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Mutations in the TP53 tumour suppressor gene are found in ~50% of human cancers [1–6]. TP53 functions as a transcription factor
that directly regulates the expression of ~500 genes, some of them involved in cell cycle arrest/cell senescence, apoptotic cell
death or DNA damage repair, i.e. the cellular responses that together prevent tumorigenesis [1–6]. Defects in TP53 function not
only cause tumour development but also impair the response of malignant cells to anti-cancer drugs, particularly those that
induce DNA damage [1–6]. Most mutations in TP53 in human cancers cause a single amino acid substitution, usually within the
DNA binding domain of the TP53 protein. These mutant TP53 proteins are often expressed at high levels in the malignant cells.
Three cancer causing attributes have been postulated for mutant TP53 proteins: the inability to activate target genes controlled by
wt TP53 (loss-of-function, LOF) that are critical for tumour suppression, dominant negative effects (DNE), i.e. blocking the function
of wt TP53 in cells during early stages of transformation when mutant and wt TP53 proteins are co-expressed, and gain-of-
function (GOF) effects whereby mutant TP53 impacts diverse cellular pathways by interacting with proteins that are not normally
engaged by wt TP53 [1–6]. The GOF effects of mutant TP53 were reported to be essential for the sustained proliferation and
survival of malignant cells and it was therefore proposed that agents that can remove mutant TP53 protein would have substantial
therapeutic impact [7–9]. In this review article we discuss evidence for and against the value of targeting mutant TP53 protein for
cancer therapy.
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FACTS

● Mutations in the tumour suppressor TP53 are common in
diverse human cancers (~50%) and are frequently associated
with poor responses to anti-cancer therapy.

● Mutations in TP53 block its tumour suppressive functions by
preventing it from binding to target DNA sequences and
upregulating genes that mediate several cellular processes,
including apoptosis, cell cycle arrest and senescence.

● Mutant TP53 proteins are also reported to have gain-of-
function properties that can contribute to tumour growth.

OPEN QUESTIONS

● Are the reported gain-of-function effects of mutant TP53
proteins really critical for the sustained growth and therapy
resistance of malignant cells?

● Do the compounds that were reported to specifically target
mutant TP53 proteins indeed kill malignant cells by acting on
mutant TP53?

● What are the best approaches for treating cancers expressing
mutant TP53 protein?

WILD-TYPE (WT) TP53 FUNCTIONS AS A TUMOUR
SUPPRESSOR
TP53 is a master transcription factor which directly regulates the
expression of ~500 genes involved in diverse cellular responses
[1, 2]. The TP53 protein contains several functional domains. Two
acidic transactivation domains are located at the N-terminus, and
they are critical for TP53 to interact with transcriptional co-
activators and co-repressors. An unstructured basic regulatory
domain is found at the C-terminus, which assists in the binding of
TP53 to DNA and the stabilisation of TP53-DNA complexes. A
sequence-specific DNA-binding domain is located in the centre of
the TP53 protein. Finally, TP53 functions as a tetramer and the
tetramerisation domain is located near the C-terminus [10].
In unstressed cells the TP53 protein is present at only low levels,

mostly owing to a negative feedback loop: TP53 can transcrip-
tionally induce MDM2 (called HDM2 in humans), an E3 ubiquitin
ligase that ubiquitinates TP53, thereby priming it for proteasomal
degradation [11]. When cells are subjected to stress, such as DNA
damage, deprivation of metabolites or oncogene activation, the
MDM2-TP53 interaction is inhibited as a consequence of several
upstream signalling events that are not discussed here (for
reviews, see [2–4]), and this results in the stabilisation of the TP53
protein. Stabilised TP53 accumulates in the nucleus where it binds
as a homo-tetramer in a sequence-specific manner to target genes
to regulate their expression, most likely in conjunction with
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additional transcription factors [12, 13]. In this way TP53 regulates
the cellular responses that are critical for tumour suppression.
TP53 induces cell cycle arrest at the G1/S boundary and cell

senescence mainly by direct transcriptional activation of the gene
for the cyclin dependent kinase (CDK) inhibitor, p21 [14, 15]
(Fig. 1). In addition, 14-3-3σ and GADD45 were reported to be
critical for TP53-induced cell proliferation arrest by blocking the
G2/M transition [16, 17].
TP53 induces cell death by activating the intrinsic apoptotic

pathway that is regulated by the BCL-2 protein family which
contains three types of proteins with different functions: the pro-
survival family members (e.g. BCL-2, MCL-1) to prevent apoptosis,
the pro-apoptotic BH3-only proteins (e.g. BIM, PUMA, NOXA) to
initiate apoptosis, and the effectors of apoptosis (BAX, BAK) to kill
cells [18, 19]. TP53 can directly transcriptionally activate the genes
encoding the pro-apoptotic BH3-only proteins PUMA and NOXA
[20–22] that are required for TP53-induced apoptosis, for example
after exposure to DNA damage inducing agents [23–25] (Fig. 1).
Notably, lymphoid cells from Puma/Noxa double knockout mice
are as resistant to these agents as those from Trp53 knockout mice
[26, 27], demonstrating that direct transcriptional activation of
Puma and Noxa accounts for all the apoptosis inducing action of
TP53 (at least in these cell types).
TP53 was also shown to activate genes that function in the

coordination of DNA damage repair [28]. TP53 can orchestrate the
nucleotide excision repair (NER) of UV-induced DNA damage
through direct transcriptional activation of the DDB2 (encoding
p48) and XPC genes [29, 30]. TP53 was also reported to
transcriptionally activate several genes involved in DNA mismatch
repair, including MLH1, MSH2 and PMS2 [31, 32]. This DNA repair
process is thought to be important in tumour suppression since

Mlh1, Msh2 as well as Pms2 gene deficient mice spontaneously
develop tumours (Fig. 1) [33].
Several other cellular responses have also been reported to be

activated by wt TP53, including the coordination of metabolism
(for an expert review see [34]) and the silencing of large parts of
the genome, thereby controlling retrotransposons [35].

Which cellular processes activated by TP53 and which TP53
target genes are critical for the prevention of tumour
development?
It remains unclear which of the many processes activated by TP53
are critical for tumour suppression and it is possible that the
relative contributions of these processes to tumour suppression
may vary depending on cell type and on which oncogenes are
active in a given cell. While the absence of TP53 leads to
lymphoma or certain other cancers with 100% penetrance in mice
within ~250–300 days [36, 37], the loss of individual TP53 target
genes that are critical for a given cellular response does not
usually cause spontaneous tumour development in mice. For
example, mice lacking p21, which is essential for TP53-induced
G1/S boundary cell cycle arrest [14] and also plays a major role in
TP53-induced cell senescence [38], are not tumour prone on a
C57BL/6 background [15]. However, compared to wt controls an
increased incidence of several types of cancers was observed on a
mixed C57BL/6x129SV background [39] (a genetic background
with higher tumour predisposition compared to C57BL/6). More-
over, mice lacking PUMA, NOXA or both of these BH3-only
proteins that are essential for TP53-induced apoptosis [27, 40], are
not tumour prone [40], although the absence of PUMA did
accelerate c-MYC-driven lymphomagenesis [26] and increased the
severity of carcinogen induced colon cancer development [41].

Fig. 1 The functions of wt TP53. Model depicting the target genes activated by wt TP53 and the cellular responses in which their protein
products function in wt TP53 mediated tumour suppression.
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Remarkably, even Puma/Noxa/p21 triple knockout mice (on a
C57BL/6 background) do not spontaneously develop cancer over
at least 18 months even though their cells are defective in TP53-
induced apoptosis, G1/S boundary cell cycle arrest and cell
senescence [42]. In striking contrast, loss of certain genes that
function in DNA damage repair and are reported to be directly
regulated by TRP53 (e.g. Mlh1, Msh2) causes a marked predisposi-
tion to spontaneous tumour development in mice and also
accelerated c-MYC-driven lymphomagenesis [32]. These findings
and others [43] indicate that coordination of DNA repair may be
the most important TP53 regulated process for tumour
suppression.

The role of mutant TP53 in tumorigenesis
TP53 is the most frequently mutated gene (~50%) in human
cancers [44]. Although some TP53 mutations lead to the complete
loss of TP53 protein (mimicked experimentally by Trp53 knockout
mice), most are missense mutations that cause single amino acid
substitutions, usually within the TP53 DNA-binding domain (Fig. 2).
The levels of such mutant TP53 proteins are generally very high in
malignant cells although not in mutant TP53 expressing pre-
malignant cells in mice in vivo [44, 45]. Mutant TP53 proteins have
been proposed to drive malignant transformation and sustain
tumour growth through several processes. Of note, the Li-
Fraumeni cancer predisposition syndrome in humans, charac-
terised by diverse cancers (e.g. osteosarcoma, acute leukaemia,
breast cancer and brain cancer) often arising at a young age, is in
~70% of cases caused by inherited mutations in one allele of TP53
with loss of the wt TP53 allele (loss of heterozygosity, i.e. LOH)
apparent in the malignancies that arise in these patients (for an
expert review see [46]).

Loss of function (LOF)
The TP53 mutations either change the conformation of TP53
proteins (structural mutants) or affect amino acids involved in
DNA binding (contact mutants) [47]. Both types of TP53 mutants
are unable to transcriptionally activate wt TP53 target genes and
thereby cannot induce the essential mediators of apoptosis, cell
cycle arrest, cell senescence and DNA damage repair, the
processes thought to be critical for wt TP53 mediated tumour
suppression.

Elegant experimental systems were developed in which
tumour development could be initiated in mice by the absence
of wt TP53, but expression of this tumour suppressor could be
restored in the malignant cells. This revealed that restoration of
wt TP53 in TP53-deficient cancers resulted in tumour regression
owing to the activation of apoptosis or cell senescence in
lymphomas or solid cancers, respectively [48–50]. Why restora-
tion of wt TP53 causes apoptosis in lymphomas but cell
senescence in solid cancers remains an intriguing question. This
could be due to differences between these cell types and/or
differences in the other oncogenic lesions that drive these
malignancies. These factors could impact post-translational
modification of TP53 and thereby influence its potency in
activating different subsets of its direct target genes (i.e. cell
cycle regulating genes vs cell death inducing genes), for example
by attracting different co-activators or influencing its binding to
target sequences in DNA (reviewed in [51]). Regardless, these
findings reveal that sustained LOF of TP53 is required for
continued tumour expansion.

Dominant negative effects (DNE) of mutant TP53
Whilst advanced tumours that have mutations in TP53 have often
selected for loss of the WT TP53 allele (loss of heterozygosity
(LOH)), at the early stages of malignant transformation, mutant
TP53 often co-exists with wt TP53 in the nascent neoplastic cells.
The mutant TP53 prevents wt TP53 from exerting its tumour
suppressive functions due to the formation of mixed wt/mutant
TP53 hetero-tetramers [44]. These mixed tetramers have signifi-
cantly reduced ability to induce gene expression and cellular
responses that are normally driven by tetramers containing only
wt TP53 [52, 53]. Initial evidence for a dominant negative effect
(DNE) of mutant TP53 came from co-transfection experiments
in vitro, showing that processes known to be activated by wt TP53
could be inhibited by concomitant expression of mutant TP53
[54, 55]. A DNE of mutant TP53 was also observed in cells from
Trp53R172H/+, Trp53R246S/+ and Trp53R270H/+ mutant knock-in mice.
After treatment with stimuli that activate wt TP53 (e.g. γ-radiation),
cells from these mice underwent considerably less apoptosis or
cell cycle arrest compared to cells from wt (Trp53+/+) mice [56, 57].
The DNE of various TP53 mutants could also be seen when they
were expressed in haematopoietic stem and progenitor cells

Fig. 2 Localisation of point mutations in TP53. Model depicting the location and relative frequencies of point mutations found in human
cancers. Data are derived from [44, 132].
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(HSPCs) from Trp53+/− or Eμ-Myc;Trp53+/+ mice but, as expected,
not when expressed in HSPCs from Trp53−/− mice since the latter
do not express wt TP53 on which mutant TP53 could exert its DNE
[43, 58]. The loss of the wt TP53 allele during advanced stages of
tumorigenesis (LOH) [59] indicates that the complete loss of wt
TP53 function provides further advantages for tumour expansion,
even when mutant TP53 is expressed. Interestingly, the levels of
mutant TP53 protein are much higher in tumour cells with LOH
compared to cells co-expressing both wt TP53 and mutant TP53
[60]. This demonstrates that wt TP53 can somehow repress the
levels of mutant TP53 protein.

Gain-of-function (GOF) effects of mutant TP53
Mutant TP53 has also been reported to be able to exert
neomorphic gain-of-function (GOF) properties [44], i.e. functions
that wt TP53 cannot exert. Removal of mutant TP53, and hence its
GOF effects, by using siRNA was reported to inhibit the growth of
certain tumour cells in culture and in vivo and to increase their
sensitivity to cytotoxic drugs [9, 61]. The GOF effects of mutant
TP53 were also reported to enhance tumour metastasis by
impacting transcription factors that control the epithelial-
mesenchymal transition (EMT) [62–64]. The GOF effects of mutant
TP53 were shown to assist malignant cells in metabolic
reprogramming to adapt to changes in the availability of growth
factors and nutrients by activating glycolysis [65], promoting lipid
synthesis [66] and nucleotide synthesis [67].
It has been postulated that mutant TP53 exerts its alleged GOF

effects mainly through interactions with other transcription
factors to upregulate or downregulate the expression of genes
that are not controlled by wt TP53. Some TP53 mutants were
reported to inhibit the functions of TP63 and TP73, the two family
members of TP53 that can also regulate many of the known TP53
target genes [68–71]. Mutant TP53 was also reported to increase
the transcriptional transactivation activity of NF-kB, E2F1, ETS1/
ETS2 and YAP1, which are all implicated in promoting tumour
growth [72–74] (Fig. 3). Many mechanisms have been proposed
to be responsible for these reported GOF effects of mutant TP53
proteins, mostly including protein-protein interactions in which
wt TP53 does not engage. It is also important to bear in mind that
different mutant TP53 proteins may engage in different protein-
protein interactions and thereby exert different GOF effects (for a
review see [75]).

Not all TP53 mutants are equivalent
Hundreds of different TP53 mutants have been identified in
human cancers, and it appears likely that they do not all function
in the same way in driving tumour development. Most TP53
mutations lead to LOF [44]. This may, however, not be universal,
since some TP53 mutant proteins were reported to still retain part
of the functions of wt TP53. For example, some mutations located
in the acidic transactivation domains result in the production of a
truncated form of TP53 that retains the ability to induce apoptosis
[76]. Moreover, the DNA-binding domain mutant, TP53K120R, was
reported to be only defective in the induction of apoptosis but
was still able to induce cell cycle arrest and cell senescence [77].
Interestingly, different single-amino acid substitutions that

affect the same residue were reported to have different impacts
on TP53 function. R175C behaved like wt TP53 and could induce
both cell cycle arrest and apoptosis. Conversely, the R175P mutant
TP53 was defective in inducing apoptosis but retained the ability
to induce cell cycle arrest, whereas R175D mutant TP53 showed
loss of both functions [78].
Moreover, not all the TP53 mutants appear to be able to exert a

DNE over endogenous wt TP53. Experiments using enforced
expression of different TP53 mutants in colon cancer cells
expressing endogenous wt TP53 first provided evidence for this
notion. Only one hot-spot mutant that was tested, R273H, displayed
a DNE, whereas the other TP53 mutants examined, V143A, R175H
and R248W, were not able to repress all activities exerted by the
endogenous wt TP53 [79]. In vivo experiments with mutant TP53
knockin mice confirmed and extended these findings. For example,
Trp53R172H/+ and Trp53R270H/+ mutant knockin mice (codons R173H
and R273H in human, respectively) displayed comparable tumour-
free survival times when compared to Trp53+/− mice [56, 80].
However, these findings refer to spontaneous tumour development
and it remains possible that in the context of the expression of
certain oncogenes, the Trp53R172H/+ and Trp53R270H/+ knockin mice
would exhibit significantly shorter tumour-free survival compared
to the Trp53+/− mice.
Although LOF and DNE are widely accepted as critical outcomes

of TP53 mutations, only some mutations, especially hot-spot
mutations, are thought to give rise to GOF effects [81, 82]. Of note,
even for different hot-spot mutations, the reported GOF effects
are not equivalent. Trp53R172H/− and Trp53R270H/− (codons 175 and
273 in human, respectively) mutant knockin mice showed a

Fig. 3 The mechanisms proposed for mutant TP53 to exert its alleged GOF effects. Model depicting the proposed interactions with other
transcription factors that mutant TP53 proteins engage in to drive the development and expansion of tumours.
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different tumour spectrum compared to that seen in Trp53−/−

mice but no shortening of tumour-free survival [56]. Humanised
TP53R248Q/− mutant knockin mice not only developed different
types of tumours but also showed shortened tumour-free survival
times compared to Trp53−/− mice [83]. In contrast, enforced
expression of five different TRP53 mutants (two of them hot-spot
mutations) in HSPCs from Trp53−/− mice did not accelerate
tumorigenesis or alter the tumour spectrum compared to control
mice reconstituted with HSPCs from Trp53−/− mice that had been
transduced with an empty vector [43]. Thus, in this experimental
system no GOF effects of any of the TRP53 mutants tested could
be detected.

Therapeutic targeting of mutant TP53 for cancer therapy
Depleting mutant TP53 in tumour cells. Since the GOF properties
of mutant TP53 have been postulated to contribute to tumour
development and metastasis and to impair the response of
malignant cells to diverse anti-cancer therapeutics, approaches
that could specifically deplete mutant TP53 protein levels are
postulated to have promise for the treatment of diverse cancers
(Fig. 4). The effects and specificities of the compounds described
below are summarised in Table 1.

HSP90 and HDAC inhibitors. Heat shock protein 90 (HSP90) is a
molecular chaperone that is involved in modulating the folding,
stabilisation and degradation of many proteins including some
oncogenic proteins, such as mutant TP53. HSP90 has been
reported to impact tumour progression, metastasis and high
levels of HSP90 are associated with poor prognosis in multiple
cancers [84, 85]. The histone deacetylase (HDAC) inhibitor SAHA
was reported to synergise with the HSP90 inhibitor 17AAG in
degrading mutant TP53, thereby inducing apoptosis and decreas-
ing tumour growth in xenografts [7]. FK228, another HDAC
inhibitor, was also shown to inhibit growth and induce apoptosis
in tumour cells. However, unlike SAHA, which was reported to kill
tumour cells in a manner dependent on the removal of mutant
TP53 [86, 87], FK228 induced cell death not only in mutant TP53
expressing tumour cells but also in those expressing wt TP53
[88, 89]. This raises the question of whether HDAC and HSP90
inhibitors, either on their own or in combination, really kill tumour
cells by targeting mutant TP53 or through some other process.

Statins. Metabolic reprogramming is a hallmark of cancer [90].
The mevalonate pathway, which regulates the production of
cholesterol and isoprenoids, was reported to be involved in the

Fig. 4 Therapeutic approaches for targeting mutant TP53 protein for cancer therapy. a Removal of mutant TP53 protein by using drugs or
siRNA technology is expected to remove the GOF effects of mutant TP53 and to thereby prevent tumour expansion. b Restoring wt TP53
protein conformation in mutant TP53 proteins is expected to restore wt TP53 activated processes (e.g. cell cycle arrest, cell senescence,
apoptotic cell death) and to thereby prevent tumour expansion.

Table 1. List of the compounds discussed indicating their reported effects and specificities for different mutant TP53 proteins.

Proposed mode of
action

Drugs Tumour type and TP53 state in which the drug was shown to be active

Depletion of mutant
TP53 expression

SAHA T-cell lymphoma [7] (mutant); breast cancer [86] (mutant);prostate cancer [87] (mutant)

FK228 Neuroblastoma [88] (wt, mutant); non-small-cell lung cancer [89] (wt, mutant)

Statins Breast cancer, sarcoma, lung cancer, pancreatic cancer [96] (structural mutant); ovarian
cancer [97] (wt, mutant)

Gambogic acid breast cancer [99] (mutant); prostate cancer [100] (null); lung cancer [101] (wt)

siRNA/shRNA breast cancer [102] (mutant); prostate cancer [103] (mutant); breast and colon cancer [8]
(mutant)

Restoration of wt TP53
functions

PRIMA-1/APR-246 osteosarcoma, lung, ovarian and colon cancer [105] (mutant); multiple myeloma [106] (wt,
mutant, null); espohageal cancer [107] (mutant); cholangiocancinoma [108] (mutant);
sarcomas [113] (mutant, null); breast, colon cancer [116] (wt, mutant)

PEITC breast and lung cancer [117] (R175H); prostate cancer [118] (mutant); breast cancer [119]
(mutant)

RITA colon cancer [120] (wt); colon, lung, breast, skin cancer, Burkitt lymphoma [121] (mutant);
neuroblastoma [122] (wt, mutant)

CP-31398 lung cancer, melanoma [123] (mutant); colon, breast cancer [124]: mutant; colon, lung,
ovarian cancer [125] (wt, mutant); hepatocellular cancer [126] (mutant); colon cancer [127]
(mutant); multiple myeloma [128] (wt, mutant, null)

PK7088 hepatocellular, gastric cancer [129] (Y220C)

Arsenic Trioxide acute lymphoblastic leukemia, lung, ovarian, pancreatic cancer, melanoma [130] (structural
mutants)
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development and progression of cancer [91]. Mutant TP53
expressing tumours often present with over-activation of the
mevalonate pathway [92]. Statins target the rate-limiting enzyme
in cholesterol biosynthesis and are used as lipid-lowering agents
[93]. Recently, the potential of statins in cancer treatment has
been proposed based on the observation that these drugs can
trigger apoptosis in certain tumour cells [94] and thereby increase
their sensitivity to chemotherapeutic drugs [95]. Interestingly,
statins were shown to cause the degradation of mutant TP53 by
suppressing the interaction of mutant TP53 with the HSP40 family
member, DNAJA1, and it was proposed that this process was
responsible for their ability to reduce tumour growth [96]. It was
reported that statins inhibit the growth of tumour cells expressing
mutant TP53, while having only minimal impact on the growth of
tumour cells expressing wt TP53. However, there are also studies
showing that statins can kill certain tumour cells independent of
their TP53 status [97]. Hence, the mechanisms by which statins kill
tumour cells need further investigation.

Gambogic acid. Gambogic acid (GA) has been reported to have
potential for the treatment of both solid as well as haematological
cancers. GA was first reported to reduce the expression of MDM2,
thereby activating wt TP53 and inhibiting tumour cell growth in a
wt TP53-dependent manner [98]. Subsequent studies reported
that GA also has the ability to reduce the levels of mutant TP53 by
preventing the formation of HSP90/mutant TP53 complexes,
thereby leading to ubiquitin/proteasome mediated degradation of
mutant TP53 [99]. However, other studies found that different
mechanisms, rather than effects on mutant TP53 protein, are
critical for GA-induced killing of malignant cells. GA was reported
to activate the intrinsic apoptotic pathway in TP53-deficient
prostate cancer cells by inhibiting the MAPK pathway and the
transcription factor c-FOS [100]. GA was also shown to activate
ROS-induced endoplasmic reticulum (ER) stress, thereby inducing
apoptosis in lung cancer cells [101]. Thus, GA appears to be able to
inhibit tumour expansion by activating several cell growth
inhibitory pathways, and the degradation of mutant TP53 is only
one of the possible mechanisms that may contribute.

siRNA and shRNA. RNA interference (RNAi) can be a potential
cancer therapeutic by silencing critical genes that are required for
the proliferation and/or survival of tumour cells. Based on some of
the considerations outlined above, it has been postulated that
siRNA or shRNA mediated knockdown of mutant TP53 could be a
promising strategy for inhibiting tumour expansion. Reducing the
levels of mutant TP53 by using shRNA or siRNA was reported to
elicit substantial apoptosis in mutant TP53 expressing breast
cancer cells, but not in wt TP53 expressing cancer cells [102].
Knocking down mutant TP53 was shown to reduce the prolifera-
tion of prostate cancer cells by inducing cell cycle arrest at the G1/
S or G2/M boundaries [103]. Furthermore, depletion of mutant
TP53 by siRNA or shRNA was found to increase the sensitivity of
certain tumour cells to anti-cancer drugs [8]. Collectively, these
studies established the potential of the removal of mutant TP53 as
a strategy for cancer therapy (Fig. 4). It must, however, be noted
that a recent study pointed out significant off-target effects of
RNAi technology: many putative cancer dependencies, and hence
potential anti-cancer drug targets, identified from studies based
on RNAi were found to be false leads as they could not be
validated when using CRISPR technology to remove these proteins
[104].

Restoring wt TP53 function in tumour cells expressing mutant
TP53
Mutant TP53 proteins lack the ability to transactivate wt TP53
target genes, resulting in the loss of tumour suppressive functions.
Restoring wt TP53 transcriptional activities to mutant TP53 in
tumour cells is expected to lead to proliferation arrest, cellular

senescence and apoptotic death with a consequent therapeutic
benefit (Fig. 4), although this has not yet been proven using
genetically engineered mice in which cells can be switched first
from expressing wt TRP53 to mutant TRP53 and then, at will, back
to wt TRP53.

Mutant TP53 reactivating agent (PRIMA-1) and APR-246. PRIMA-1
was identified in 2002 in a screen of a library of low-molecular-
weight compounds [105]. PRIMA-1 was reported to restore wt
TP53 conformation to several mutant TP53 proteins that were
studied and to thereby reactive wt TP53 transcriptional activities
in tumour cells expressing mutant TP53. This was shown to delay
the growth and increase apoptosis of tumour cells with mutant
TP53, but not of tumour cells containing wt TP53. APR-246, the
methylated analogue of PRIMA-1, showed more efficient killing
effects in tumour cells containing mutant TP53 and shared many
characteristics with PRIMA-1. PRIMA-1 and APR-246 were able to
reactivate the expression of wt TP53 target genes in tumour cells
expressing mutant TP53 and these compounds were reported to
kill tumour cells by inducing the expression of the pro-apoptotic
BH3-only protein, NOXA [106, 107]. Moreover, PRIMA-1 and APR-
246 were shown to activate the expression of p21 in mutant TP53
expressing tumour cells, thereby inducing cell cycle arrest and cell
senescence [105, 108]. Importantly, these two compounds not
only killed tumour cells in vitro, but they were also shown to delay
tumour growth in vivo, thereby prolonging the survival of mice
transplanted with cancer cells [105, 106]. Finally, both PRIMA-1
and APR-246 were shown to cooperate with certain chemother-
apeutic drugs to kill tumour cells [109, 110]. Collectively, these
findings established PRIMA-1 and APR-246 as promising anti-
cancer drugs that target mutant TP53. APR-246 is currently being
tested in several phase II clinical trials, including in TP53-mutant
myeloid malignancies, high-grade serous ovarian cancer, oeso-
phageal cancer and melanoma. However, PRIMA-1 was also shown
to be able to kill tumour cells with wt TP53 [111], and even tumour
cells that lack TP53 [112]. Similar observations were also reported
for APR-246, which was shown to kill tumour cells irrespective of
their TP53 status [113]. A critical underlying mechanism of APR-
246 induced killing of malignant cells appears to involve reactive
oxygen species (ROS). APR-246 was shown to cause an accumula-
tion of intracellular ROS in a dose-dependent manner and this was
reported to induce apoptosis in tumour cells irrespective of their
TP53 status. This killing of tumour cells could be inhibited by
scavenging intracellular ROS [114]. The ER stress/UPR-pathway
was also reported to be involved in PRIMA-1 induced killing of
malignant cells [115]. The unfolded and misfolded protein
response pathways were significantly up-regulated in multiple
myeloma (MM) cells in response to treatment with PRIMA-1, as
demonstrated by the increased levels of HSP70, GADD34 and
CHOP, all of which are markers of ER stress. Moreover, PRIMA-1
was found to cooperate with the UPR-inducing agent, bortezomib,
in the killing of MM cells, and it could even re-sensitise
bortezomib-resistant MM cells to this proteasome inhibitor [115].
Finally, PRIMA-1 was reported to induce autophagy in breast
cancer cells as well as soft-tissue sarcoma cells, and this was
independent of their TP53 status [113, 116]. Collectively, these
observations indicate that the mechanisms of APR-246 induced
killing of malignant cells still remain unclear. Recently it was
reported that expression of SLC7A11 is a more reliable predictor of
response to APR-246 that TP53 status in cancer cells [117]. The
identification of the mechanisms that are responsible for APR-246
induced killing of tumour cells is predicted to inform the currently
ongoing clinical trials of this drug.

Phenethyl Isothiocyanate (PEITC). Phenethyl isothiocyanate
(PEITC) is present at high levels in watercress and cruciferous
vegetables, and this compound was reported to exert remarkable
chemotherapeutic activity. Mutant TP53 was reported to be a
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target of PEITC. Unlike APR-246, which was reported to be able to
restore wt TP53 function in all contact mutant TP53 proteins
tested, PEITC was shown to delay proliferation and induce
apoptosis only in tumour cells expressing one specific TP53
mutant protein, R175 [118]. PEITC was reported to restore wt TP53
conformation and transactivation functions to R175 mutant TP53.
However, another study revealed that PEITC could exert significant
anti-cancer activity not only in malignant cells expressing R175
mutant TP53, but also in cancer cells expressing any of the
recognised structural TP53 mutants, including P223L, but it had no
impact on tumour cells expressing contact TP53 mutants [119].
Mechanistically, it was reported that PEITC caused a reduction in
the levels of mutant TP53 protein in tumour cells through a post-
transcriptional process, whereas it had only minimal impact on the
levels of wt TP53 in malignant cells [118, 120]. This suggests that
PEITC may be able to target mutant TP53 through two different
processes, reactivation of wt TP53 functions and a reduction of the
levels of mutant TP53 protein. However, considerably more work
is needed to validate PEITC as a promising compound for anti-
cancer therapy and to identify which of its proposed mechanisms
of action are critical for the killing of malignant cells.

Reactivation of TP53 and Induction of Tumour Cell Apoptosis
(RITA). RITA (reactivation of TP53 and induction of tumour cell
apoptosis) is a small molecule that was identified in a screen of the
National Cancer Institute library of compounds. It was initially
reported to inhibit the TP53-MDM2 interaction and thereby
activate wt TP53-driven anti-tumour effects [121]. However,
subsequent studies reached the conclusion that RITA could also
suppress proliferation and induce apoptosis in tumour cells
expressing mutant TP53, since the compound was found to
restore wt TP53 transcriptional activities in several hot-spot TP53
mutants. This was based on the observation that treatment with
RITA led to the induction of wt TP53 target genes, including
GADD45, BBC3, BAX and CKDN1A, in tumour cells expressing
mutant TP53 [122]. However, similar to APR-246, other studies
showed that RITA was also able to induce apoptosis in tumour
cells expressing wt TP53 and even in TP53-deficient cancer cells
[123]. Collectively, these studies indicate that the anti-cancer
effects of RITA may not be specifically dependent on mutant TP53,
and the mechanisms of RITA induced killing of tumour cells still
need to be clarified.

CP-31398. CP-31398 is a small molecule that was identified in a
screen of a synthetic compound library. It showed the ability to
restore a functionally active conformation in mutant TP53
proteins, allowing it to exert wt TP53 transcriptional activity
[124]. Subsequent studies revealed that the ability of CP-31398 to
induce cell death was TP53-dependent, as this compound could
only induce apoptosis in tumour cells expressing wt TP53 or
mutant TP53, but not in those deficient for TP53 [125]. CP-31398
was found to increase the levels of wt TP53 by blocking its
ubiquitination and proteasomal degradation and this allowed
TP53 to activate its canonical cellular responses, including cell
cycle arrest and apoptosis in tumour cells [126]. Conversely, CP-
31398 was also reported to restore wt TP53 tumour suppressive
function in TP53 mutant proteins independent of the nature of the
TP53 mutation. CP-31398 was shown to delay the growth of
hepatocellular cancer cells expressing R249S or Y220C mutant
TP53 and colorectal cancer cells expressing R248Q or P309S
mutant TP53, both in vitro and in vivo [127, 128]. The growth
inhibitory effects were comparable between cancer cells expres-
sing different TP53 mutants and cancer cells of different cellular
origin. CP-31398 was also reported to cause an increase in ROS
production and thereby trigger the intrinsic apoptotic pathway in
MM cells, regardless of their TP53 status [129]. Collectively, these
findings indicate that CP-31398 induced killing of malignant cells

may not depend on the expression of mutant TP53 and the
mechanisms responsible still require further investigation.

PK7088. The Y220C TP53 mutant protein is a paradigm for
studying the restoration of wt TP53 function in a mutant TP53
protein, because it contains a unique surface crevice that is
amenable to targeting by small molecules. The small molecule
compound PK7088 was reported to bind to this surface crevice on
Y220C mutant TP53 and thereby convert its structure from a
mutant into the wt conformation with restoration of wt TP53
transcriptional activity [130]. PK7088 was shown to induce TP53-
dependent cell cycle arrest and apoptosis by activating the
expression of p21 and NOXA, respectively. These effects could be
enhanced by addition of the MDM2 inhibitor nutlin-3a, which
further indicated the successful restoration of wt TP53 structure
and function in Y220C mutant TP53. This work raises the
possibility that one specific small molecule might be needed to
target each specific TP53 mutant protein, heralding a new
paradigm for treating mutant TP53 expressing cancers.

Arsenic trioxide (ATO). Arsenic trioxide (ATO) is a small molecule
reported to be able to restore wt TP53 function in tumour cells
expressing structural TP53 mutants [131]. ATO can bind to the
DNA binding domain only in structural but not in contact TP53
mutants. It thereby induces the transcriptional activities that are
characteristic of wt TP53, leading to the suppression of tumour
growth both in vitro and in vivo. Thus, ATO may provide a
promising therapy against mutant TP53 expressing cancers, but
more studies are needed to validate its specificity and efficiency in
treating mutant TP53.

Outlook
Many approaches have been tried in pre-clinical tests and even
clinical trials to treat cancers by targeting mutant TP53, including
reducing the levels of mutant TP53 protein or restoring wt TP53
functions in mutant TP53 proteins. However, for all of these
approaches there is evidence in the published literature that the
compounds tested can also kill malignant cells through processes
that are independent of mutant TP53, or there are other
significant limitations. Thus, targeting of mutant TP53 for anti-
cancer therapy still remains a challenge that requires further
investigation, and importantly, it should first be validated by
generating mice in which cells can be sequentially switched from
wt TRP53 to mutant TRP53 and then to a TRP53-deficient state
that removal (and hence targeting) of mutant TRP53 (TP53) will
actually have therapeutic impact.
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