, van Tuyn J, de Vries AA, et al. In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFbeta-signaling and WT1. Basic Res Cardiol. 2011;106:829–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Tuyn J, Atsma DE, Winter EM, van der Velde-van Dijke I, Pijnappels DA, Bax NA, et al. Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells. 2007;25:271–8.

    Article  PubMed  Google Scholar 

  26. Osterreicher CH, Penz-Osterreicher M, Grivennikov SI, Guma M, Koltsova EK, Datz C, et al. Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci USA. 2011;108:308–13.

    Article  CAS  PubMed  Google Scholar 

  27. Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao G, et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther. 2008;19:1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y. Anti-inflammatory drugs for Duchenne muscular dystrophy: Focus on skeletal muscle-releasing factors. Drug Des Devel Ther. 2016;10:2745–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB proteins: Implications in cancer and inflammation. Trends Biochem Sci. 2005;30:43–52.

    Article  CAS  PubMed  Google Scholar 

  30. Cruz-Guzman Odel R, Rodriguez-Cruz M, Escobar Cedillo RE. Systemic inflammation in Duchenne Muscular Dystrophy: Association with muscle function and nutritional status. Biomed Res Int. 2015;2015:891972.

    PubMed  Google Scholar 

  31. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, et al. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol. 2006;26:611–7.

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Li X, Zhang W, He J, Xu B, Lei B, et al. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-kappaB pathway. Metabolism. 2018;83:256–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hattori Y, Suzuki K, Hattori S, Kasai K. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension. 2006;47:1183–8.

    Article  CAS  PubMed  Google Scholar 

  35. Zheng Y, Li P, Huang H, Ye X, Chen W, Xu G, et al. Androgen receptor regulates eIF5A2 expression and promotes prostate cancer metastasis via EMT. Cell Death Disco. 2021;7:373.

    Article  CAS  Google Scholar 

  36. Kim MJ, Bible KL, Regnier M, Adams ME, Froehner SC, Whitehead NP. Simvastatin provides long-term improvement of left ventricular function and prevents cardiac fibrosis in muscular dystrophy. Physiol Rep. 2019;7:e14018.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Markham LW, Michelfelder EC, Border WL, Khoury PR, Spicer RL, Wong BL, et al. Abnormalities of diastolic function precede dilated cardiomyopathy associated with Duchenne muscular dystrophy. J Am Soc Echocardiogr. 2006;19:865–71.

    Article  PubMed  Google Scholar 

  38. Khouzami L, Bourin MC, Christov C, Damy T, Escoubet B, Caramelle P, et al. Delayed cardiomyopathy in dystrophin deficient mdx mice relies on intrinsic glutathione resource. Am J Pathol. 2010;177:1356–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Siegel AJ, Silverman LM, Holman BL. Elevated creatine kinase MB isoenzyme levels in marathon runners. Normal myocardial scintigrams suggest noncardiac source. JAMA. 1981;246:2049–51.

    Article  CAS  PubMed  Google Scholar 

  40. Mantuano P, Sanarica F, Conte E, Morgese MG, Capogrosso RF, Cozzoli A, et al. Effect of a long-term treatment with metformin in dystrophic mdx mice: A reconsideration of its potential clinical interest in Duchenne muscular dystrophy. Biochem Pharm. 2018;154:89–103.

    Article  CAS  PubMed  Google Scholar 

  41. Rosenberg AS, Puig M, Nagaraju K, Hoffman EP, Villalta SA, Rao VA, et al. Immune-mediated pathology in Duchenne muscular dystrophy. Sci Transl Med. 2015;7:299rv294.

    Article  Google Scholar 

  42. Scholz H, Kirschner KM. A role for the Wilms’ tumor protein WT1 in organ development. Physiol (Bethesda). 2005;20:54–59.

    CAS  Google Scholar 

  43. Kasam RK, Ghandikota S, Soundararajan D, Reddy GB, Huang SK, Jegga AG, et al. Inhibition of Aurora Kinase B attenuates fibroblast activation and pulmonary fibrosis. EMBO Mol Med. 2020;12:e12131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sontake V, Shanmukhappa SK, DiPasquale BA, Reddy GB, Medvedovic M, Hardie WD, et al. Fibrocytes regulate wilms tumor 1-positive cell accumulation in severe fibrotic lung disease. J Immunol. 2015;195:3978–91.

    Article  CAS  PubMed  Google Scholar 

  45. Kharraz Y, Guerra J, Pessina P, Serrano AL, Munoz-Canoves P. Understanding the process of fibrosis in Duchenne muscular dystrophy. Biomed Res Int. 2014;2014:965631.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Duim SN, Goumans MJ, Kruithof BPT. WT1 in cardiac development and disease. In: van den Heuvel-Eibrink MM (ed). Wilms Tumor: Brisbane (AU), 2016.

  47. Fraizer GC, Wu YJ, Hewitt SM, Maity T, Ton CC, Huff V, et al. Transcriptional regulation of the human Wilms’ tumor gene (WT1). Cell type-specific enhancer and promiscuous promoter. J Biol Chem. 1994;269:8892–8900.

    Article  CAS  PubMed  Google Scholar 

  48. Langone F, Cannata S, Fuoco C, Lettieri Barbato D, Testa S, Nardozza AP, et al. Metformin protects skeletal muscle from cardiotoxin induced degeneration. PLoS One. 2014;9:e114018.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ba W, Xu Y, Yin G, Yang J, Wang R, Chi S, et al. Metformin inhibits pro-inflammatory responses via targeting nuclear factor-kappaB in HaCaT cells. Cell Biochem Funct. 2019;37:4–10.

    Article  CAS  PubMed  Google Scholar 

  50. Sun J, Huang N, Ma W, Zhou H, Lai K. Protective effects of metformin on lipopolysaccharideinduced airway epithelial cell injury via NFkappaB signaling inhibition. Mol Med Rep. 2019;19:1817–23.

    CAS  PubMed  Google Scholar 

  51. Zhao Y, Sun M. Metformin rescues Parkin protein expression and mitophagy in high glucose-challenged human renal epithelial cells by inhibiting NF-kappaB via PP2A activation. Life Sci. 2020;246:117382.

    Article  CAS  PubMed  Google Scholar 

  52. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60:1577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Markati T, De Waele L, Schara-Schmidt U, Servais L. Lessons learned from discontinued clinical developments in Duchenne muscular dystrophy. Front Pharm. 2021;12:735912.

    Article  CAS  Google Scholar 

  54. McDonald CM, Henricson EK, Abresch RT, Florence JM, Eagle M, Gappmaier E, et al. The 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve. 2013;48:343–56.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Finanger E, Vandenborne K, Finkel RS, Lee Sweeney H, Tennekoon G, Yum S, et al. Phase 1 study of Edasalonexent (CAT-1004), an Oral NF-kappaB Inhibitor, in pediatric patients with duchenne muscular dystrophy. J Neuromuscul Dis. 2019;6:43–54.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Golia E, Limongelli G, Natale F, Fimiani F, Maddaloni V, Pariggiano I, et al. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Curr Atheroscler Rep. 2014;16:435.

    Article  PubMed  Google Scholar 

  57. Hafner P, Bonati U, Erne B, Schmid M, Rubino D, Pohlman U, et al. Improved muscle function in Duchenne muscular dystrophy through L-Arginine and metformin: An investigator-initiated, open-label, single-center, proof-of-concept-study. PLoS One. 2016;11:e0147634.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hafner P, Bonati U, Klein A, Rubino D, Gocheva V, Schmidt S, et al. Effect of combination l-Citrulline and Metformin treatment on motor function in patients with Duchenne muscular dystrophy: A randomized clinical trial. JAMA Netw Open. 2019;2:e1914171.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Yiqi Seow (Biomedical Sciences Institutes, A*STAR, Singapore) for critical review of the manuscript and Dr. Wenyan Niu (Tianjin Metabolic Disease Hospital, Tianjin Medical University, Tianjin, China) for assistance with the clinical biochemistry assays.

Funding

This study is supported by National Key R&D Program of China (Grant No.2017YFC1001902), National Natural Science Foundation of China (Grant No. 81672124 and 81802124), Tianjin Research Innovation Project for Postgraduate Students (2020YJSB159), and Tianjin Municipal 13th five-year plan (Tianjin Medical University Talent Project).

Author information

Authors and Affiliations

Authors

Contributions

HY and ZG designed the project; ZG, MG, YH, GH, RJ, CL, XZ, and MZ. carried out the experiments; GF provided help with cardiac function test; FW helped with mouse breeding; ZG, MG, and HY analyzed the data; HY, ZG, and MG wrote the paper with the input from all authors.

Corresponding author

Correspondence to HaiFang Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to participate

The authors have agreed to the publication in Cell Death & Differentiation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by M Piacentini

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Geng, M., Huang, Y. et al. Upregulation of Wilms’ Tumor 1 in epicardial cells increases cardiac fibrosis in dystrophic mice. Cell Death Differ 29, 1928–1940 (2022). https://doi.org/10.1038/s41418-022-00979-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-022-00979-0

Search

Quick links