Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

TEAD1 protects against necroptosis in postmitotic cardiomyocytes through regulation of nuclear DNA-encoded mitochondrial genes

Abstract

The Hippo signaling effector, TEAD1 plays an essential role in cardiovascular development. However, a role for TEAD1 in postmitotic cardiomyocytes (CMs) remains incompletely understood. Herein we reported that TEAD1 is required for postmitotic CM survival. We found that adult mice with ubiquitous or CM-specific loss of Tead1 present with a rapid lethality due to an acute-onset dilated cardiomyopathy. Surprisingly, deletion of Tead1 activated the necroptotic pathway and induced massive cardiomyocyte necroptosis, but not apoptosis. In contrast to apoptosis, necroptosis is a pro-inflammatory form of cell death and consistent with this, dramatically higher levels of markers of activated macrophages and pro-inflammatory cytokines were observed in the hearts of Tead1 knockout mice. Blocking necroptosis by administration of necrostatin-1 rescued Tead1 deletion-induced heart failure. Mechanistically, genome-wide transcriptome and ChIP-seq analysis revealed that in adult hearts, Tead1 directly activates a large set of nuclear DNA-encoded mitochondrial genes required for assembly of the electron transfer complex and the production of ATP. Loss of Tead1 expression in adult CMs increased mitochondrial reactive oxygen species, disrupted the structure of mitochondria, reduced complex I-IV driven oxygen consumption and ATP levels, resulting in the activation of necroptosis. This study identifies an unexpected paradigm in which TEAD1 is essential for postmitotic CM survival by maintaining the expression of nuclear DNA-encoded mitochondrial genes required for ATP synthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global deletion of Tead1 in adult mice leads to rapid lethality due to acute-onset DCM.
Fig. 2: Mice deficient of Tead1 in postmitotic CMs exhibit rapid lethality due to acute-onset DCM, phenocopying that of Tead1 igKO mice.
Fig. 3: Deletion of Tead1 in postmitotic CMs activates necroptosis.
Fig. 4: Deletion of Tead1 in postmitotic CMs in adult mice induces inflammation.
Fig. 5: Inhibition of necroptosis by Necrostatin-1 (Nec) treatment mitigates Tead1 KO-induced DCM.
Fig. 6: Identification of the bona fide TEAD1 target genes in postmitotic CMs in mice.
Fig. 7: Loss of Tead1 in CMs leads to mitochondrial dysfunction.

Data availability

The RNA-seq data generated in this study have been deposited in the Sequences Read Archive at the NCBI under SRA accession numbers PRJNA575531. The TEAD1 adult mouse heart ChIP-seq data has been deposited in NCBI GEO database under the accession number GSE124008. Reagents described in the study will be available upon request.

References

  1. 1.

    McKenna WJ, Maron BJ, Thiene G. Classification, epidemiology, and global burden of cardiomyopathies. Circ Res. 2017;121:722–30.

    CAS  Article  Google Scholar 

  2. 2.

    Zhu H, Sun A. Programmed necrosis in heart disease: molecular mechanisms and clinical implications. J Mol Cell Cardiol. 2018;116:125–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Orogo AM, Gustafsson AB. Cell death in the myocardium: my heart won’t go on. IUBMB Life. 2013;65:651–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Weinlich R, Oberst A, Beere HM, Green DR. Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 2017;18:127–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11:700–14.

    CAS  Article  Google Scholar 

  6. 6.

    Del ReDP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiological Rev. 2019;99:1765–817.

    Article  CAS  Google Scholar 

  7. 7.

    Meyers DE, Basha HI, Koenig MK. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J. 2013;40:385–94.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Goldenthal MJ. Mitochondrial involvement in myocyte death and heart failure. Heart Fail Rev. 2016;21:137–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Adameova A, Goncalvesova E, Szobi A, Dhalla NS. Necroptotic cell death in failing heart: relevance and proposed mechanisms. Heart Fail Rev. 2016;21:213–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Hou T, Zhang R, Jian C, Ding W, Wang Y, Ling S, et al. NDUFAB1 confers cardio-protection by enhancing mitochondrial bioenergetics through coordination of respiratory complex and supercomplex assembly. Cell Res. 2019;29:754–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S, et al. Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: a mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol. 2018;16:157–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    El-Hattab AW, Scaglia F. Mitochondrial cardiomyopathies. Front Cardiovasc Med. 2016;3:25.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Pan D. The hippo signaling pathway in development and cancer. Dev cell. 2010;19:491–505.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Wang J, Liu S, Heallen T, Martin JF. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol. 2018;15:672–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Wackerhage H, Del ReDP, Judson RN, Sudol M, Sadoshima J. The Hippo signal transduction network in skeletal and cardiac muscle. Sci Signal. 2014;7:re4.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  16. 16.

    Yoshida T. MCAT elements and the TEF-1 family of transcription factors in muscle development and disease. Arterioscler Thromb Vasc Biol. 2008;28:8–17.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Lin KC, Park HW, Guan KL. Regulation of the Hippo pathway transcription factor TEAD. Trends Biochem Sci. 2017;42:862–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Wen T, Yin Q, Yu L, Hu G, Liu J, Zhang W, et al. Characterization of mice carrying a conditional TEAD1 allele. Genesis. 2017;55:e23085.

    Article  CAS  Google Scholar 

  19. 19.

    Wen T, Liu J, He X, Dong K, Hu G, Yu L, et al. Transcription factor TEAD1 is essential for vascular development by promoting vascular smooth muscle differentiation. Cell Death Differ. 2019;26:2790–806.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Liu R, Jagannathan R, Li F, Lee J, Balasubramanyam N, Kim BS, et al. Tead1 is required for perinatal cardiomyocyte proliferation. PLoS One. 2019;14:e0212017.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Liu R, Lee J, Kim BS, Wang Q, Buxton SK, Balasubramanyam N, et al. Tead1 is required for maintaining adult cardiomyocyte function, and its loss results in lethal dilated cardiomyopathy. JCI Insight. 2017;7;2:e93343.

    PubMed Central  Article  Google Scholar 

  22. 22.

    Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, et al. Tead1 is essential for mitochondrial function in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2020;319:H89–99.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Osman I, He X, Liu J, Dong K, Wen T, Zhang F, et al. TEAD1 (TEA Domain Transcription Factor 1) promotes smooth muscle cell proliferation through upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-mediated glutamine uptake. Circ Res. 2019;124:1309–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Sohal DS, Nghiem M, Crackower MA, Witt SA, Kimball TR, Tymitz KM, et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res. 2001;89:20–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137:1112–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Asp ML, Martindale JJ, Metzger JM. Direct, differential effects of tamoxifen, 4-hydroxytamoxifen, and raloxifene on cardiac myocyte contractility and calcium handling. PLoS One. 2013;8:e78768.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 2008;8:279–89.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther. 2007;21:227–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Zhou P, Gu F, Zhang L, Akerberg BN, Ma Q, Li K, et al. Mapping cell type-specific transcriptional enhancers using high affinity, lineage-specific Ep300 bioChIP-seq. eLife. 2017;6:e22039.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Akerberg BN, Gu F, VanDusen NJ, Zhang X, Dong R, Li K, et al. A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nat Commun. 2019;10:4907.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016;538:123–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    van Duijvenboden K, de Bakker DEM, Man JCK, Janssen R, Gunthel M, Hill MC, et al. Conserved NPPB+ border zone switches from MEF2- to AP-1-driven gene program. Circulation. 2019;140:864–79.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  33. 33.

    Wang Y, Hu G, Liu F, Wang X, Wu M, Schwarz JJ, et al. Deletion of yes-associated protein (YAP) specifically in cardiac and vascular smooth muscle cells reveals a crucial role for YAP in mouse cardiovascular development. Circ Res. 2014;114:957–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Zhou J. An emerging role for Hippo-YAP signaling in cardiovascular development. J Biomed Res. 2014;28:251–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci USA. 2013;110:13839–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Del Re DP, Yang Y, Nakano N, Cho J, Zhai P, Yamamoto T, et al. Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J Biol Chem. 2013;288:3977–88.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  37. 37.

    Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185:1481–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Li B, Qing T, Zhu J, Wen Z, Yu Y, Fukumura R, et al. A comprehensive mouse transcriptomic BodyMap across 17 tissues by RNA-seq. Sci Rep. 2017;7:4200.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Koitabashi N, Bedja D, Zaiman AL, Pinto YM, Zhang M, Gabrielson KL, et al. Avoidance of transient cardiomyopathy in cardiomyocyte-targeted tamoxifen-induced MerCreMer gene deletion models. Circ Res. 2009;105:12–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Hou N, Wen Y, Yuan X, Xu H, Wang X, Li F, et al. Activation of Yap1/Taz signaling in ischemic heart disease and dilated cardiomyopathy. Exp Mol Pathol. 2017;103:267–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Mammoto A, Muyleart M, Kadlec A, Gutterman D, Mammoto T. YAP1-TEAD1 signaling controls angiogenesis and mitochondrial biogenesis through PGC1alpha. Microvasc Res. 2018;119:73–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Nagaraj R, Gururaja-Rao S, Jones KT, Slattery M, Negre N, Braas D, et al. Control of mitochondrial structure and function by the Yorkie/YAP oncogenic pathway. Genes Dev. 2012;26:2027–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Kumar RP, Ray S, Home P, Saha B, Bhattacharya B, Wilkins HM, et al. Regulation of energy metabolism during early mammalian development: TEAD4 controls mitochondrial transcription. Development. 2018;145:dev162644.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Kaneko KJ, DePamphilis ML. TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development. 2013;140:3680–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE. Bovine complex I is a complex of 45 different subunits. J Biol Chem. 2006;281:32724–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Tsika RW, Ma L, Kehat I, Schramm C, Simmer G, Morgan B, et al. TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction. J Biol Chem. 2010;285:13721–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014;114:524–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Investig. 2018;128:3716–26.

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovascular Res. 2000;47:446–56.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Drs. B. Paul Herring and David Fulton for a critical reading of the manuscript. The authors appreciate Drs. John Johnson, Bobby Thomas at Augusta University, Xiongwen Chen at Temple University and Yang Kevin Xiang at University of California, Davis for their inspiring discussion.

Funding

The work is supported by grants from the National Heart, Lung, and Blood Institute, NIH (R01HL149995 to JZ; R01HL132182 to WC). JZ is a recipient of Established Investigator Award (17EIA33460468) and Transformational Project Award (19TPA34910181) from American Heart Association. KD is supported by a postdoctoral fellowship (19POST34450071) from American Heart Association. IO is supported by a K99 award (K99HL153896) from the National Heart, Lung, and Blood Institute, NIH.

Author information

Affiliations

Authors

Contributions

JZ and WZ conceived and supervised the project. JinL and TW designed and performed experiments. KD analyzed RNA-seq and ChIP-seq data. JZ and KD wrote the manuscript. XH, HZ, JS, ZF, GH, WM, JieL, WeW, LW, BA, JX, IO, ZZ, WW, QD, WP, MX, WC and HS performed experiments and/or edited the manuscript.

Corresponding authors

Correspondence to Wei Zhang or Jiliang Zhou.

Ethics declarations

Ethics declarations

Not applicable. No human subjects were involved in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by A. Oberst

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wen, T., Dong, K. et al. TEAD1 protects against necroptosis in postmitotic cardiomyocytes through regulation of nuclear DNA-encoded mitochondrial genes. Cell Death Differ (2021). https://doi.org/10.1038/s41418-020-00732-5

Download citation

Further reading

Search

Quick links