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Abstract
Tauopathies define a broad range of neurodegenerative diseases that encompass pathological aggregation of the microtubule-
associated protein tau. Although tau aggregation is a central feature of these diseases, their underlying pathobiology is
remarkably heterogeneous at the molecular level. In this review, we summarize critical differences that account for this
heterogeneity and contrast the physiological and pathological functions of tau. We focus on the recent understanding of its
prion-like behavior that accounts for its spread in the brain. Moreover, we acknowledge the limited appreciation about how
upstream cellular changes influence tauopathy. Dysfunction of the highly conserved endosomal trafficking complex retromer
is found in numerous tauopathies such as Alzheimer’s disease, Pick’s disease, and progressive supranuclear palsy, and we
discuss how this has emerged as a major contributor to various aspects of neurodegenerative diseases. In particular, we
highlight recent investigations that have elucidated the contribution of retromer dysfunction to distinct measures of
tauopathy such as tau hyperphosphorylation, aggregation, and impaired cognition and behavior. Finally, we discuss the
potential benefit of targeting retromer for modifying disease burden and identify important considerations with such an
approach moving toward clinical translation.

Facts

● Tau aggregation in the brain is a common feature
of numerous neurodegenerative diseases termed
“tauopathies.”

● Retromer is an evolutionarily conserved complex
consisting of VPS26, VPS35, and VPS29.

● Retromer abundance is inversely correlated with tau
aggregation in the brain of people with tauopathies,

including Alzheimer’s disease, Pick’s disease, and
progressive supranuclear palsy.

● Depletion of retromer subunit VPS35 enhances patho-
logical tau hyperphosphorylation, aggregation, and
cognitive/behavioral phenotypes in various preclinical
models of tauopathy.

● Pharmacological stabilization of retromer with small-
molecule chaperones suppresses tau-mediated
pathologies.

Open questions

● In human tauopathies, does retromer depletion in the
brain precede tau aggregation? Or vice versa?

● Does reduced synthesis, increased turnover, or both
account for retromer depletion in the brain of people
with tauopathies?

● What downstream function(s) of retromer account
for its neuroprotective effects against tauopathies
in vivo?

● Will retromer chaperones enhance lifespan (or health-
span) in mouse models of tauopathy?

● Will retromer chaperones be effective after the onset of
disease hallmarks in mouse models of tauopathy?
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Despite clear similarities tauopathies are
heterogeneous

Pathological aggregation of the microtubule-associated pro-
tein tau is a common feature of several age-related neurode-
generative diseases, collectively termed “tauopathies” [1]. The
tau aggregates found in these diseases are heterogeneous and
differ considerably across several parameters such as location
in the brain, pattern of spread, isoform composition, residing
cell type, histological morphology, recognition by amyloid-
binding dyes, posttranslational modifications, and structural
conformation/strain [2]. It is therefore not surprising that with
such marked heterogeneity, tauopathies are present as clini-
cally distinct syndromes. Examples of tauopathies include
Alzheimer’s disease (AD, the most common tauopathy),
Pick’s disease, progressive supranuclear palsy, corticobasal
degeneration, frontotemporal dementia and parkinsonism
linked to chromosome 17 (FTDP-17), chronic traumatic
encephalopathy, argyrophilic grain disease, globular glial
tauopathy, and primary age-related tauopathy [1]. Although
there is no relationship between MAPT variation and AD,
more than 40 MAPT mutations are known to cause FTDP-17
[3–7]. In addition, MAPT mutations also cause corticobasal
degeneration [8]. These mutations typically affect the
microtubule-binding capacity of tau, increase its aggregation
propensity, or alter its splicing pattern [3–5, 9, 10]. In addi-
tion, the H1 haplotype of MAPT is associated with increased
risk of progressive supranuclear palsy and primary age-related
tauopathy [11, 12].

Tau in physiology and pathophysiology

Topologically, tau is divided into two sections: its C-
terminal microtubule-binding repeat domain (RD) and an
N-terminal projection domain that extends away from
microtubules to regulate microtubule spacing [13, 14]. In
the adult human brain, tau is expressed as six isoforms that
vary by alternative slicing of exons that encode the two N-
terminal inserts (N1 and N2) in its projection domain and
the second (R2), out of four repeats (4R) that make up the
RD, to generate 3R- and 4R-containing isoforms [15–18].
Under physiological conditions, isoforms with and without
R2 are equally abundant despite 4R isoforms having a
greater microtubule-binding affinity/avidity [16, 19]. Tau
regulates microtubule stability by binding to the interface of
α–β tubulin heterodimers [20, 21]. Additionally, tau reg-
ulates axonal transport and the actin cytoskeleton [22–25].
In the central nervous system, tau is localized pre-
dominantly along axons, and to a lesser extent, within
dendrites [14, 26]. In disease, tau is redistributed to other
locations within the neuron where it forms hyperpho-
sphorylated inclusions, such as neurofibrillary tangles in the

soma, neuropil threads within neurites, and neuritic plaques
in the vicinity of amyloid plaques [27–30]. Tau hyperpho-
sphorylation is marked in the AD brain to the extent that
paired-helical filaments of tau, that comprise larger aggre-
gates, contain ~7 moles of phosphate per mole of protein,
which is ~3.5 times more than control brains [31]. Tau is
natively unfolded owing to its high composition of hydro-
philic amino acids, and this lack of complexity in its
structure makes it an ideal substrate for posttranslational
modifications such as phosphorylation, methylation, acet-
ylation, glycosylation, SUMOylation, O-linked N-acet-
ylglucosamination, and cleavage [13, 32]. Because tau can
be so heavily modified, with >40 amino acid residues
identified by mass spectrometry as being phosphorylated, it
is difficult to fully understand the contribution of individual
site-specific phosphorylations [33]. However, the functional
significance of several phosphorylation events is well-
characterized. For example, phosphorylation of residues
within or flanking the RD negatively affects the
tau–microtubule interaction [34, 35]. Moreover, phos-
phorylated tau accumulates in the AD brain before the
emergence of neurofibrillary tangles [36]. Tau hyperpho-
sphorylation enhances its aggregation via self-assembly into
paired-helical and straight filaments, which constitute neu-
rofibrillary tangles [37–39]. While tau hyperpho-
sphorylation promotes tau aggregation, tau aggregation may
also enhance subsequent hyperphosphorylation. During
embryonic development, tau is hyperphosphorylated but not
aggregated, indicating that phosphorylation alone does not
accurately predict aggregation [40]. Moreover, not all tau
phosphorylation events are pathological. Indeed, phos-
phorylation at T205 by p38γ prevents amyloid-β-mediated
toxicity in APP23 transgenic mice (human APP [isoform
751] with K670M and N671L [Swedish] mutations) [41].
Whether tau aggregation represents a loss- or a toxic gain-
of-function phenotype is still heavily debated [42–50].
However, genetic deletion of endogenous tau in mouse and
fruit fly models does not recapitulate key phenotypes
observed in transgenic mouse models of tauopathy, which
mirror hallmarks of human disease, arguing strongly against
pathology being driven by a loss of function [51, 52].

Pathogenic tau displays prion-like spread in
the brain

The spread of tau aggregation throughout the brain is tightly
linked to disease severity [53]. In AD, neurofibrillary tangles
composed of hyperphosphorylated and aggregated tau first
appear in the locus coeruleus and the trans-entorhinal and
entorhinal regions (Braak stages I and II) [53]. Following this,
tau aggregation spreads to the hippocampal formation and
parts of the neocortex (Braak stages III and IV) before
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eventually reaching more peripheral parts of the neocortex
(Braak stages V and VI) [53]. Intriguingly, tau spread in the
neocortex occurs in the opposite direction to cortical myelo-
genesis [54]. Tau spread throughout the brain correlates
strongly with cognitive decline, whereas the accumulation of
amyloid-β plaques, another proteinaceous hallmark of AD,
does not [55]. Tau pathology does not spread stochastically
but rather in a predictable, trans-neuronal manner [56–60].
This explains how tau aggregation can spread trans-
synaptically to distant but anatomically connected parts of
the brain [61].

The initial corrupting event(s) that converts natively folded
tau into a pathological, aggregation-prone state in neurons
remains poorly understood. Heparan sulfate polyanions and
RNA are potent inducers of tau aggregation in vitro, although
their in vivo contributions remain unclear [62, 63]. In contrast,
injection of amyloid-β42 fibrils into the brain of pR5 trans-
genic mice (MAPT [isoform 2N4R] with P301L mutation)
expressing P301L tau enhances tau aggregation in vivo [64].
Once this conversion occurs, small oligomers of misfolded
tau can be trafficked to and internalized by connected neu-
rons. Here, these misfolded species can gain access to natively
folded—or naive—tau in the cytoplasm and promote their
misfolding and aggregation by a process often called “seed-
ing” (Fig. 1) [65]. Biochemical studies show that a tau trimer
is the smallest assembly with the ability to seed aggregation
and induce toxicity [66, 67]. Tau seeds can be shared between
connected neurons through distinct routes, such as via extra-
cellular vesicles, tunneling nanotubules, or unconventionally
by direct penetration of the plasma membrane [68, 69]. In
addition, microglia are involved in spreading tau throughout
the brain [68, 70]. Following this, tau seeds can be inter-
nalized by neighboring neurons via macropinocytosis or
endocytosis [71]. Recently, low-density lipoprotein receptor-
related protein 1 was found to regulate tau internalization by
neurons, whereas other studies indicate that heparan sulfate
proteoglycans mediate this process [72, 73]. After inter-
nalization, tau seeds are physically separated from the cyto-
plasm in the endocytic compartment. Eventually, tau seeds
escape this confine and can seed the aggregation of naive tau
in the cytoplasm, propagating the spread of tau aggregation
[74]. Presently, it is unclear how this escape mechanism is
executed. Whilst it is conceivable that this may be a stochastic
event, tau fibrils prepared in vitro can elicit endomembrane
injury after cellular uptake [75, 76]. Although cells have
evolved distinct mechanisms for repairing, removing and
replacing damaged vesicles, these mechanisms presumably
fail to completely abolish tau seeding, likely owing to the
rapid kinetics of tau aggregation [74, 76, 77].

Seeding as a mode of inheriting protein conformations
has been extensively studied in the context of mammalian
prion diseases [78]. In these diseases, pathological con-
formers of the prion protein PrPSc (Sc denotes Scrapie)

induce the misfolding and aggregation of the naive form
PrPC (C denotes cellular form) [78]. Despite the majority
of prion diseases being sporadic, their initial corrupting
event(s) are more well-established than in tauopathies and
can occur through direct contact with PrPSc-contaminated
materials (i.e., grafts, surgical equipment, and consump-
tion of contaminated meat) and by rare mutations to the
gene that encodes PrPC (PRNP) [78, 79]. Prions and
aggregated tau can both exist in distinct conformational
states, which are referred to as “strains” [59, 60, 78].
Indeed, tau strains are remarkably stable and can be pro-
pagated in and between transgenic mice and cell cultures,
whilst maintaining their structural identity [59, 60].
However, despite these similarities, tauopathies are not
considered a bone fide prion disease for the following
reasons: (1) tau is not infectious and (2) naive endogenous
tau is not a strict requirement for tau inclusions to pro-
pagate between neurons, but rather (3) is a requirement for
toxicity [80, 81]. Instead, tau is referred to as being
“prion-like.” Advances in cryoelectron microscopy have
detailed distinct strains of tau fibrils purified from the
brains of people with AD, Pick’s disease, and corticobasal
degeneration [82–84]. Moreover, even aggregated tau
from people with AD displays remarkable patient-to-
patient heterogeneity across several parameters, including
seeding capacity and posttranslational modifications [85].
Importantly, tau seeding correlates strongly with symp-
tomatic severity in AD, a feature that covaries with
phosphorylation of tau at T231, S235, and S262 [85].

Tau aggregation and neurotoxicity

Are neurofibrillary tangles themselves neurotoxic? In AD,
loss of neurons in the temporal sulcus correlates with, but
exceeds the deposition of neurofibrillary tangles, indicating
that the majority of neurons die without neurofibrillary
tangles [86]. Further, neurons in the human brain can sur-
vive for two decades with neurofibrillary tangles, arguing
strongly against a mode of acute neurotoxicity [87].
Remarkably, in rTg4510-inducible transgenic mice,
“switching off” P301L tau expression improves cognition
and memory, even though neurofibrillary tangles still persist
[88]. A caveat to this model is that some neurodegenerative
phenotypes are nonspecific and due to insertional muta-
genesis from the transgene [89]. In Drosophila, neuronal
overexpression of human tau increases neurodegeneration
and reduces lifespan in the absence of neurofibrillary tan-
gles [90]. Cognitive function is unchanged in transgenic
mice that express tau RD (ΔK280/I227P/I308P), a mutant
incapable of aggregation, suggesting that aggregation, but
not necessarily neurofibrillary tangles, may be required for
neurotoxicity [91]. Intriguingly, injection of oligomeric, but
not monomeric or fibrillar tau into the brain of wild-type
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mice leads to cognitive decline and synaptic dysfunction
[92]. Cognitive decline is apparent immediately after
injection of oligomeric tau into the hippocampus of wild-
type mice [92]. Indeed, soluble tau aggregates but not large
fibrils reduce cell viability following delivery to SH-SY5Y
neuroblastoma cells [93]. Cell culture-based reporters detect
seeding from PS19 mouse brain lysates before the emer-
gence or NFTs and cognitive decline [94]. Further,
dorsal root ganglion neurons containing aggregated tau
P301S only die following coculture with phagocytes [95].
Together, these data support the idea that oligomeric
species of tau, rather than neurofibrillary tangles per se
mediate tau-induced neurotoxicity through crosstalk with
immune cells.

Retromer dysfunction is associated with
various neurodegenerative phenotypes

The consequences of tau hyperphosphorylation and aggre-
gation on measures of neurodegeneration have been well-

documented, whereas factors that modify these pathological
changes remain poorly understood. Understanding how neu-
rons and other cell types in “healthy” brains cope with insults
from deleterious factors (e.g., aggregated tau) to curb patho-
logical changes will be an important step forward for the field.
In this regard, over the past 15 years, dysfunction of the
retromer complex has emerged as an interesting trait of neu-
rodegenerative diseases, especially AD, Parkinson’s disease,
and more recently amyotrophic lateral sclerosis [96–100].
Importantly, retromer dysfunction recapitulates numerous
disease-related phenotypes such as amyloid-β deposition, cell
death, gliosis, synapse loss, impaired neurotransmission, and
cognitive impairment [100–104]. More recently, retromer
deficiency was found to exacerbate several measures of
tauopathy, including hyperphosphorylation, aggregation, and
cognitive decline [104–106]. Apart from enhancing tau
aggregation, retromer dysfunction also enhances the accu-
mulation of aggregated amyloid-β, α-synuclein, and hun-
tingtin [96, 104, 106–115] (Table 1). Together, these findings
suggest that retromer dysfunction is important for a broad
range of proteopathies.

Fig. 1 Prion-like seeding of tau
amplifies tau aggregation.
Natively folded tau is
hyperphosphorylated and
undergoes sporadic misfolding
that initiates the assembly of
oligomeric species of tau. These
can then seed the misfolding and
aggregation of natively folded
tau monomers in the cytoplasm.
Meanwhile, phosphorylation of
monomeric tau increases the
amount of cytoplasmic tau
available for incorporation, and
in addition, phosphorylation of
tau aggregates may also occur.
Assemblies of oligomeric tau
can continue to grow into
repeating filamentous structures
(e.g., paired-helical and straight
filaments) that eventually
coalesce into large intraneuronal
inclusions (e.g., neurofibrillary
tangles and neuropil threads).
An example of neurofibrillary
tangles and neuropil threads
stained for phospho-tau (S202/
T205, AT8) from an AD brain
is shown.
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Retromer is a highly conserved endosomal
receptor trafficking complex

A phenomenon observed across several tauopathies is a
reduction of retromer complex components in the brain
[96, 104]. Retromer is a highly conserved assembly of
vacuolar protein sorting 35, −26, and −29 (VPS35, VPS26,
and VPS29) that is recruited to the maturing endosome to
orchestrate receptor sorting and transport to the trans-Golgi
network or plasma membrane [116]. These trafficking
itineraries are critical for the maintenance of receptor
homeostasis and therefore downstream functions, otherwise
these receptors are defaulted to the lysosome for destruction
[117]. Selection of receptors at the endosomal membrane is
a tightly regulated process with different receptors selected
by distinct surfaces of the retromer complex [118–120].
Engagement with specific receptors can also be facilitated
by subcomplexes of retromer with itinerary-specific adap-
ters [118]. The trans-Golgi network trafficking function is
achieved by a subcomplex of retromer with sorting nexin
(SNX) 1 or -2 and SNX5 or -6 (SNX–BAR retromer),
which mediates the generation of tubular endosomal carriers
through the BAR (Bin-Amphiphysin-Rvs) domain of these
SNX proteins [121–123]. Alternatively, a subcomplex of
retromer with SNX3 (SNX3 retromer) achieves a similar
effect, albeit through vesicular endosomal carriers [124].
On the other hand, plasma membrane trafficking is achieved
by a subcomplex of retromer with SNX27 (SNX27 retro-
mer) [125].

At the endosomal surface, retromer engages with the
Wiskott–Aldrich syndrome protein and scar homolog
(WASH) complex to facilitate local F-actin nucleation while
also engaging with microtubules, albeit indirectly, through
an interaction between SNX5/6 and the p150 subunit of the
dynactin/dynein microtubule motor complex [126, 127].
Moreover, the SNX1-interactor DNAJ homolog subfamily
C member 13 (RME8/DNAJC13) binds to the WASH
complex subunit 2C (FAM21/WASHC2C) to support
endosomal tubulation [128]. RME8 also segregates these
endosomal domains away from degradative domains that
are decorated with the hepatocyte growth factor-regulated
tyrosine kinase substrate component of endosomal sorting
complexes required for transport complex [128, 129]. Col-
lectively, this enables outward protrusion of endosomal

domains that are concentrated with cargo-engaged retromer
complexes and long-range trafficking of these carriers fol-
lowing scission [126, 127]. Aided by tension from the
protruding endosomal tubule, carrier scission is thought to
be performed by Eps15 homology domain-containing pro-
tein 1, whereas capture and fusion of these carriers to target
membranes appears to occur through distinct mechanisms
[130, 131]. For example, endosomal carriers containing
retromer cargo, the cation-independent mannose 6-
phosphate receptor, are tethered to the trans-Golgi net-
work by golgin 245 in an SNX1/2-dependent manner, or by
GCC88 in an SNX3-dependent manner [132]. On the other
hand, the plasma membrane-localized tethers for SNX27-
retromer carriers are poorly defined. An inhibitory interac-
tion between the retromer complex and TBC1 domain
family member 5 (TBC1D5), a GTPase-activating protein
for Rab7, controls the uncoating of retromer from endo-
somes [133]. Other additional but notable retromer cargoes
include the amyloid-β precursor protein (APP), sortilin
precursor (SORT1), sortilin-related receptor precursor
(SORL1), divalent metal ion transporter 1-II, parathyroid
hormone-related protein, glucose transporter 1 (GLUT1/
SLC2A1), and the β2-adrenergic receptor (ADRB2) [130].

Retromer dysfunction is a common feature
of several neurodegenerative diseases

The first link between retromer dysfunction and neurode-
generative disease was uncovered from a gene expression
microarray that showed increased expression of VPS35 in
the entorhinal cortex of postmortem human AD brains
compared with controls [96]. However, closer inspection
revealed depletion of VPS35 and VPS26 proteins [96].
Because the entorhinal cortex is particularly susceptible to
the deposition of plaques and tangles in AD, it was posited
that retromer dysfunction may contribute to AD pathogen-
esis [53, 96]. Indeed, numerous studies have demonstrated
that retromer suppresses amyloid-β generation and plaque
deposition through proper trafficking of its precursor APP
and cleaving enzymes b-secretase 1 (BACE1) and γ-
secretase [108, 109, 134]. Notably, pathogenic mutations
in APP and PSEN1 (encodes a component of γ-secretase)
cause familial early onset AD [135, 136]. In addition,
genetic variants of retromer interactors KIAA1033, RAB7A,
SNX1, and SNX3 are associated with increased risk of
sporadic late-onset AD, whereas VPS26 is not [137, 138].
Albeit, these hits were not replicated in genome-wide
association studies (GWAS) [139]. Additionally, SORL1
variation is genetically linked to AD in several GWAS and
is a retromer cargo [140–143]. Further, a collection of 891
genes that are connected to the endolysosomal and autop-
hagy network as a whole are diffusely associated with AD

Table 1 Protein aggregation following retromer loss of function.

Aggregated protein Refs.

α-synuclein [111–115]

Amyloid β [96, 107–110]

Huntingtin [112]

Tau [104, 106]
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[144]. This is important given that the retromer complex
functions at multiple stages throughout this network. In
addition, a rare L625P variant of VPS35 was identified in a
single patient with early onset sporadic AD from exome
sequencing [145]. In cultured cells, overexpression of this
mutant impairs its interaction with VPS29 and TBC1D5,
while reducing the endosomal localization of retromer,
indicating that this person with sporadic early onset AD had
perturbed retromer function [145].

Other tauopathies, including Pick’s disease and progressive
supranuclear palsy, also show depletion of all retromer
components in the hippocampus and cortex of postmortem
human brains [104]. Apart from tauopathies, retromer dys-
function is also implicated in other neurodegenerative dis-
eases. The D620N mutation of VPS35 causes a highly
penetrant autosomal dominant form Parkinson’s disease
[97, 98]. In contrast, SNX27 expression is downregulated in
Down’s syndrome, and mutations in RAB7, a protein involved
in endosomal recruitment of retromer, cause the sensory
neuropathy Charcot–Marie–Tooth 2B disease [146, 147]. In
addition, mutations in KIAA0196, which encodes the WASH
complex subunit 5 (WASHC5/strumpellin), cause hereditary
spastic paraplegia [148]. Intriguingly, in the cortex of the
Tg2576 transgenic mouse model of AD (human APP [iso-
form 695] with K670M and N671L [Swedish] mutations),
retromer components become depleted in an age-dependent
manner, as does, in this case Vps35 mRNA [149]. Further,
primary neurons from hAPPJ20 transgenic mice (human APP
with K670M, N671L [Swedish], and V717F [Indiana]
mutations) show dysregulation of Vps35-positive endosomes,
with a reduction of these endosomes in the soma and
enrichment along axons hinting at perturbed retrograde traf-
ficking [150]. Because amyloid plaques precede tau aggre-
gation in AD, this may trigger retromer dysfunction to
exacerbate or even initiate a tauopathy cascade [151]. There is
a bidirectional relationship between retromer expression and
tau, that is, reduced retromer enhances tau hyperpho-
sphorylation and aggregation, and there is reduced expression
of retromer components in tauopathies [96, 104, 106].
Everything considered, we are yet to know which is the cause,
and which is the effect in human disease. Preclinical studies
indicate it is likely that retromer lies upstream of tauopathy
[104, 106].

Retromer dysfunction promotes tauopathy

Recent studies have investigated the relationship between
the retromer component VPS35 and tauopathy. Cortex-
specific delivery of shRNA against Vps35 in PS19 mice
(human MAPT [isoform 1N4R] with P301S mutation),
which are prone to developing tangle pathology in the
absence of amyloid plaques, exacerbated cognitive/

behavioral outcomes in Y-maze and Morris water maze
tests [104]. Biochemical assessment of the cortex revealed
gross enhancements of tau hyperphosphorylation at several
sites (Table 2) [104]. Although tangle pathology/tau
aggregation in these mice was not assessed, given that PS19
mice develop tangle pathology at 6 months, such pathology
was likely present [104, 152].

Remarkably, a Vps35 D620N knock-in mouse model of
Parkinson’s disease showed clear evidence of endogenous
mouse tau pathology in the brain [153]. Both hetero- and
homozygous mutant mice showed elevated tau hyperpho-
sphorylation and conformational change in various regions
of the brain such as the hippocampus and cortex (Table 2)
[153]. The magnitude of several pathological changes was
more pronounced in the heterozygous mutant mice [153].
These effects appeared specific to the Vps35 D620N
mutation, as mice harboring a heterozygous Vps35-null
allele were resistant to such changes, suggesting that a loss-
of-function phenotype does not account for these effects, or
alternatively, that these mice were haplosufficient [153].
Importantly, Vps35 D620N-expressing mice did not present
with neurofibrillary tangles or neuritic pathology after his-
tological assessment, nor did they show increased tau
insolubility [153]. Rather, these mice displayed higher
levels of total soluble tau, which corroborated elevations in
pathological modifications such as phosphorylation and
conformational change (Table 2) [153].

How does retromer dysfunction contribute to tauopathy? A
recent mechanistic study attempted to answer this question.
Taking advantage of seeding approaches, our laboratory used
brain lysate from the rTg4510 transgenic mouse model
(human MAPT [isoform 0N4R] with P301L mutation) to
induce aggregation of tau RD (V337M/P301L) expressed in
HEK293 cells [106]. The aggregates generated in this system
conformed to several parameters observed in human tauo-
pathies, i.e., the aggregates were hyperphosphorylated,
detergent-insoluble, detectable with an amyloid-binding dye,
recapitulated tangle-like morphology, and were capable of
prion-like seeding/propagation [106]. In this model, depletion
of VPS35 led to a block in the resolution of autophagy that
was attributed to a reduction in autophagosome–lysosome
fusion and lysosomal degradation [106]. This defect was not
found in SNX27-null cells, ruling out defective endosome-to-
plasma membrane trafficking as the cause. Consequently,
VPS35 depletion led to marked accumulation of tau aggre-
gates, whereas its overexpression had the opposite effect
(Table 2) [106]. These observations were replicated in human
embryonic stem cell (hESC)-derived cortical neurons seeded
with tau aggregates following VPS35 depletion (Table 2)
[106]. Pharmacological and genetic approaches revealed that
the autophagy–lysosome axis, not the proteasome, was critical
for suppressing tau aggregation [106]. Closer inspection
revealed that tau aggregates colocalized with the autophagy
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cargo receptor sequestosome 1 (SQSTM1/p62) independently
of ubiquitin, suggesting that they are turned over through a
ubiquitin-independent form of selective autophagy [74, 106].
Accordingly, VPS35 depletion led to a reduction in the
fraction of SQSTM1-decorated tau aggregates, indicating that
their selection for autophagic degradation was impaired [106].
In addition, retromer dysfunction may also affect the early
stages of autophagy including autophagosome formation.
Indeed, the Parkinson’s disease-linked D620N VPS35 muta-
tion reduces the targeting of ATG9A to autophagosomes and
inhibits autophagy [112].

Retromer enhancement stages off tauopathy

Gene therapy directed at the cortex of 3 × Tg mice (human
APP [isoform 695] with K670M and N671L [Swedish],

human PSEN1 with M146V, and MAPT [isoform 0N4R]
with P301L mutations), which are prone to developing both
plaque and tangle pathology, was used to overexpress Vps35
[154]. This intervention boosted Vps26 levels, indicating
enhanced retromer complex formation and reduced cognitive/
behavioral deficits in the Morris water maze test [154].
Importantly, apart from reducing amyloid-β production and
deposition in the cortex, Vps35 overexpression reduced
insoluble tau and tau hyperphosphorylation at several sites
(Table 3) [154]. However, it remains unclear whether Vps35-
dependent reductions in amyloid-β deposition or tau phos-
phorylation were more potent in eliciting rescue of cognitive/
behavioral phenotypes. Accordingly, rescue of similar cog-
nitive/behavioral phenotypes in hAPPJ9 mice (human APP
[isoforms 695, 751, and 770] with K670M and N671L
[Swedish] and V717F [Indiana] mutations) can be achieved
through depletion of endogenous tau, highlighting a more

Table 2 Tau modifications following retromer loss of function.

Intervention Model system Type of tau Δ tau (detection antibody/fluorophore) Detection method Tau
aggregation?

Refs.

shVps35 Human IPSC-
neurons

Endogenous ↑ p-T231 (AT180) ELISA No [105]

siVps35 Mouse N2a cells Endogenous ↑ conformational change (MC1) WB/IF No [104]

↑ p-T181 (AT270) WB

↑ p-S396 (PHF13) WB/IF

↑ “endosomal” p-T181 (AT270) WB

↑ “endosomal” p-S396 (PHF13) WB

shVps35 PS19 mice Transgenic; human
tau P301S (1N4R)

↑ soluble tau (HT7) in cortex WB Likely (n.d.) [104]

↑ insoluble tau (HT7) in cortex WB

↑ p-S202/T205 (AT8) in cortex WB

↑ p-T231 (AT180) in cortex WB

↑ p-T181 (AT270) in cortex WB

↑ p-S396/S404 (PHF1) in cortex WB

↑ p-S396 (PHF13) in cortex WB

Vps35 D620N C57BL/6 mice Endogenous ↑ tau (Tau5) in substantia nigra IF No [153]

↑ conformational change (MC1) in
hippocampus, cortex, cerebellum,
brainstem, ventral midbrain, substantia
nigra, and striatum

IF/IHC

↑ p-S202/T205 (AT8) in hippocampus,
cortex, cerebellum, brainstem, ventral
midbrain, substantia nigra, and striatum

IF/IHC

↑ p-S396/S404 (PHF1) in hippocampus IHC

↑ p-S202 (CP13) in hippocampus IHC

siVPS35 HEK293 cells Transgenic; tau RD
(P301L/V337M)-
GFP

↑ tau aggregation (GFP) IF Yes [106]

shVPS35 hESC-derived
cortical neurons

Transgenic; tau RD
(P301L/V337M)-
GFP

↑ tau aggregation (GFP) IF Yes [106]

ELISA enzyme-linked immunosorbent assay, IF immunofluorescence, IHC immunohistochemistry, n.d. not detected, WB western blot.
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dominant and downstream role for tau in eliciting neurode-
generation [155].

Overexpression of Vps35 in the mouse neuroblastoma
N2a cell line reduced tau phosphorylation in a manner that
was abolished by the aspartyl protease inhibitor pepstatin A
(Table 3) [104]. This suggests that lysosomal function is
required for Vps35-mediated suppression of tau phosphor-
ylation. Consistent with this, the lysosomal inhibitor
chloroquine failed to further enhance tau aggregation in
HEK293 cells lacking VPS35 [106]. The important differ-
ence between these studies was that Carosi et al. employed
seeded aggregation of human tau RD (V337M/P301L),
whereas Vagnozzi et al. analyzed soluble endogenous
murine tau [104, 106]. However, the former study demon-
strated that aggregated, not soluble tau RD (V337M/P301L)
is highly dependent on turnover through the
autophagy–lysosome axis [106]. Moreover, lysates from
Vps35 overexpressing cells showed elevated cathepsin D/E
(CTSD/E) activity in vitro, which are lysosomal proteases
known to be inhibited by pepstatin A [104]. Conversely,
VPS35-null cells show impaired intralysosomal proteolytic
maturation of CTSD [106, 132].

Retromer chaperones stage off tauopathy

Pharmacological stabilization of retromer with the che-
mically related small-molecule chaperones R55 and R33
has emerged as a promising avenue for suppressing
amyloid-β pathology [101, 156]. Induced pluripotent stem

cell (IPSC)-derived neuronal cultures from people with
sporadic AD found that the retromer chaperone R55
reduces tau phosphorylation at T231, whereas shRNA-
mediated depletion of VPS35 had the opposite effect
(Table 3) [105]. Despite retromer dysfunction promoting
pathological tau phosphorylation, it also enhances
amyloid-β generation and deposition that can in turn
promote tau phosphorylation and aggregation [64, 105].
Using a combination of genetic (i.e., APP gene duplica-
tion and CRISPR/Cas9-mediated APP knockout) and
pharmacological (i.e., γ-secretase inhibitor compound E)
approaches to modulate amyloid-β production in IPSC-
derived neurons, it was revealed that the suppressive
effect of retromer on tau phosphorylation occurred in an
amyloid-β-independent manner (Table 3) [105]. The
related retromer chaperone R33 also reduced tau phos-
phorylation at numerous sites in N2a cells (Table 3) [104].
When R33 was administered to 3 × Tg mice, it was
similarly effective in reducing tau phosphorylation and
amyloid-β generation and deposition [101]. In addition,
pharmacological stabilization of retromer led to
improvements across several cognitive/behavioral tests
such as Y-maze, Morris water maze, and fear conditioning
tests [101]. The R33 treatment and Vps35 overexpression
in the 3 × Tg mouse model showed the opposite effects on
tau phosphorylation to PS19 mice with cortex-specific
depletion of Vps35, suggesting that tau phosphorylation is
sensitive to retromer levels (Table 3) [101, 104, 154].
Further, R33 did not alter the levels of phosphatases and
kinases that modify tau phosphorylation, including serine/

Table 3 Tau modifications following retromer gain-of-function.

Intervention Model system Type of tau Δ tau (detection antibody/fluorophore) Detection method Tau aggregation? Refs.

Vps35
overexpression

3 × Tg mice Transgenic; human tau
P301L (0N4R)

↓ soluble tau (HT7) in cortex WB Likely (n.d.) [154]

↓ insoluble tau (HT7) in cortex WB

↓ p-S202/T205 (AT8) in cortex WB

↓ p-T181 (AT270) in cortex WB

↓ p-S396/S404 (PHF1) in cortex WB

↓ p-S396 (PHF13) in cortex WB

Vps35
overexpression

Mouse N2a cells Endogenous ↓ tau (HT7) WB No [104]

↓ conformational change (MC1) WB

↓ p-T181 (AT270) WB

VPS35
overexpression

HEK293 cells Transgenic; tau RD
(P301L/V337M)-GFP

↓ tau aggregation (GFP) IF Yes [106]

R33 Human IPSC-neurons Endogenous ↓ p-T231 (AT180) ELISA No [105]

R33 Mouse N2a cells Endogenous ↓ conformational change (MC1) WB No [104]

↓ p-T181 (AT270) WB

↓ p-S396 (PHF13) WB

R33 3 × Tg mouse Transgenic; human tau
P301L (0N4R)

↓ p-S202/T205 (AT8) WB Likely (n.d.) [101]

↓ p-T231 (AT180) WB

↓ p-T181 (AT270) WB

↓ p-S396 (PHF13) WB

ELISA enzyme-linked immunosorbent assay, IF immunofluorescence, n.d. not detected, WB western blot.
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threonine-protein phosphatase 2A catalytic subunit-α,
glycogen synthase kinase-3β, and cyclin-dependent-like
kinase 5 (Cdk5), as well as Cdk5 activators p35/25 in the
cortex of 3 × Tg mice [101]. It remains unclear whether
the activities of other tau kinases or phosphatases are
altered by this intervention. Retromer promotes growth
factor signaling and amino acid sensing for the mechan-
istic target of rapamycin kinase complex 1 (mTORC1)
pathway [157, 158]. Both mTORC1 and its downstream
effector S6K1 can phosphorylate tau [159, 160]. The
generation of amino acids through lysosomal protein
catabolism is critical for mTORC1 activation [161]. This
may explain why VPS35-dependent reductions in tau
phosphorylation are sensitive to lysosomal inhibition.

A proposed model for retromer dysfunction
in tauopathies

While the mechanisms of retromer-mediated control of
tauopathy are slowly emerging, most studies addressing this
question are complementary. The consensus is that
enhancement or reduction of retromer function suppresses
or exacerbates various measures of tauopathy, respectively.
From these data, we propose a model whereby tau hyper-
phosphorylation and aggregation are suppressed through the
autophagy–lysosome axis (Fig. 2a). In tauopathies, where
retromer function is known to be compromised, we posit
that perturbed selection, trafficking, and degradation of
newly formed tau aggregates (or their precursors) enhance
the hyperphosphorylation and aggregation of tau (Fig. 2b).

Moving forward with retromer

The retromer complex is a promising therapeutic target for
ameliorating numerous aspects of pathology associated with
neurological diseases such as amyloid β-deposition,
microglial dysfunction, α-synuclein aggregation, and more
recently tau hyperphosphorylation and aggregation
[101, 104–106, 111, 154, 162, 163]. Future efforts should
be directed toward a deeper mechanistic insight of how
retromer dysfunction contributes to tau phosphorylation,
altered autophagy/lysosomal function, and clearance of tau
aggregates. This will improve understanding of the etiology
of tauopathies. Although retromer chaperones are a pro-
mising therapeutic avenue, only a few studies have used
these therapies in vivo [101, 154]. A recent study detailed
the synthesis of a novel retromer chaperone called 2a, which
was derived from R55 and has enhanced affinity for the
VPS35–VPS29 interface over its precursor [99]. In the G1H
transgenic mouse model of amyotrophic lateral sclerosis
(human SOD1 with G93A mutation), 2a was found to

stabilize the retromer complex and increased motor neuron
survival and locomotor function [99]. With that said, several
important questions about the safety/tolerance and efficacy
of retromer chaperones remain unanswered. Given that
retromer chaperones modify numerous disease-related
phenotypes, it will be important to understand if single or
combined functions of retromer chaperones account for its
benefits. In addition, side-by-side comparisons between
current retromer chaperones must be carried out to establish
superiority in vivo. Moreover, it is imperative that future
studies assess lifespan/survival with retromer chaperones in
preclinical models. This is important as VPS35 has an
apparent oncogenic function in hepatocellular carcinoma
[157]. Further, understanding the contribution of retromer in
cell and tissue metabolism is still in its infancy, and may
have translational implications given that a high proportion
of people with dementia have metabolic comorbidities
including type 2 diabetes [164]. Significantly, VPS26A has
been identified as a susceptibility locus for type 2 diabetes
in people of South Asian ancestry [165]. Toward clinical
translation, it remains unclear whether retromer chaperones
can demonstrate benefits after the onset of disease-related
features in preclinical models, otherwise their utility may be
limited to prevention, akin to drugs such as rapamycin
[166, 167]. With that said, cognitive/behavioral benefits
must be the primary endpoint of future studies, rather than
distinct biochemical or histological readouts to avoid yet
another failed clinical trial.

Moving forward, critical differences between preclinical
models of age-related dementias must be considered and
carefully understood. For example, the 3 × Tg transgenic
mouse line that showed positive outcomes for retromer
chaperone therapy presents with cognitive impairments
before the appearance of plaques and tangles [101]. This
directly conflicts with clinical observations in people with
AD, where such hallmarks emerge years or even decades
before the clinical onset of dementia [168–170]. With that
said, it has been reported that soluble oligomers of amyloid-
β are more neurotoxic than plaques, and mild cognitive
impairments appear with the onset of amyloid plaques
[171, 172]. The other transgenic mouse line used to inter-
rogate the utility of a retromer chaperone therapy was the
PS19 model, which shows tangle pathology around the
same time that cognitive decline is first apparent [104, 173].
However, seeding activity from PS19 mouse brains occurs
prior to the emergence of tangles and cognitive decline in
this model [94, 173]. This indicates that smaller, likely
oligomeric, species of tau that are not detected by conven-
tional histological approaches may be primary neurode-
generative effectors [94]. Indeed, tau oligomers are
observed in the early stages of AD, and small tau aggregates
(<200 nm2) are overrepresented in VPS35-deficient hESC-
derived cortical neurons [106, 174]. Also, it is important to
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consider that preclinical models of tauopathies (i.e., animal
and cell models) mimic features of such diseases, but are
not complete models of the disease itself. The factors that
make each tauopathy distinct are not accounted for in these
systems. For example, most mouse models of “Alzheimer’s
disease” employ mutants of tau that cause FTDP-17 [173].
Moreover, most transgenic mice overexpress a single

isoform of tau, which limits their relevance to AD (all
isoforms present in aggregates) or Pick’s disease (3R-con-
taining isoforms present in aggregates), for example. These
factors must be considered when attributing disease rele-
vance to experimental findings, even in the case of retromer.
To better understand the utility of retromer chaperones, the
fact that tau aggregates can exist as distinct strains must also
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be considered. Modeling this heterogeneity in vivo, likely
through injection of structurally distinct tau “seeds” into the
brains of mice, will be an important step forward.
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