Pyrroline-5-carboxylate synthase senses cellular stress and modulates metabolism by regulating mitochondrial respiration

Abstract

Pyrroline-5-carboxylate synthase (P5CS) catalyzes the synthesis of pyrroline-5-carboxylate (P5C), a key precursor for the synthesis of proline and ornithine. P5CS malfunction leads to multiple human diseases; however, the molecular mechanism underlying these diseases is unknown. We found that P5CS localizes in mitochondria in rod- and ring-like patterns but diffuses inside the mitochondria upon cellular starvation or exposure to oxidizing agents. Some of the human disease-related mutant forms of P5CS also exhibit diffused distribution. Multimerization (but not the catalytic activity) of P5CS regulates its localization. P5CS mutant cells have a reduced proliferation rate and are sensitive to cellular stresses. Flies lacking P5CS have reduced eclosion rates. Lipid droplets accumulate in the eyes of the newly eclosed P5CS mutant flies, which degenerate with aging. The loss of P5CS in cells leads to abnormal purine metabolism and lipid-droplet accumulation. The reduced lipid-droplet consumption is likely due to decreased expression of the fatty acid transporter, CPT1, and few β-oxidation-related genes following P5CS knockdown. Surprisingly, we found that P5CS is required for mitochondrial respiratory complex organization and that the respiration defects in P5CS knockout cells likely contribute to the metabolic defects in purine synthesis and lipid consumption. This study links amino acid synthesis with mitochondrial respiration and other key metabolic processes, whose imbalance might contribute to P5CS-related disease conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: P5CS forms rod- and ring-like structures in mitochondria.
Fig. 2: The dimerization domains are required for P5CS puncta patterns.
Fig. 3: P5CS diffuses throughout the mitochondria upon oxidative stress.
Fig. 4: Loss of P5CS leads to increased sensitivity to stress and neurodegeneration.
Fig. 5: Loss of P5CS leads to multiple metabolic defects.
Fig. 6: P5CS loss inhibits fatty acid β-oxidation.
Fig. 7: P5CS is required for oxidative respiration in mitochondria.

References

  1. 1.

    Martinez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11:102.

    CAS  Article  Google Scholar 

  2. 2.

    Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat cell Biol. 2018;20:745–54.

    CAS  Article  Google Scholar 

  3. 3.

    Kauppila TES, Kauppila JHK, Larsson NG. Mammalian mitochondria and aging: an update. Cell Metab. 2017;25:57–71.

    CAS  Article  Google Scholar 

  4. 4.

    Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61:654–66.

    CAS  Article  Google Scholar 

  5. 5.

    Perez-Arellano I, Carmona-Alvarez F, Martinez AI, Rodriguez-Diaz J, Cervera J. Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci: Publ Protein Soc. 2010;19:372–82.

    CAS  Article  Google Scholar 

  6. 6.

    Panza E, Escamilla-Honrubia JM, Marco-Marin C, Gougeard N, De Michele G, Morra VB, et al. ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain: J Neurol. 2016;139:e3.

    Article  Google Scholar 

  7. 7.

    Koh K, Ishiura H, Beppu M, Shimazaki H, Ichinose Y, Mitsui J, et al. Novel mutations in the ALDH18A1 gene in complicated hereditary spastic paraplegia with cerebellar ataxia and cognitive impairment. J Hum Genet. 2018;63:1009–13.

    CAS  Article  Google Scholar 

  8. 8.

    Skidmore DL, Chitayat D, Morgan T, Hinek A, Fischer B, Dimopoulou A, et al. Further expansion of the phenotypic spectrum associated with mutations in ALDH18A1, encoding Delta(1)-pyrroline-5-carboxylate synthase (P5CS). Am J Med Genet Part A. 2011;155A:1848–56.

    Article  Google Scholar 

  9. 9.

    Wolthuis DF, van Asbeck E, Mohamed M, Gardeitchik T, Lim-Melia ER, Wevers RA, et al. Cutis laxa, fat pads and retinopathy due to ALDH18A1 mutation and review of the literature. Eur J Paediatr Neurol: Off J Eur Paediatr Neurol Soc. 2014;18:511–5.

    Article  Google Scholar 

  10. 10.

    Fischer-Zirnsak B, Escande-Beillard N, Ganesh J, Tan YX, Al Bughaili M, Lin AE, et al. Recurrent de novo mutations affecting residue Arg138 of pyrroline-5-carboxylate synthase cause a progeroid form of autosomal-dominant cutis laxa. Am J Hum Genet. 2015;97:483–92.

    CAS  Article  Google Scholar 

  11. 11.

    Krishnan N, Dickman MB, Becker DF. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med. 2008;44:671–81.

    CAS  Article  Google Scholar 

  12. 12.

    Shafqat S, Velaz-Faircloth M, Henzi VA, Whitney KD, Yang-Feng TL, Seldin MF, et al. Human brain-specific L-proline transporter: molecular cloning, functional expression, and chromosomal localization of the gene in human and mouse genomes. Mol Pharmacol. 1995;48:219–29.

    CAS  PubMed  Google Scholar 

  13. 13.

    Wang D, Liu Y, Zhang R, Zhang F, Sui W, Chen L, et al. Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function. Oncotarget. 2016;7:28286–300.

    Article  Google Scholar 

  14. 14.

    Rebbaa A, Zheng X, Chou PM, Mirkin BL. Caspase inhibition switches doxorubicin-induced apoptosis to senescence. Oncogene. 2003;22:2805–11.

    CAS  Article  Google Scholar 

  15. 15.

    Perez-Arellano I, Rubio V, Cervera J. Mapping active site residues in glutamate-5-kinase. The substrate glutamate and the feed-back inhibitor proline bind at overlapping sites. FEBS Lett. 2006;580:6247–53.

    CAS  Article  Google Scholar 

  16. 16.

    Marco-Marin C, Gil-Ortiz F, Perez-Arellano I, Cervera J, Fita I, Rubio V. A novel two-domain architecture within the amino acid kinase enzyme family revealed by the crystal structure of Escherichia coli glutamate 5-kinase. J Mol Biol. 2007;367:1431–46.

    CAS  Article  Google Scholar 

  17. 17.

    Page R, Nelson MS, von Delft F, Elsliger MA, Canaves JM, Brinen LS, et al. Crystal structure of gamma-glutamyl phosphate reductase (TM0293) from Thermotoga maritima at 2.0 A resolution. Proteins. 2004;54:157–61.

    CAS  Article  Google Scholar 

  18. 18.

    Liu ZJ, Sun YJ, Rose J, Chung YJ, Hsiao CD, Chang WR, et al. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat Struct Biol. 1997;4:317–26.

    CAS  Article  Google Scholar 

  19. 19.

    Wu CA, Chao Y, Shiah SG, Lin WW. Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase. Biochimica Biophysica Acta. 2013;1833:1147–56.

    CAS  Article  Google Scholar 

  20. 20.

    Meister A, Anderson ME. Glutathione. Annu Rev Biochem. 1983;52:711–60.

    CAS  Article  Google Scholar 

  21. 21.

    Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Developmental Cell. 2015;32:678–92.

    CAS  Article  Google Scholar 

  22. 22.

    Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 2015;160:177–90.

    CAS  Article  Google Scholar 

  23. 23.

    Harris CA, Haas JT, Streeper RS, Stone SJ, Kumari M, Yang K, et al. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J lipid Res. 2011;52:657–67.

    CAS  Article  Google Scholar 

  24. 24.

    Nguyen TB, Louie SM, Daniele JR, Tran Q, Dillin A, Zoncu R, et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Developmental Cell. 2017;42:9–21 e25.

    CAS  Article  Google Scholar 

  25. 25.

    Mayer N, Schweiger M, Romauch M, Grabner GF, Eichmann TO, Fuchs E, et al. Development of small-molecule inhibitors targeting adipose triglyceride lipase. Nat Chem Biol. 2013;9:785–7.

    CAS  Article  Google Scholar 

  26. 26.

    Cuthbert KD, Dyck JR. Malonyl-CoA decarboxylase is a major regulator of myocardial fatty acid oxidation. Curr hypertension Rep. 2005;7:407–11.

    CAS  Article  Google Scholar 

  27. 27.

    Konovalova S. Analysis of mitochondrial respiratory chain complexes in cultured human cells using blue native polyacrylamide gel electrophoresis and immunoblotting. J Vis Exp. 2019;144. https://doi.org/10.3791/59269.

  28. 28.

    French JB, Jones SA, Deng H, Pedley AM, Kim D, Chan CY, et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science. 2016;351:733–7.

    CAS  Article  Google Scholar 

  29. 29.

    Pedley AM, Benkovic SJ. A new view into the regulation of purine metabolism: the purinosome. Trends Biochem Sci. 2017;42:141–54.

    CAS  Article  Google Scholar 

  30. 30.

    Vanakker O, Callewaert B, Malfait F, Coucke P. The genetics of soft connective tissue disorders. Annu Rev Genom Hum Genet. 2015;16:229–55.

    CAS  Article  Google Scholar 

  31. 31.

    Ignatova Z, Gierasch LM. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci USA. 2006;103:13357–61.

    CAS  Article  Google Scholar 

  32. 32.

    Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, et al. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci USA. 2013;110:19012–7.

    CAS  Article  Google Scholar 

  33. 33.

    Zhang Y, Liu X, Bai J, Tian X, Zhao X, Liu W, et al. Mitoguardin regulates mitochondrial fusion through MitoPLD and is required for neuronal homeostasis. Mol Cell. 2016;61:111–24.

    CAS  Article  Google Scholar 

  34. 34.

    Ariotti N, Hall TE, Rae J, Ferguson C, McMahon KA, Martel N, et al. Modular detection of GFP-labeled proteins for rapid screening by electron microscopy in cells and organisms. Developmental Cell. 2015;35:513–25.

    CAS  Article  Google Scholar 

  35. 35.

    Sellick CA, Hansen R, Stephens GM, Goodacre R, Dickson AJ. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc. 2011;6:1241–9.

    CAS  Article  Google Scholar 

  36. 36.

    Xiao Z, Cheng G, Jiao Y, Pan C, Li R, Jia D, et al. Holo-Seq: single-cell sequencing of holo-transcriptome. Genome Biol. 2018;19:163.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to THFC, BDSC, and DGRC for providing fly strains and cDNA clones. We thank the imaging core facilities and mass spectrometry facilities in LSI for the technical support. CT is supported by National Natural Science Foundation of China (91754103, 31622034, 31571383), National Key Research & Developmental Program of China (2017YFC1001500, 2017YFC1001100), Natural Science Foundation of Zhejiang Province, China (LR16C070001) and Fundamental research funds for the central universities. CT is a Qianjiang Scholar.

Author information

Affiliations

Authors

Contributions

CT, ZY, XZ, YL, J-FJ, and J-PL designed and performed experiments, analyzed data, and wrote the paper. CT obtained financial support and were responsible for the study design and interpretation of results. WS performed the TEM analysis. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Chao Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by L. Scorrano

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhao, X., Shang, W. et al. Pyrroline-5-carboxylate synthase senses cellular stress and modulates metabolism by regulating mitochondrial respiration. Cell Death Differ 28, 303–319 (2021). https://doi.org/10.1038/s41418-020-0601-5

Download citation

Search

Quick links