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SARS-CoV-2 vaccinations have greatly reduced COVID-19 cases, but we must continue to develop our understanding of the nature
of the disease and its effects on human immunity. Previously, we suggested that a dysregulated STAT3 pathway following SARS-Co-
2 infection ultimately leads to PAI-1 activation and cascades of pathologies. The major COVID-19-associated metabolic risks (old
age, hypertension, cardiovascular diseases, diabetes, and obesity) share high PAI-1 levels and could predispose certain groups to
severe COVID-19 complications. In this review article, we describe the common metabolic profile that is shared between all of these
high-risk groups and COVID-19. This profile not only involves high levels of PAI-1 and STAT3 as previously described, but also
includes low levels of glutamine and NAD™, coupled with overproduction of hyaluronan (HA). SARS-CoV-2 infection exacerbates this
metabolic imbalance and predisposes these patients to the severe pathophysiologies of COVID-19, including the involvement of
NETs (neutrophil extracellular traps) and HA overproduction in the lung. While hyperinflammation due to proinflammatory cytokine
overproduction has been frequently documented, it is recently recognized that the immune response is markedly suppressed in
some cases by the expansion and activity of MDSCs (myeloid-derived suppressor cells) and FoxP3™ Tregs (regulatory T cells). The
metabolomics profiles of severe COVID-19 patients and patients with advanced cancer are similar, and in high-risk patients, SARS-
CoV-2 infection leads to aberrant STAT3 activation, which promotes a cancer-like metabolism. We propose that glutamine
deficiency and overproduced HA is the central metabolic characteristic of COVID-19 and its high-risk groups. We suggest the usage
of glutamine supplementation and the repurposing of cancer drugs to prevent the development of severe COVID-19 pneumonia.
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FACTS

PAI-1 is upregulated in aged individuals and in those suffering
from hypertension, cardiovascular diseases, diabetes, and
obesity, which are risk factors for COVID-19.

COVID-19 associated comorbidities share not only high
plasma PAI-1 levels, but also high plasma hyaluronan levels,
and low NAD™ and glutamine levels.

Plasma glutamine and the glutamine:glutamate ratio are
inversely associated with metabolic risks.

Severe COVID-19 symptoms are characterized by an uncon-
trolled production of hyaluronan in the lung (hyaluronan
storm), neutrophil extracellular traps (NETs), and severe
immunodeficiency.

SARS-CoV-2 infection leads to aberrant STAT3 activation,
which promotes a cancer-like metabolism in the infected cells.
There are similarities between severe COVID-19 and advanced
cancer, based on the activation of STAT3.

One commonality among many risk factors is high plasma or
sputum levels of hyaluronan.

OPEN QUESTIONS

How much do plasma levels of metabolites of interest
correlate with the levels in tissues?

® Are clinical manifestations different among risk factor groups?

® Will prophylactic use of glutamine supplementation protect
against the severe symptoms of COVID-19?

® s it possible to use glutamine for treating COVID-19?

® |s HMW (high molecular weight)-hyaluronan responsible for
immune suppression in COVID-19?

® s LMW (low molecular weight)-hyaluronan responsible for
hyperinflammation in COVID-19?

® Will therapeutic use of the anti-hyaluronan drug, 4-methy-
lumbelliferone, protect high-risk people from the develop-
ment of the hyaluronan storm?

® |s glutamine deficiency or hyaluronan overproduction
involved in long COVID-19?

® What cells are immunosuppressed by Tregs and MDSCs?

INTRODUCTION

Globally, SARS-CoV-2 has infected hundreds of millions of people
and killed over 4 million in less than two years. Perhaps the only
positive aspect of the high infectivity of this virus is that it has
generated large amounts of data to analyze the nature of the
disease. Major risk factors for morbidity have emerged, including
aging, hypertension, cardiovascular disease, diabetes, and obesity
[1]. The following question thus arises: Do these conditions share
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biochemical commonalities of dysfunction with SARS-CoV-2
infection?

We previously described the involvement of dysregulated
STAT1 and STAT3 pathways in COVID-19, which leads to a cascade
of pathologies [2]. Subsequently, groups have observed activated
STAT3 in biopsied lung specimens [3], and detected the
expression of STAT3 downstream genes like PAI-1, HAS2
(hyaluronan synthase 2), and MMP9 in BALF (broncho alveolar
lavage fluid) samples from severe COVID-19 patients [4].
Furthermore, increased serum PAI-1 levels were found in COVID-
19 patients, as compared to those in healthy controls [5, 6].
Table 1 shows the relevant metabolic profile of COVID-19 high-risk
groups. Since PAI-1 expression levels are also increased in the
major COVID-19 high-risk conditions of old age, hypertension,
cardiovascular disease, diabetes, and obesity [2], PAI-1 may be
critical to severe COVID-19. In addition, COVID-19 associated
comorbidities share not only high PAI-1 levels, but also high
hyaluronan (HA: extracellular matrix glycosaminoglycan polymers)
levels, and low NAD™" (nicotinamide adenine dinucleotide) and
glutamine levels (Table 1).

The low glutamine levels are particularly compelling, as seminal
work by Cheng et al. identified that plasma glutamine and the
glutamine:glutamate ratio are inversely associated with metabolic
risks [7]. Indeed, metabolomic analyses of COVID-19 patients have
shown low levels of glutamine [8-15], and Lee et al. reported that
glutamine was negatively correlated with disease severity [15].
Furthermore, Paez-Franco et al. observed that the reduced levels
of glutamine in severe and mild COVID-19 patients were
negatively correlated with LDH (lactate dehydrogenase), CRP (C-
reactive protein), and pCO, levels. Conversely, glutamine levels
positively correlated with pO, [10], revealing the previously
undetermined consequences of low levels of glutamine in the
severe COVID-19 pathophysiologies. Consistently, Kim et al.
reported that glutamine was the top candidate amongst 26,288
FDA-approved drugs tested for reversing SARS-CoV-1 associated
changes in murine gene expression [16].

This review discusses the possibility that glutamine deficiency
predisposes high-risk patients to severe COVID-19. Other major
factors, such as low NAD™, high HA, and high PAI-1, may be
related to low glutamine levels in the high-risk groups. SARS-CoV-
2 infection affects these same conditions, potentially magnifying
the severe pathologies of COVID-19.

PATHOPHYSIOLOGIES

COVID-19 is characterized by a variety of clinical manifestations,
including impaired type | interferon (IFN-I) production and, in
severe cases, ARDS (acute respiratory distress syndrome) and
extensive coagulopathy [2]. Here, we principally focus on the less
characterized aspects of COVID-19 pathophysiologies: the hyalur-
onan storm, NETs, and immune suppression.

CT scans of severe SARS-CoV-2 patients revealed characteristic
multiple round white patches called “ground-glass opacities”,
containing fluid in the lungs [17]. In almost all cases of SARS-CoV-
2, the main pathological finding is diffuse alveolar damage (DAD)
[18]. DAD is characterized by damage to the alveolar lining and
endothelial cells, leading to pulmonary edema and hyaline
membrane formation (the exudative phase), and later by
proliferative changes involving alveolar and bronchial lining cells
and interstitial cells (the proliferative phase) [19]. To analyze the
nature of hyaline membranes in COVID-19, Hellman et al.
performed hyaluronan (HA) histochemistry using a direct and
specific HA staining method [20] as overproduced HA was
suggested to be a fatal cause of COVID-19 [17]. They reported
that HA-positive-exudate and alveolar plugs filled the alveolar
spaces [20]. They also showed that in the proliferative phase, HA is
localized in the thickened perialveolar interstitium. Similar findings
were reported by Kaber et al, in which COVID-19 autopsies
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revealed the extensive occlusion of airway spaces filled with
poorly organized polymeric material that stained robustly for HA
[21]. They also observed that sputum HA, particularly low-
molecular weight HA (LMW-HA), was increased ~20-fold in
COVID-19 samples as compared to healthy control samples.
Consistently, the critical group of COVID-19 cases had significantly
higher serum levels of HA [22] and patients infected with SARS-
CoV-2 had higher levels of HA in plasma and lung tissue [23]. One
systematic study of COVID-19 autopsies revealed that the average
lung weight was ~3.2 times normal and, in an extreme case, 4.6
times normal [24]. These “heavy lungs” may be a direct result of
the overproduction of HA and its ability to absorb 1000 times its
molecular weight in water [17]. Mechanistically, over-produced HA
may quickly induce an accumulation of water in the airspace and
perialveolar interstitium, causing sudden fatal hypoxia and death
in critical COVID-19 [24]. Together, the over-production of HA and
subsequent absorption of water are referred to as an induced-
hyaluronan storm [24]. We will hereafter use the term hyaluronan
storm to describe this phenomenon.

Another significant pathologic change of ARDS in COVID-19 is
the formation of dysregulated neutrophil extracellular traps (NETSs)
in the blood and lower respiratory tract of critically ill patients [25].
NETs are a recently identified neutrophil effector mechanism in
which neutrophils contain and kill microbial organisms through
the externalization of a meshwork of chromatin fibers, together
with granule-derived antimicrobial proteins [26]. In severe COVID-
19, neutrophil infiltration of the lungs leads to increased NETs
formation and contributes to microthrombosis/coagulopathy and
COVID-19-related ARDS [18, 27].

A prevailing concept is that a primary cause of death from
COVID-19 is due to a hyperactive inflammatory response,
characterized by the overproduction of proinflammatory cytokines
such as TNF, IL-6, IL-1(3, IL-18, IL-12/IL-23p40, IL-10, and IL-8 [28]. A
presumed cytokine storm evokes the consideration of anti-
cytokine therapy; specifically, IL-6 receptor (IL-6R) antagonists, in
clinical trials for COVID-19. However, a comparison of COVID-19
with other severe diseases demonstrated that the levels of IL-6
were far less than those seen in other inflammatory syndromes,
such as sepsis [29]. The nature of the immune dysfunction in
severe COVID-19 does not resemble a standard cytokine storm
response, as compared to other diseases [29]. Recent reports have
indicated that the levels of proinflammatory cytokines seen in
COVID-19 are usually no higher, and often lower, than those in
other inflammatory states [30, 31]. Finally, the lack of convincing
clinical benefits from COVID-19 clinical trials of anti-IL6R inhibitor
monoclonal antibodies [32, 33] indicated a minor role for IL-6, a
critical cytokine typically associated with a cytokine storm.
However, IL-6, together with IL-8, and TNF-a are good biomarkers
for severe COVID-19 [28, 34]. In particular, IL-8 seems to serve as a
more accurate COVID-19 disease biomarker than IL-6 [28, 35].
While it is not as high as in sepsis [30], the levels of IL-8 are
significantly higher in the sera of COVID-19 patients, as compared
to sera from healthy people [36-39] or those infected with
influenza [28]. Furthermore, the prognostic value of IL-8 for
COVID-19 fatalities was suggested by two different groups [40, 411.
Finally, IL-8 is a major chemoattractant for neutrophils and seems
to be involved in NETs formation as described later.

On the other hand, indications of immunosuppression are
becoming evident in COVID-19 patients. Remy et al. performed
ELISpot functional assays to evaluate the innate and acquired
immunities in COVID-19 cases and found that the major
immunologic abnormality in COVID-19 is a profound defect in
host immunity. They detected a decrease in the number of
functional T-cells and the lower expression of critical cytokines
from mononuclear cells, thus indicating a decrease in both the
quality and quantity of the immune response in severe COVID-19
[42]. Moreover, poor outcomes in COVID-19 patients are correlated
with increases in both Treg proportions and intracellular levels of
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associated thrombosis [185]

hypertension [186]
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the lineage-defining transcription factor FoxP3, as detected in
cytometric and transcriptomic profiling analyses by Galvan-Pea
et al. [43]. These Tregs over-expressed a range of suppressive
effectors, reminiscent of tumor-infiltrating Tregs that suppress
anti-tumor T cell responses [43]. Vick et al. also reported that in
the most critical COVID-19 clinical disease states, patients had an
altered Treg signature including increased frequency, activation
status, and migration markers [44].

Agrati et al. reported another type of immunosuppression in
severe COVID-19 [38]. They found the expansion of MDSCs
(myeloid-derived suppressor cells) in the blood, associated with
disease severity, as well as suppressed T-cell functions. Of the
three subsets of MDSCs, increased proportions of G-MDSCs
[37, 38], M-MDSCs [45], or both [46, 47] were closely associated
with the disease severity.

COVID-19 appears to be a combination of a hyperinflamma-
tory response due to the overproduction of inflammatory
cytokines, immunosuppression due to the increased levels of
Tregs and MDSCs, and respiratory distress produced by a
hyaluronan storm and NETs. In the following sections, we
describe how a comorbidity-associated glutamine deficiency
worsens these conditions in severe COVID-19.

PLEIOTROPIC ACTIVITIES OF GLUTAMINE

Glutamine

L-Glutamine is the most abundant amino acid in the blood, and
is released mainly from skeletal muscles and transported to a
variety of tissues [48]. Although most tissues can synthesize
glutamine, during periods of stress the demand outpaces the
supply, and the expression levels of glutamine transporters on
plasma membranes become critical [48]. Two principal enzymes
regulate intracellular glutamine metabolism. Glutamine synthe-
tase (GS) catalyzes the synthesis of glutamine from glutamate
and ammonia, while glutaminase (GLS) catalyzes glutaminolysis,
the hydrolysis of glutamine to glutamate [49]. In contrast to
glutamate, glutamine has a gamma-amide nitrogen that is
essential for the biosynthesis of nucleotides and hexosamine [49]
(Fig. 1). As described later, HA is the product of the hexosamine
biosynthesis pathway (HBP). In nucleotide biosynthesis, gluta-
mine and glutamate either directly or indirectly serve as the
nitrogen donors for all nitrogen atoms in purines and
pyrimidines [49] (Fig. 1). For rapidly dividing cells such as
cancers, enterocytes, and lymphocytes, glutamine consumption
corresponds to an urgent need for nucleotide biosynthesis.
Growing cells also use glutamine to maintain energy from
mitochondria through anaplerosis, a replenishment process of
TCA cycle intermediates [50]. Cancer cells create a more
demanding situation and utilize glutamine metabolism through
TCA cycle anaplerosis to synthesize a majority of the non-
essential amino acids in proteins [50]. a-Ketoglutarate (a-KG),
one of the TCA cycle intermediates, is produced through
glutamate dehydrogenase 1 (GLUD1) or by several mitochondrial
aminotransferases, including alanine aminotransferase (ALT) and
asparagine aminotransferase (AST) [48] (Fig. 1). a-KG is also
implicated in CD4" T cell differentiation, possibly through the
epigenetic regulation of cellular histone and DNA methylation
levels [51].

Glutamine is also used for the synthesis of glutathione (GSH),
the major endogenous antioxidant molecule in mitochondria
[52] and the nucleus [53], which consists of glutamine-derived
glutamate, cysteine, and glycine (Fig. 1). Cells are exposed to
oxidative stress not only during nutrient starvation and catabolic
stresses after trauma, surgery, sepsis, or infection, but also during
active cell proliferation [54]. As glutamate represents the first
important step in the synthesis of GSH intermediate compounds,
intracellular glutamine availability is the key to GSH synthesis
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an epigenetic regulator for CD4" T cell differentiation (ax-Ketoglutarate). Nitrogen donor legends are modified from Zhang et al. [49]. GS
glutamine synthetase, GLS glutaminase, GLUD1 Glutamate dehydrogenase 1, ALT alanine aminotransferase, AST aspartate aminotransferase.

[52]. In turn, glutamine deprivation results in increased reactive
oxygen species (ROS) levels through decreased GSH [55].

NAD*

Glutamine is an important nitrogen donor for the production of
NAD™, in the last steps of both the de novo (from dietary
tryptophan) and Preiss-Handler (from dietary niacin) pathways [56]
(Fig. 2). NAD" is an essential coenzyme and substrate for
metabolism. Although NAD™ is also produced through salvage
pathways from nicotinamide (NAM) and nicotinamide riboside
(NR) precursors [56], people with ultra-rare inborn errors in the
glutamine synthetase gene exhibit severe secondary NAD"
deficiency [57], indicating that the glutamine supply for both
the de novo synthesis and Preiss-Handler pathways is indispen-
sable for NAD™ synthesis (Fig. 2).

In addition, the age-associated dysfunction of enzymes in NAD™
production, such as QPRT (quinolinate phosphoribosyl transferase)
[58] in the de novo pathway, may be a reason why elderly persons
are more susceptible to severe COVID-19. Minhas et al. reported
that aged human macrophages had lower QPRT expression that
was associated with an induction of upstream KP (kynurenine
pathway) metabolites culminating in the accumulation of QA
(quinolinic acid), but decreased production of the downstream
metabolites NAMN (nicotinic acid mononucleotide), NAAD (nico-
tinic acid dinucleotide), and NAD' [58] (Fig. 2). Reduced
expression of QPRT was found in several lung cell lines infected
with SARS-CoV-2 [59], suggesting that the dysfunction of
QPRT expression and reduction of NAD' may be exacerbated in
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COVID-19. Other mechanisms for the age-related reduction of
NAD™ could result from increases in NAD"-consuming enzymes
(NADases). NADases include SIRTs (sirtuins) and CD38, and in
particular, CD38 is activated in the elderly population [60]. NAD™
deficiency is shared amongst the comorbidities of COVID-19
(Table 1) and thus potentially represents a critical component of
the disease.

HBP AND HYALURONAN

HA is a glycosaminoglycan component of the ECM and presents at
high concentrations in the lung. It has important roles in water
homeostasis, cell-matrix signaling, tissue healing, inflammation,
angiogenesis, and cell migration [61]. As HA is exclusively
produced through the hexosamine biosynthetic pathway (HBP)
[62] (Fig. 3), understanding this pathway is crucial for treating the
hyaluronan storm in severe COVID-19. The HBP utilizes 2-5% of
the glucose that enters cells, and after the first two steps of
glycolysis, the resultant fructose-6-phosphate (F6P) is catabolized
with the rate-limiting enzyme glutamine-fructose-6-phosphate
amidotransferase (GFAT), which transfers the amino group from
glutamine to produce glucosamine-6-phosphate (GIcN-6P) and
glutamate [62]. The HBP is regarded as a nutrient sensor since the
end product is UDP-GIcNAc, which is composed of substrates
derived from the metabolism of amino acids (glutamine),
nucleotides (uridine), carbohydrates (glucose), and fatty acids
(acetyl-CoA) [62]. The UDP-GIcNAc substrate is used in a wide
variety of cellular processes, such as N-glycosylation, N-glycan

Cell Death & Differentiation (2021) 28:3199-3213
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salvage pathways. The QPRT and CD38 enzymes are responsible for the decline in NAD™ levels with age. The de novo synthesis pathway from
diet-derived tryptophan occurs through the kynurenine pathway. The first step in this pathway is the conversion of tryptophan to N-formylkin.
After two more reaction steps, N-formylkin is transformed into QA, which is then converted into NAMN by the rate-limiting enzyme, QPRT.
NAMN is a shared metabolite with the Preiss-Handler pathway, which uses NA from a dietary source. NAMN is then transformed into NAAD.
The final step of both the de novo and Preiss-Handler pathways requires glutamine as a gamma-amide nitrogen donor to transform NAAD
into NAD™ with NADS. The NAD™ salvage pathway uses NAM, which is either generated as a by-product of the enzymatic activities of NAD*-
consuming enzymes such as SIRTs and CD38, or derived from food. NAM is transformed into NMN to make NAD™. NR is also a precursor of
NMN. NR and NMN are potent NAD™ boosters in vivo. N-formylkin N-formylkynurenine, QA quinolinic acid, QPRT Quinolinate phosphoribosyl
transferase, NAMN nicotinic acid mononucleotide, NA nicotinic acid, NAAD nicotinic acid adenine dinucleotide, NAM nicotinamide, NR

nicotinamide riboside, NMN nicotinamide mononucleotide.

branching, O-GIcNAcylation, and HA synthesis in the ER, Golgi,
cytosol or nucleus, and plasma membrane, respectively. UDP-
GIcNACc is also produced through the salvage pathway of GIcNAc
by NAGK (N-acetylglucosamine kinase) [63]. Intracellular GIcNAc is
generated by the removal of O-GIcNAc protein modifications from
substrates and the lysosomal degradation of glycoconjugates and
extracellular matrix components [63]. Protein modification by
O-GIcNAcylation is similar to phosphorylation, in terms of its
dynamic and reversible kinetics [64]. The modification regulates
distinct cellular processes and occurs on a wide spectrum of
intracellular proteins. The human O-GIcNAcome is composed of
over 5,000 proteins and 7,000 modification sites [64].

HA is produced primarily by HAS2 from its precursors UDP-
glucuronic acid (UDP-GIcUA) and UDP-GIcNAc [62]. The HAS2
gene is transcriptionally induced by viral infections [61], and the
protein is regulated by O-GIcNAc modification (O-GlcNAcylation).
O-GIcNAcylation transfers a single O-GIcNAc moiety from UDP-
GIcNAC to serine/threonine residues of proteins. The HAS2 protein
is stabilized in the plasma membrane by the O-GIcNAc modifica-
tion at serine-221, resulting in increased HA production [65].
Conversely, HAS2 activity is inhibited by phosphorylation at
threonine-110 by AMP-activated protein kinase (AMPK), a master
metabolic regulator [65].

HAS2 expression is regulated by another important energy
sensor, SIRT1 (sirtuin 1) [62]. SIRT1 inhibits the activity of HAS2 in
an NAD'-dependent manner. Therefore, NAD' deficiencies
caused by comorbidities such as aging, diabetes, obesity, and
cardiovascular disease (Table 1) will impede SIRT1’s anti-HAS2
activity and lead to increased HA production.

The most common physiological size of the HA polymer in
tissues is about 0.5-2 MDa [66], corresponding to high molecular
weight HA (HMW-HA). HMW-HA has viscoelastic and anti-
inflammatory properties and is a ligand of CD44. Smaller HA
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polymers of less than 0.5 MDa are known as low molecular weight
HA (LMW-HA), and are usually generated during HA turnover but
can also accumulate at sites of inflammation with hyaluronidase,
oxidative stress, and/or hypoxia [67]. Generally, LMW-HA is
regarded as a proinflammatory factor. Numerous studies have
demonstrated the pathological function of LMW-HA in human
respiratory diseases, including ARDS [67].

CONSEQUENCES OF GLUTAMINE DEFICIENCY AND COVID-19
COVID-19 high-risk groups, such as the elderly, diabetics, obese
people, and those with cardiovascular disease, share a back-
ground of low glutamine and enhanced HBP activation [68-71]. As
mentioned previously, GFAT is a rate-limiting enzyme for HBP
(Fig. 3), and a direct transcriptional target of ATF4 (the activating
transcription factor 4) [72], which is activated by glutamine
deprivation [73]. In addition, the high risk groups tend to show
glucose intolerance [74-76], which will cause high glucose flux to
the uronic acid pathway as well as HBP (Fig. 3), producing the
substrates UDP-GIcUA and UDP-GIcNAc, respectively, for HA
synthesis. Therefore, the combination of low glutamine and high
glucose levels could predispose the high-risk groups to produce
pathological amounts of HA.

As the role of glutamine in the immune system is broad, here
we focus on its functions in neutrophils for NETs formation
(NETosis), the development of myeloid-derived suppressor cells
(MDSCs), and the differentiation into FoxP3™ Treg cells, which are
all involved in the pathogenesis of severe COVID-19.

NETosis

Neutrophilia is common in COVID-19, and the neutrophil/
lymphocyte ratio (NLR) is higher in critical patients as compared
to moderately ill or healthy persons [36]. In fact, neutrophilia is
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intimately associated with NETosis [41]. The major chemoattrac-
tant of neutrophils, IL-8, is clearly involved not only in the
recruitment of neutrophils but also in the induction of NETosis
[77]. One of the stimuli for IL-8 secretion from lung cells is possibly
UDP-glucose, a product of the glucuronic pathway (Fig. 3) and a
type of danger signal [78] released from the infected cells.
Adjacent lung cells are then stimulated through P2RY14 to secrete
IL-8, which acts as a chemo-attractant for neutrophils [79]. It is also
possible that UDP-glucose directly stimulates the P2RY14
expressed on neutrophils to attract them to the site of infection
[79, 80]. Recruited neutrophils sometimes control infection by the
production of NETs. Ouwendijk et al. suggested that regulated
NETs formation may defend hosts against SARS-CoV-2 infection in
asymptomatic or mild cases, but additional factors may lead to
excessive NETs production and lung obstruction [25].
Comorbidity-associated glutamine deficiency may be one of the
factors contributing to pathologic NETs production, as glutamine
impaired the chemotactic migration of neutrophils to infection
sites in an animal model [81], and glutamine deprivation induced
the expression of IL-8 [82, 83].

MDSCs

As noted previously, MDSCs are expanded in COVID-19
[38, 45, 46], and the increased proportions of G-MDSCs [37, 38],
M-MDSCs [45], or both [46, 47] were closely associated with the
disease severity. Low glutamine levels may affect the differentia-
tion of MDSCs and contribute to these expanded populations in
severe COVID-19, but the experimental results are inconsistent.
Some studies reported that low glutamine inhibited the differ-
entiation of MDSCs [84, 85], while others revealed that glutamine
deprivation promoted the generation of MDSCs [86]. In a murine
arthritis model, the inhibition of glutaminolysis suppressed the
differentiation of M-MDSCs, but promoted the expansion of
G-MDSCs [87]. In other studies, CRP enhanced the production of
MDSCs [88, 89], and clinically, glutamine was shown to inhibit CRP
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levels [90]. Therefore, it is possible that glutamine limits the
production of MDSCs indirectly, through inhibiting CRP
production.

Tregs

Glutamine also contributes to CD4'T cell differentiation.
Upon glutamine restriction, CD4* T cells differentiated into FoxP3™*
Treg cells despite the presence of Th1-directing cytokines [51, 91].
A decrease in the intracellular amount of glutamine-derived a-KG
shifted the balance of Th1 and Treg cells toward that of a
Treg phenotype [51]. The altered profile of Tregs in severe COVID-
19 [43, 44] may result from low glutamine levels and the
resultant a-KG deficiency. The consequences of this immunosup-
pression are thus widespread, and some of the likely targets
may be the tissue-resident immune cells, such as alveolar
macrophages, MAIT (Mucosal associated invariant T) cells and y&
T cells [92-95].

COVID-19 exhibits a wide range of the combination of
hyperinflammation and immunosuppression. As these immuno-
logical perturbations can be explained as consequences of
glutamine deficiency, it is advantageous to maintain appropriate
glutamine levels for COVID-19 prevention and treatment. Inter-
estingly, malnutrition is linked to higher serum HA levels [96].
Furthermore, the long-term effects of malnutrition predispose
patients to severe COVID-19 in an age-dependent manner [97],
and are associated with hyperinflammation and immunosuppres-
sion [98]. How malnutrition affects glutamine levels remains to be
determined.

GLUTAMINE DEFICIENCY AT THE CROSSROADS OF COVID-19
AND ITS COMORBIDITIES

Based on the above considerations, we now provide an overview
of the pathophysiologies of COVID-19 in terms of comorbidity-
associated glutamine deficiency (Fig. 4).
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Before the infection, comorbidity-associated glutamine defi-
ciency (1, Fig. 4) leads to low a-KG (4, Fig. 4), and comorbidity-
associated NAD™ deficiency (2, Fig. 4) results in impaired SIRT1
activity (3, Fig. 4). These metabolic changes initiate the
hyperproduction of HA and PAI-1, and the expansion of Tregs
and MDSC populations. Therefore, glutamine deficiency in the
high-risk groups may have previously established low levels of
immune dysfunction and HA overproduction prior to infection.

After SARS-CoV-2 infection, the cells are exposed to intense
oxidative stress, which consumes intracellular glutamine for the
production of the antioxidant, glutathione [99]. This would further
exacerbate the glutamine deficiency, potentially leading to grave
metabolic dysfunction in the high-risk populations.

SARS-CoV-2 ORF6 binds the nuclear pore complex, NUP98/Rae1,
and inhibits STAT1 translocation to the nucleus [100]. SARS-CoV-2
NSP1 protein blocks STAT1 phosphorylation and nuclear translo-
cation but also efficiently blocks IFN-I induction [101]. STAT3 is
compensatorily activated through the EGFR pathway [2] (5, Fig. 4).
In addition, P2RY14 can activate STAT3 by the extracellular UDP-
Glucose released from damaged cells [102] (6, Fig. 4).

Activated STAT3 induces the transcription of HAS2 (7, Fig. 4)
[2, 102], and the membrane-bound HAS2 enzyme is stabilized by
O-GlcNAcylation as it produces HA (8, Fig. 4). In addition, SIRT1, a
critical negative regulator of the HAS2 gene, is disabled (3, Fig. 4)
due to low levels of its substrate NAD' under conditions of low
glutamine and aging. Furthermore, SARS-CoV-2 significantly
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decreased the SIRTT expression in the PBMCs and lung tissue of
infected patients [39, 103]. Therefore, SIRT1's anti-HAS2 activity is
neutralized in two distinct manners, leading to increased HAS2
activity and higher HA levels.

The LMW-HA derived from excessive HA stimulates the
production of PAI-1 (9, Fig. 4), which indirectly activates STAT3
(10, Fig. 4) [2]. Consequently, a positive feedback loop between
activated STAT3 and PAI-1 is established. A hyaluronan storm is
evoked by the combination of decreased negative regulation by
SIRT1 and activation of HAS2 by STAT3 and O-GlcNacylation.

Another complication in severe COVID-19 is coagulopathy, in
which PAI-1, as well as NETs formation (NETosis), are involved.
Neutrophils are recruited to the site of infection through the
innate immune response to danger signals like UDP-glucose, and
they use NETosis as a tactic to combat infection. Aggregated NETs-
induced vessel occlusion was observed in the lungs, glomeruli,
and hepatic periportal fields in the autopsied specimens,
implicating NETs aggregation in the multi-organ damage by
COVID-19 [104].

SARS-CoV-2 infection exacerbates the glutamine deficiency that
leads to immunosuppression through increases in the systemic
FoxP3™ Treg (11, Fig. 4) and MDSC populations (12, Fig. 4).
Consistent with these findings, considerable associations with co-
infections (other infections upon the diagnosis of COVID-19) and/
or superinfection (other infections following COVID-19) have been
reported in severe COVID-19 [105, 106]. Galvan-Pena et al. found
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Table 2. Similarities between COVID-19 and advanced cancer.

COVID-19
STAT3 Activated STAT3 in the infected lungs [3]

Glutamine levels Decreased from plasma metabolomic analysis
[8-12, 15]

Warburg effect Increased aerobic glycolysis in vitro [112], incidental
detection of PET/CT positive infected lesions in cancer
patients [113]

PAI-1 Increased in the plasma [5, 6]

Hyaluronan Significant increase in the serum of critical cases
[22, 184], prominent hyaluronan exudates in the
COVID-19 lungs [20, 21]

Tregs FoxP3™ Tregs with tumor-infiltration Treg signature
[43]
EGFR Activated EGFR in mouse model of SARS-CoV-1 [195],

in vitro model of SARS-CoV-2 [150]

that FoxP3% Tregs from COVID-19 patients had a similar gene
expression pattern to tumor-infiltrating Tregs (11, Fig. 4), which
are known to suppress local antitumor responses [43]. Interest-
ingly, in a murine model, tumor-infiltrating FoxP3* Tregs acquired
elevated levels of CD44, an HA receptor expressed on activated
and memory Tregs [107]. CD44 is stimulated by HMW-HA to
promote Treg persistence and function [108]. Therefore, in the
presence of HA overproduction, HMW-HA stimulates FoxP3*
Tregs. Conversely, LMW-HA has proinflammatory effects, including
the induction of PAI-1. In this regard, MDSCs are possibly involved
in the production of LMW-HA. One report stated that tumor-
infiltrating M-MDSCs express hyaluronidase 2, which degrades
HMW-HA in the ECM to generate proinflammatory LMW-HA [109].
The distinct immunological natures of COVID-19-associated
MDSCs and tumor-infiltrating MDSCs continue to be examined.

The metabolic environment of low glutamine is present in both
comorbidities and upon SARS-CoV-2 infection itself. The enhanced
metabolic dysfunction occurs in a background of immunosup-
pression that exacerbates the pathologies of NETosis, coagulo-
pathy, and the hyaluronan storm.

SIMILARITIES BETWEEN SEVERE COVID-19 AND ADVANCED
CANCER

Severe COVID-19 and advanced cancer share common aspects of
their pathologies. Recently, Nan et al. performed a protein-protein
network analysis between COVID-19 and lung cancer databases
and identified 10 common hub genes associated with both
diseases. The genes encoding proteins that potentially share a
common hub of biological activity were ALB (albumin), IL-8, FGF2,
IL-6, INS (insulin), MMP2, MMP9, PTGS2 (Prostaglandin-Endoperoxide
Synthase 2), VEGFA and STAT3 [110]. Significantly, half of these
genes are downstream targets (/IL-8, MMP2, MMP9, PTGS2, and
VEGFA), and three are upstream regulators (FGF2, INS, and IL-6) of
STAT3. These results are consistent with our proposal that STAT3
plays a central role in the severe pathologies of COVID-19 and that
commonalities exist in the pathogenesis of advanced cancer and
COVID-19 [2]. One of the hallmarks in cancer is the Warburg effect,
or aerobic glycolysis. It is well established in a variety of cancers
[111] and recently identified in SARS-CoV-2-infected cells [112].
The widely-applied cancer detection method, the PET (positron
emission tomography) scan, was developed based on the
Warburg effect, and incidental detections of PET/CT positive
SARS-CoV-2-infected lesions in cancer patients have been
reported [113], indicating the increased glycolysis in infected
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Advanced cancer

Well known for its role in tumor cell proliferation, survival, invasion
and immunosuppression. STAT3 signaling also has its role in
mitochondria and epigenetic regulation [190]

In colorectal cancer, low levels were associated with an advanced
cancer stage and with poor cancer-specific survival [115].

Well established in a variety of cancers [111]

PAI-1 increase in the plasma and tissue of various type of human
cancers [191]

Increase in the serum of advanced cancers [192], the degree of HA
accumulation is strongly correlated with a poor prognosis in
advanced cancer patients [193]

High FoxP3™ Tregs infiltration was significantly associated with
shorter overall survival in the majority of solid tumors [194]

A driver of tumorigenesis mostly in lung and breast cancer and in
glioblastoma [196]

cells. This Warburg effect in COVID-19 may be the result of
activated STAT3, as STAT3 is involved in the Warburg effect [114]
and activated in infected alveolar epithelial cells [3]. The cited
similarities of COVID-19 with cancer-related biological signatures
such as the Warburg effect and the involvement of PAI-1, HA,
Tregs, and EGFR, are shown in Table 2. Glutamine levels linked to
COVID-19 and cancer are also listed, although the range of effects
are limited. However, in colorectal cancer, low levels of serum
glutamine and other amino acids abnormalities were associated
with advanced cancer stages and poor prognosis [115].

From these similarities, we can envisage that severe COVID-19 is
a cancer-like metabolic disorder, but one that develops immedi-
ately after SARS-CoV-2 infection in high-risk individuals who suffer
from at least one of multiple metabolic disorders with low
glutamine levels. We propose repurposing the following drugs,
which are mostly used in cancer therapy, because of the
similarities in the pathophysiologies of COVID-19 and advanced
cancer. As described later, serum/plasma HA is upregulated in all
high-risk groups analyzed, including cancer. Here, we primarily
focus on the drugs that regulate HA production. As such, the
proposed drugs are categorized into two targets: |. Drugs
targeting hyaluronan, II: Drugs targeting STAT3.

I. DRUGS TARGETING HYALURONAN

Anti-diabetic measures

To prevent and treat severe COVID-19, the first priority is to
control glucose levels. Chen et al. reported that severe COVID-19
was associated with higher blood glucose (WMD 221, 95%
Cl:1.30-3.13, P<0.001) [116], and elevated glucose levels
favor SARS-CoV-2 infection in vitro [117]. Logetti et al. found
evidence linking elevated glucose to each major step of the life-
cycle of the virus, progression of the disease, and presentation of
symptoms, after systematically retraced the steps of the SARS-
CoV-2 infection [118]. However, an extreme reduction of glucose
levels that leads to compensatorily activated HBP [119] should be
avoided, and consultations with diabetes-specialized doctors are
required.

Glutamine

Glutamine has anti-diabetic activities that help to reduce the
glucose input into the uronic acid pathway and HBP. Studies have
revealed that glutamine supplementation can lead to a decrease
in the levels of fasting blood glucose and postprandial glucose,
and an increase in insulin production [120]. Glutamine
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supplementation also resulted in higher levels of glucagon-like
peptide-1 (GLP-1), a gut hormone known to increase insulin levels
[120].

Prophylactic glutamine supplementation is recommended to
those in high-risk groups; however, glutamine supplementation
after the infection should be carefully considered. Glutamine
supplementation may favor SARS-CoV-2 proliferation [121],
although metabolomic analyses revealed that glutamine levels
are relatively low [8-12]. In addition, small clinical trials showed
that glutamine reduced the severity after infection in standard risk
COVID-19 patients [122, 123]; however, these preliminary findings
need to be expanded to confidently assess glutamine supple-
mentation in treating COVID-19. Compared to the beneficial
effects of glutamine, its adverse side effects are minimal. Risk
assessments of glutamine supplements indicated that they are
safe for healthy individuals in amounts up to 14 g per day [124].
There are rare contraindications to glutamine supplementation
and caution should be exercised with patients with high plasma
glutamine levels or acute hepatic insufficiency, and/or renal failure
[125, 126]. However, in 2013, a randomized clinical trial study,
REDOXS, showed that glutamine use in critically ill patients was
associated with increased mortality, with no beneficial effects
[127]. Although the authors used higher doses of glutamine
(giving around 1 gram/kg/day) than recommended and included
patients that fulfilled the contraindication criteria for its supple-
mentation [126, 128], these results shifted the guidelines to
downgrade the use of glutamine in critically ill patients.
However, glutamine supplementation has been widely used in
critical care situations [126, 128]. Clearly, the effects of long term
use of high-dose glutamine supplementation need to be carefully
determined.

Dexamethasone

Dexamethasone showed some success in treating COVID-19 [129].
This empirical effect can be attributed to its glutamine synthetase
promoting activity [130], and/or inhibition of HAS2 [131].
However, its significant immunosuppressive activity could com-
pound the already existing immunosuppressed state in severe
COVID-19, thus posing a higher risk of secondary infections and/or
reactivation of quiescent infections such as tuberculosis [132].

4-MU (4-Methylumbelliferone)

Besides dexamethasone, 4-MU also has anti-HAS2 activity
[133, 134] and therefore inhibits the production of HA. Last year,
Shi et al. proposed the application of 4-MU to treat the hyaluronan
storm in COVID-19 [17]. Similar proposals were made by other
groups after identifying abundant HA in the infected alveoli of
severe COVID-19 cases [20, 21]. 4-MU has been used for more than
20 years in humans to treat biliary spasms in France, Germany,
Japan, and other countries [135]. Recently, the involvement of HA
in cancer progression has become increasingly appreciated
(Table 2) and 4-MU has become a promising anti-cancer agent
[135]. 4-MU is a well-tolerated oral drug. and in one clinical trial,
prolonged (3 months) oral doses as high as 2400 mg/day were
safely administered [135]. Recently, a clinical trial using high doses
(up to 3600 mg/day) of 4-MU to block HA production has begun
[136]. Positive results of this trial will justify the use of 4-MU in
COVID-19.

NAD™" boosting drugs (Niacin, NR, NMN)

Increasing NAD™ levels with NAD" boosting agents in high-risk
people could be associated with a range of beneficial effects, and
the application of NAD" boosting drugs in COVID-19 has been
proposed by several groups [137, 138]. Using a mouse-adapted
SARS-CoV-2 model, Jiang et al. reported that a global gene
expression analysis of the infected mouse lungs revealed the
dysregulation of genes associated with NAD'" metabolism,
correlating with the results from COVID-19 patients [139]. They
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found that the pneumonia phenotypes, including excessive
inflammatory cell infiltration and embolization in SARS-CoV-2-
infected murine lungs, were significantly rescued with an
intraperitoneal injection of NAD" [139]. In addition, recently
developed first-in-class drug for diabetes, imeglimin, has been
reported to enhance glucose-stimulated ATP generation and
induce the synthesis of NAD™ [140]. One concern is that during
the infection, NAD' boosters cannot completely restore SIRT1's
anti-HAS2 activity, as the expression of SIRT1 is critically impaired
in severe COVID-19 [39, 103]. Therefore, NAD" boosters would be
effective for the prevention of COVID-19 or immediately after the
infection with SARS-CoV-2.

Vitamin D

1,25 Dihydroxyvitamin D (vitamin D) reportedly inhibits HAS2
expression [141]. However, it also suppresses glutamine metabo-
lism [142], indicating a possible reduction of a-KG that may result
in high FoxP3™" Treg differentiation.

Il. DRUGS TARGETING STAT3

STAT1 activators

The SARS-CoV-2 virus has mechanisms to inhibit the activity of
STAT1, which initiates a cascade of deleterious events, including
the activation of STAT3 [2]. Therefore, STAT1 activators will have
the effect of inhibiting STAT3. Like interferons, retinoids increase
STAT1 expression, up-regulate its phosphorylation, and enhance
its translocation to the nucleus [143]. Retinoids inhibit infections
by measles, norovirus, and HCV through IFN-I signaling in several
ways [144]. A recent report showed that the retinoid inducible
gene-l (RIG-1) had dramatic antiviral activity in an in vitro model of
SARS-CoV-2 infection [145]. It is important to carefully modulate
IFN inducing signaling in COVID-19 because it may worsen the
disease in the late stages of infection [2].

STAT3 inhibitors

Besides the use of the STAT3 targeting drugs, Danvatirsen and
Napabucasin [2], the regulation of the upstream signaling
molecules is also important. Wang et al. reported that, in A549
cells, decreased NAD" inactivated SIRT1, resulting in increased
STAT3 acetylation and phosphorylation, and STAT3 activation.
Repletion of nicotinamide or nicotinic acid inactivated STAT3
[146]. However, as mentioned above, we cannot expect the full
restoration of SIRT1 activity by NAD" boosters, as SIRT1 expression
is inhibited by SARS-CoV-2 infection. We should also keep in mind
that glutamine has been reported as a STAT3 activator in some
cancer cell lines [84, 147], whereas others found that glutamine
has STAT3 inhibiting activity [83, 148].

EGFR inhibitors

EGFR signaling is upregulated in SARS-CoV-2-infected cells in vitro
[149, 150], and we believe that this signaling is responsible for
maintaining the STAT3 activity in severe COVID-19 [2]. Repurpos-
ing drugs targeting EGFR, such as Erlotinib, Gefitinib, Cetuximab,
and others, are already used in some cancer therapies. The major
concern is that these treatments often cause severe interstitial
pneumonia that resembles pneumonia in COVID-19, and will thus
make a differential diagnosis more difficult [151].

Immune checkpoint inhibitors (ICls)

A hallmark of COVID-19 is lymphocytopenia, and efforts have been
made to restore T-cell competency by ICls. In fact, immune
checkpoint proteins may be connected to other types of
immunosuppression seen in COVID-19. Glutamine deficiency
increases the expression of PD-L1 [152], which is known to be
activated by STAT3 [153], and biopsy results indicated increased
PD-L1 expression in the infected lung tissue of COVID-19 patients
[3]. Several groups are exploring anti-PD-L1 and anti-CTLA-4
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antibodies, alone or in combination with anti-IL-6R, and clinical
trials are underway [154].

In this review, we have focused on the major risk factors of
COVID-19 that are: aging, hypertension, cardiovascular disease,
diabetes, and obesity [1]. These major risk factors generally fit the
profile as described in Table 1. However, there are many other risk
factors such as chronic lung disease including COPD (chronic
obstructive pulmonary disease), interstitial pneumonia, asthma,
and CF (cystic fibrosis), chronic kidney disease, cerebrovascular
disease (e.g., stroke), chronic liver disease, and more [1, 155]. The
glutamine levels in these risk-groups of COVID-19 need to be
properly delineated, as most of those studies have conflicting or
meager information regarding their plasma levels of glutamine.
HA levels, on the other hand, are consistently elevated in plasma/
serum of risk groups such as chronic lung disease (COPD [156],
interstitial pneumonia [157], asthma [158]), chronic kidney disease
[159], stroke [160, 161], and chronic liver disease [162]. CF
exhibited a normal level of serum HA [163], however, CF sputum
had 20-fold excess of HA than healthy controls [21]. Similarly,
asthma [164], and COPD [165] had elevated levels of sputum HA.
Therefore, irrespective of glutamine levels, any disease leading to
increased HA production may have a predisposition to severe
COVID-19. Thorough and uniform analyses of glutamine and HA
regulation in all putative risk groups of COVID-19 are necessary to
ascertain the limitations of this metabolic profile.

The vast majority of SARS-CoV-2 infections result in mild to
oppressive common cold-like symptoms that resolve in weeks
without long-term effects. Unfortunately, the virus is rapidly
mutating into more contagious variants and even a small
percentage of the infected leads to an unacceptably large number
of fatalities. We may have identified a common mechanism in
high-risk groups that confers more susceptibility to severe COVID-
19. We suggest a simple nutritional supplementation that could
neutralize this susceptibility and restrict the disease to common
cold-like symptoms. Glutamine deficiency and HA overproduction
appear to be the primary metabolic commonalities that not only
are shared amongst the COVID-19 comorbidities, but also
contribute to the immunological dysfunction that is exacerbated
by SARS-CoV-2 infection. While it is presently unclear whether
glutamine supplementation post-infection leads to an overall
positive outcome, addressing glutamine deficiency prophylacti-
cally for those in high-risk groups is a safe and simple strategy for
their protection in the era of COVID-19.
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