Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stepwise activation of the pro-apoptotic protein Bid at mitochondrial membranes

Abstract

Caspase-8-cleaved Bid (cBid) associates with mitochondria and promotes the activation of BAX, leading to mitochondria outer membrane permeabilization (MOMP) and apoptosis. However, current structural models of cBid are largely based on studies using membrane vesicles and detergent micelles. Here we employ spin-label ESR and site-directed PEGylation methods to identify conformations of cBid at real mitochondrial membranes, revealing stepwise mechanisms in the activation process. Upon the binding of cBid to mitochondria, its structure is reorganized to expose the BH3 domain while leaving the structural integrity only slightly altered. The mitochondria-bound cBid is in association with Mtch2 and it remains in the primed state until interacting with BAX. The interaction subsequently triggers the fragmentation of cBid, causes large conformational changes, and promotes BAX-mediated MOMP. Our results reveal structural differences of cBid between mitochondria and other lipid-like environments and, moreover, highlight the role of the membrane binding in modifying cBid structure and assisting the inactive-to-active transition in function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Bid structure and study strategy.
Fig. 2: DEER data of cBid.
Fig. 3: DEER data of tBid.
Fig. 4: PEG-labeling study of α3.
Fig. 5: PEG-labeling study of α6–α8.
Fig. 6: Interaction between cBid and BAX.

References

  1. 1.

    Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47–59.

    CAS  Google Scholar 

  2. 2.

    Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49–63.

    CAS  PubMed  Google Scholar 

  3. 3.

    Tait SWG, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11:621–32.

    CAS  PubMed  Google Scholar 

  4. 4.

    Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94:491–501.

    CAS  PubMed  Google Scholar 

  5. 5.

    Kantari C, Walczak H. Caspase-8 and Bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta - Mol Cell Res. 2011;1813:558–63.

    CAS  Google Scholar 

  6. 6.

    Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW. BH3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta - Mol Cell Res. 2011;1813:508–20.

    CAS  Google Scholar 

  7. 7.

    Leber B, Geng F, Kale J, Andrews DW. Drugs targeting Bcl-2 family members as an emerging strategy in cancer. Expert Rev Mol Med. 2010;12:e28.

    PubMed  Google Scholar 

  8. 8.

    Hinds MG, Smits C, Fredericks-Short R, Risk JM, Bailey M, Huang DCS, et al. Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ. 2007;14:128–36.

    CAS  PubMed  Google Scholar 

  9. 9.

    Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G. Solution Structure of BID, an Intracellular Amplifier of Apoptotic Signaling. Cell. 1999;96:615–24.

    CAS  PubMed  Google Scholar 

  10. 10.

    Petros AM, Olejniczak ET, Fesik SW. Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta. 2004;1644:83–94.

    CAS  PubMed  Google Scholar 

  11. 11.

    Suzuki M, Youle RJ, Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell. 2000;103:645–54.

    CAS  PubMed  Google Scholar 

  12. 12.

    Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, et al. Bid, Bax, and Lipids Cooperate to Form Supramolecular Openings in the Outer Mitochondrial Membrane. Cell. 2002;111:331–42.

    CAS  PubMed  Google Scholar 

  13. 13.

    Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW. Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem. 2003;278:48935–41.

    CAS  PubMed  Google Scholar 

  14. 14.

    Huang K, Zhang J, O’Neill KL, Gurumurthy CB, Quadros RM, Tu Y, et al. Cleavage by caspase 8 and mitochondrial membrane association activate the BH3-only protein bid during TRAIL-induced apoptosis. J Biol Chem. 2016;291:11843–51.

    CAS  PubMed  Google Scholar 

  15. 15.

    Westphal D, Dewson G, Menard M, Frederick P, Iyer S, Bartolo R, et al. Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane. Proc Natl Acad Sci USA. 2014;111:E4076–85.

    CAS  PubMed  Google Scholar 

  16. 16.

    Moldoveanu T, Grace CR, Llambi F, Nourse A, Fitzgerald P, Gehring K, et al. BID-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol. 2013;20:589–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Lai Y-C, Li C-C, Sung T-C, Chang C-W, Lan Y-J, Chiang Y-W. The role of cardiolipin in promoting the membrane pore-forming activity of BAX oligomers. Biochim Biophys Acta - Biomembr. 2019;1861:268–80.

    CAS  PubMed  Google Scholar 

  18. 18.

    Li MX, Tan IKL, Ma SB, Hockings C, Kratina T, Dengler MA, et al. BAK α6 permits activation by BH3-only proteins and homooligomerization via the canonical hydrophobic groove. Proc Natl Acad Sci. 2017;114:7629–34.

    CAS  PubMed  Google Scholar 

  19. 19.

    Gahl RF, Dwivedi P, Tjandra N. Bcl-2 proteins bid and bax form a network to permeabilize the mitochondria at the onset of apoptosis. Cell Death Dis. 2016;7:e2424.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wang Y, Tjandra N. Structural insights of tBid, the caspase-8-activated bid, and its BH3domain. J Biol Chem. 2013;288:35840–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lan Y-J, Wang Y-T, Hung C-L, Chiang Y-W. PEGylation-based strategy to identify pathways involved in the activation of apoptotic BAX protein. Biochim Biophys Acta - Gen Subj. 2020;1864:129541.

    CAS  PubMed  Google Scholar 

  22. 22.

    Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, et al. Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis. Cell. 2013;152:519–31.

    CAS  PubMed  Google Scholar 

  23. 23.

    Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, et al. BAX activation is initiated at a novel interaction site. Nature. 2008;455:1076–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Sung T-C, Li C-Y, Lai Y-C, Hung C-L, Shih O, Yeh Y-Q, et al. Solution Structure of Apoptotic BAX Oligomer: Oligomerization Likely Precedes Membrane Insertion. Structure. 2015;23:1878–88.

    CAS  PubMed  Google Scholar 

  25. 25.

    Jeschke G. DEER Distance Measurements on Proteins. Annu Rev Phys Chem. 2012;63:419–46.

    CAS  PubMed  Google Scholar 

  26. 26.

    Lai Y, Kuo Y, Chiang Y. Identifying Protein Conformational Dynamics Using Spin‐label ESR. Chem – Asian J. 2019;14:3981–91.

    CAS  PubMed  Google Scholar 

  27. 27.

    Georgieva ER, Borbat PP, Ginter C, Freed JH, Boudker O. Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol. 2013;20:215–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Martens C, Stein RA, Masureel M, Roth A, Mishra S, Dawaliby R, et al. Lipids modulate the conformational dynamics of a secondary multidrug transporter. Nat Struct Mol Biol. 2016;23:744–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Raemy E, Montessuit S, Pierredon S, van Kampen AH, Vaz FM, Martinou J-C. Cardiolipin or MTCH2 can serve as tBID receptors during apoptosis. Cell Death Differ. 2016;23:1165–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Katz C, Zaltsman-Amir Y, Mostizky Y, Kollet N, Gross A, Friedler A. Molecular Basis of the Interaction between Proapoptotic Truncated BID (tBID) Protein and Mitochondrial Carrier Homologue 2 (MTCH2) Protein. J Biol Chem. 2012;287:15016–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Zaltsman Y, Shachnai L, Yivgi-Ohana N, Schwarz M, Maryanovich M, Houtkooper RH, et al. MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nat Cell Biol. 2010;12:553–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kurokawa T, Okamura Y. Mapping of sites facing aqueous environment of voltage-gated proton channel at resting state: A study with PEGylation protection. Biochim Biophys Acta - Biomembr. 2014;1838:382–7.

    CAS  Google Scholar 

  33. 33.

    Robin AY, Iyer S, Birkinshaw RW, Sandow J, Wardak A, Luo CS, et al. Ensemble Properties of Bax Determine Its Function. Structure. 2018;26:1346. e5

    CAS  PubMed  Google Scholar 

  34. 34.

    McDonald SK, Levitz TS, Valiyaveetil FI. A Shared Mechanism for the Folding of Voltage-Gated K + Channels. Biochemistry. 2019;58:1660–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Borbat PP, Freed JH. Pulse Dipolar Electron Spin Resonance: Distance Measurements. In: Timmel C, Harmer J, editors. Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences. Structure and Bonding, vol 152. Berlin, Heidelberg: Springer; 2013, p. 1–82.

  36. 36.

    Bode BE, Margraf D, Plackmeyer J, Durner G, Prisner TF, Schiemann O. Counting the monomers in nanometer-sized oligomers by pulsed electron - Electron double resonance. J Am Chem Soc. 2007;129:6736–45.

    CAS  PubMed  Google Scholar 

  37. 37.

    Chiang Y-W, Borbat PP, Freed JH. The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J Magn Reson. 2005;172:279–95.

    CAS  PubMed  Google Scholar 

  38. 38.

    Chiang Y-W, Borbat PP, Freed JH. Maximum entropy: a complement to Tikhonov regularization for determination of pair distance distributions by pulsed ESR. J Magn Reson. 2005;177:184–96.

    CAS  PubMed  Google Scholar 

  39. 39.

    Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, et al. DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson. 2006;30:473–98.

    CAS  Google Scholar 

  40. 40.

    McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D. Solution Structure of the Proapoptotic Molecule BID: a Structural Basis for Apoptotic Agonists and Antagonists. Cell. 1999;96:625–34.

    CAS  PubMed  Google Scholar 

  41. 41.

    Hagelueken G, Abdullin D, Schiemann O. mtsslSuite: Probing biomolecular conformation by spin-labeling studies. Methods Enzymol. 2015;563:595–622.

    CAS  PubMed  Google Scholar 

  42. 42.

    Shamas-Din A, Bindner S, Zhu W, Zaltsman Y, Campbell C, Gross A, et al. tBid undergoes multiple conformational changes at the membrane required for bax activation. J Biol Chem. 2013;288:22111–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Tina KG, Bhadra R, Srinivasan N. PIC: protein Interactions Calculator. Nucleic Acids Res. 2007;35:W473–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Jubb HC, Higueruelo AP, Ochoa-Montaño B, Pitt WR, Ascher DB, Blundell TL. Arpeggio: a Web Server for Calculating and Visualising Interatomic Interactions in Protein Structures. J Mol Biol. 2017;429:365–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Billen LP, Shamas-Din A, Andrews DW. Bid: a Bax-like BH3 protein. Oncogene. 2008;27:S93–104.

    CAS  PubMed  Google Scholar 

  46. 46.

    Shivakumar S, Kurylowicz M, Hirmiz N, Manan Y, Friaa O, Shamas-Din A, et al. The proapoptotic protein tbid forms both superficially bound and membrane-inserted oligomers. Biophys J. 2014;106:2085–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Oh KJ, Barbuto S, Meyer N, Kim R-S, Collier RJ, Korsmeyer SJ. Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. A site-directed spin labeling study. J Biol Chem. 2005;280:753–67.

    CAS  PubMed  Google Scholar 

  48. 48.

    Hung C-L, Lin Y-Y, Chang H-H, Chiang Y-W. Accessing local structural disruption of Bid protein during thermal denaturation by absorption-mode ESR spectroscopy. RSC Adv. 2018;8:34656–69.

    CAS  Google Scholar 

  49. 49.

    Yamaguchi R, Andreyev A, Murphy AN, Perkins GA, Ellisman MH, Newmeyer DD. Mitochondria frozen with trehalose retain a number of biological functions and preserve outer membrane integrity. Cell Death Differ. 2007;14:616–24.

    CAS  PubMed  Google Scholar 

  50. 50.

    Wang C, Youle RJ. Predominant requirement of Bax for apoptosis in HCT116 cells is determined by Mcl-1’s inhibitory effect on Bak. Oncogene. 2012;31:3177–89.

    CAS  PubMed  Google Scholar 

  51. 51.

    Renault TT, Floros KV, Chipuk JE. BAK/BAX activation and cytochrome c release assays using isolated mitochondria. Methods. 2013;61:146–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Djajawi TM, Liu L, Gong J, Huang AS, Luo M, Xu Z, et al. MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex. Cell Death Differ. 2020;27:2484–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kelley LA, Gardner SP, Sutcliffe MJ. An automated approach for defining core atoms and domains in an ensemble of NMR-derived protein structures. Protein Eng Des Sel. 1997;10:737–41.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Research Instrument Center of Taiwan located at NTHU for the ESR/DEER measurements.

Funding

All of the authors were supported by grants from the Ministry of Science and Technology of Taiwan (108-2113-M-007-029) and the Frontier Research Center on Fundamental and Applied Sciences of Matters at NTHU.

Author information

Affiliations

Authors

Contributions

CLH and YWC designed the experiments and analyzed the data. CLH, HHC, and SWL performed all the experiments. CLH and YWC wrote the paper. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Yun-Wei Chiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by: A Degterev

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hung, CL., Chang, HH., Lee, S.W. et al. Stepwise activation of the pro-apoptotic protein Bid at mitochondrial membranes. Cell Death Differ 28, 1910–1925 (2021). https://doi.org/10.1038/s41418-020-00716-5

Download citation

Search

Quick links