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Abstract
The ubiquitin system is complex, multifaceted, and is crucial for the modulation of a vast number of cellular processes.
Ubiquitination is tightly regulated at different levels by a range of enzymes including E1s, E2s, and E3s, and an array of
DUBs. The UPS directs protein degradation through the proteasome, and regulates a wide array of cellular processes
including transcription and epigenetic factors as well as key oncoproteins. Ubiquitination is key to the dynamic regulation of
programmed cell death. Notably, the TNF signaling pathway is controlled by competing ubiquitin conjugation and
deubiquitination, which governs both proteasomal degradation and signaling complex formation. In the inflammatory
response, ubiquitination is capable of both activating and dampening inflammasome activation through the control of either
protein stability, complex formation, or, in some cases, directly affecting receptor activity. In this review, we discuss the
enzymes and targets in the ubiquitin system that regulate fundamental cellular processes regulating cell death, and
inflammation, as well as disease consequences resulting from their dysregulation. Finally, we highlight several pre-clinical
and clinical compounds that regulate ubiquitin system enzymes, with the aim of restoring homeostasis and ameliorating
diseases.

Facts

● Signaling pathways activated by TNF are intricately
controlled by opposing ubiquitination and deubiquitina-
tion thus allowing precise spacial and temporal activation
of signaling complexes.

● Inflammatory responses utilize ubiquitination to carefully
regulate protein activity and stability for the optimal
inflammasome activation.

● Ubiquitin signaling can be genetically dysregulated in
human disease and during infection by pathogens.
Targeting such dysregulation is of therapeutic value to
combat these diseases.

● An increasing number of targeted therapeutics are
being developed that are enabling safer and more
efficacious treatment regimens, particularly when dosed
in combination.
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Open questions

● Why are many signaling proteins ubiquitinated without a
clear functional relevance for the signaling outcome(s)?

● How do immunoregulatory drugs elicit their anti-
inflammatory effect through CRBN-dependent and
-independent mechanisms?

● An efficacious frontline therapeutic regimen for patients
with multiple myeloma includes treatment with IMiDs,
which achieve therapeutic benefit by promoting the
proteasomal degradation of critical cellular targets,
combined with proteasome inhibitors. Mechanistically,
how do these seemingly opposing treatment strategies
achieve therapeutic benefit?

Introduction—the ubiquitin system

Ubiquitination is an essential posttranslational modification
that covalently links the 76-amino acid ubiquitin protein to a
target protein. The reaction is a multistep process mediated by
three classes of enzymes: ubiquitin activating enzymes (E1),
ubiquitin conjugating enzymes (E2), and ubiquitin ligases (E3)
[1] (Fig. 1). E1s activate and transfer ubiquitin to E2s, while
E3s recruit the substrate proteins for the transfer of ubiquitin
moieties. E1 and E2 families are relatively small with 2 and 42
members, respectively, whereas several hundred ubiquitin
ligases have been identified [2, 3]. Single ubiquitin molecules
can be conjugated to the target (monoubiquitination) or ubi-
quitin chains can be formed by linking individual ubiquitin
molecules by seven internal lysines (K6, K11, K27, K29, K33,
K48, K63) or amino-terminal methionine to form linear ubi-
quitin chains (polyubiquitination) [4]. Different ubiquitin

chains are recognized by specific ubiquitin-binding domains
[5]. This variety of ubiquitin modifications and ubiquitin-
binding proteins is the foundation of selectivity of the ubi-
quitin system and allows the transmission of defined signals in
a precise spatial and temporal manner. The various types of
chains play a critical role in distinct cellular processes with
K48, K63, and linear ubiquitin chains being the most exten-
sively studied. K48-linked ubiquitin chains and mixed K11/
K48-linked ubiquitin chains [6] generally induce degradation
of the modified protein via the proteasome, a multisubunit
complex that recruits and proteolyzes ubiquitin-modified
substrates [5] (Fig. 1). This process is used during signaling
events and in transcriptional regulation, but also plays a critical
role in protein homeostasis [1]. K63-linked, linear chains or
branched/mixed chains can form the scaffolding platform for
further protein recruitment and signaling [7]. Cellular events
mediated by ubiquitination are counteracted by ubiquitin
hydrolases/deubiquitinating enzymes (DUBs), which can
cleave specific ubiquitin linkages and/or remove ubiquitin
modifications more generally [8] (Fig. 1). DUBs play a critical
role in maintaining the ubiquitin system at an equilibrium, but
also in restricting signaling to avoid pathway hyperactivation
[9]. Given the importance of ubiquitination for a vast number
of cellular processes and for overall organismal homeostasis, it
is not surprising that this instrumental posttranslational mod-
ification has to be tightly controlled and regulated at many
levels. In this review, we discuss the enzymes and targets in
the ubiquitin system that regulate the fundamental processes of
inflammation and cell death, as well as the pathophysiology
resulting from their dysregulation. Finally, we highlight the
role of targeted therapeutics in the inhibition of the proteasome
in the inflammatory response, the interplay of immunomo-
dulatory drugs (iMiDs) in the ubiquitin proteasome system

Fig. 1 Ubiquitin proteasome system. Ubiquitination is a multistep
process that involves ubiquitin activation by E1 enzymes, ubiquitin
conjugation to E2 enzymes, and ubiquitin ligation to the substrate
protein via E3 enzymes. Ubiquitination can result in proteasomal

degradation of the substrate or in recruitment of the substrate to
multiprotein complexes, depending on the topology of the poly-
ubiquitin chain linkages. X and Y indicate ubiquitin chain-binding
proteins.
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(UPS), and the DUB-like enzyme PLpro whose activity plays
a role in the pathogenesis of the topical SARS-CoV-2
pandemic.

Ubiquitination in the regulation of inflammasomes
and cell death

Ubiquitination in TNF-mediated signaling

Ubiquitination plays a critical role during TNF (tumor
necrosis factor)-mediated inflammatory signaling and cell
death regulation. TNF is the most-studied member of the
TNF family of inflammatory cytokines [10], and induces
NF-κB (nuclear factor κ-light-chain-enhancer of activated B
cells) and MAPK (mitogen-activated protein kinase) medi-
ated gene expression, but also apoptotic and necroptotic
cell death. Ubiquitination and deubiquitination of various
components of the TNF-induced signaling complexes reg-
ulate the stability of these complexes and directly influence
cellular fate. TNF binds to its cell surface receptor TNFR1
(TNF receptor 1) to trigger protein complex assembly, which
is initially ubiquitin independent. TRADD (TNFRSF1A
associated via death domain) and RIP1 (receptor interacting
protein kinase 1; RIPK1) are recruited to the TNFR1-
associated complex via homotypic death domain (DD) inter-
actions [11, 12]. The N-terminal domain of TRADD allows
the recruitment of TRAF2 (TNF receptor–associated factor 2)
via its TRAF domain [13]. TRAF2 brings along c-IAP1/2
(cellular inhibitor of apoptosis) via the interaction of c-IAP
BIR1 (baculovirus IAP repeat) domain and the c-IAP1/2
interacting motif of TRAF2 [14–17].

c-IAP1/2 are RING (really interesting new gene)
domain-containing ubiquitin ligases that mediate K11-,
K48-, and K63-linked ubiquitination of several components
of the TNFR1 complex, including RIP1 and themselves
[18–21] (Fig. 2). Ubiquitination of RIP1 on lysine 377 in
human (376 in mice) was shown to be critical for NF-kB
activation [22, 23] as well as embryonal development in
mice [24–26]. Mutagenesis of K376 to arginine resulted in
reduced NF-κB activation, reduced complex I formation,
and increased cell death [24–26]. Besides the stabilization
of RIP1 within the complex, c-IAP1 can promote RIP1
degradation by adding K48-linked ubiquitin chains result-
ing in reduced cell death potential by RIP1 [27]. Loss of
either c-IAP1 or c-IAP2 does not result in developmental
defects, but the combined loss is embryonic lethal and
partially rescued by the loss of TNFR1 [28].

Another ubiquitin ligase, LUBAC (linear ubiquitin chain
assembly complex) [29], is recruited to the complex by
binding c-IAP1/2-generated K63-linked ubiquitin chains
[30] (Fig. 2). LUBAC consists of SHARPIN (SHANK-
associated RH domain interactor) [31–33], HOIP (HOIL-1-
interacting protein) [29], and HOIL-1 (heme-oxidized iron-
responsive element binding protein 2 ubiquitin ligase-1)
[29], and it mediates the linear ubiquitination of proteins in
signaling complexes. HOIP is the E3 responsible for the
assembly of linear ubiquitin chains mediated by its RBR
domain (RING in-between RING–RING) and the LDD
(linear ubiquitin chain determining domain) regions
[32, 34–36]. HOIP deficiency induces apoptosis resulting in
embryonic lethality at E10.5, which can be rescued by the
loss of TNFR1 to E17.5 [37]. HOIL-1 has an RBR domain
as well, but its activity is not critical for the linear

Fig. 2 Ubiquitination in
inflammatory signaling.
Signaling mediated by TNFR1,
Il-1R, TLR3/4, or NOD2 relies
on complex ubiquitination
involving multiple ubiquitin
chains to activate inflammatory
gene expression. Green indicates
ubiquitin ligases and yellow
deubiquitinase. Ubiquitin
linkage types are indicated in the
figure.
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ubiquitination of LUBAC substrates [38]. A recent pub-
lication, however, showed that HOIL-1 E3 activity mediates
monoubiquitination of LUBAC components thus forming a
platform for the extension of autoinhibitory ubiquitin chains
by HOIP [39]. Knockout of HOIL-1 in mice is embryonic
lethal, but can be rescued by combined loss of caspase-8 and
MLKL, demonstrating the clear interplay of cell death and
ubiquitination [40]. The third component of LUBAC,
SHARPIN, has no catalytic activity but it is critical for proper
signaling and complex stability [33]. Mice with mutations in
the SHARPIN gene (cpdm-mice) develop chronic pro-
liferative dermatitis [41, 42], which can be prevented by the
deletion of TNF, thus proving the critical role of functional
LUBAC for TNF-mediated signaling [32]. Once LUBAC is
recruited to the TNFR1 complex, it ubiquitinates several
complex components including NEMO, RIP1, TRADD, and
TNFR1 [32, 43, 44].

The key effectors of TNF-mediated prosurvival sig-
naling are the kinase complexes IKK (IκB kinase) and
TAK1/TAB2/3 (transforming growth factor β-activated
kinase 1, TAK1-binding proteins 2/3), which are recruited
in a ubiquitin dependent fashion. TAB2 and 3 bind to K63
ubiquitin chains via their carboxy-terminal zinc-finger
(ZnF) domain and recruit TAK1 to the signaling com-
plexes that activate NF-κB and MAPK pathways [45, 46].
The IKK complex consists of kinases IKKα/β and the
adapter protein NEMO, which recruits the complex
through binding of its LZ (leucine zipper) domain to K11
and K63 chains [23, 47] and via high affinity binding
of its UBAN (ubiquitin binding in ABIN and NEMO
proteins) domain to linear ubiquitin chains [48]. Linear
ubiquitination further stabilizes signaling complexes
and facilitates MAPK and NF-κB activation [44, 48].
The signaling platform created by K63-linked and linear
ubiquitin chains brings kinase complexes into close
proximity and enables the activation of IKKβ by TAK1
[49] leading to the phosphorylation of IκBα and NF-κB1.
Phosphorylated IκBα undergoes degradative ubiquitina-
tion by SCFβ-TrCP (SKP1-cullin-F-box - Beta-transducin
repeats-containing proteins), while NF-κB1 is partially
degraded, also through the E3 activity of SCFβ-TrCP
[50]. This results in free p65 and the NF-κB1 processing
product p50, which then can translocate to the nucleus
(reviewed by Zhang et al. [51]).

Besides playing a critical role during TNF-mediated
signaling, cellular IAPs also regulate noncanonical NF-κB
signaling. Together with TRAF2 and TRAF3, c-IAP1/2 form
a complex that controls the stability of the kinase NIK (NF-
κB–inducing kinase) [52, 53]. Without any stimulus, NIK is
constantly ubiquitinated by the E3 activity of c-IAPs from this
complex leading to its proteasomal degradation [54] (Fig. 2).
Inflammatory pathway activation, such as stimulation
of TRAF3-binding and some TRAF2-binding TNF family

receptors (e.g., CD40, Fn14), leads to disruption of the
TRAF2/TRAF3/c-IAP1/2 complex by inducing degradation
and/or translocation of the complex components to insoluble
cellular fraction [55–57]. This allows the accumulation of
NIK leading to IKKα activation and phosphorylation of p100
[58]. p100 is then ubiquitinated and processed to p52 [59]
resulting in noncanonical NF-κB signaling.

Deubiquitination in TNF signaling

The activity and stability of TNF-mediated prosurvival
signaling can be restricted by ubiquitin hydrolases or deu-
biquitinases (DUBs). So far, three DUBs have been
described with critical function within these signaling
complexes: A20/TNFAIP3, CYLD (cylindromatosis), and
Otulin (OTU deubiquitinase with linear linkage specificity)
(Fig. 2). Their molecular details as well as phenotypes
associated with altered protein function will be discussed
below. Initially identified as a TNF/NF-κB target gene [60],
A20 is recruited to the TNF receptor complex via ZnF
motifs: ZnF4 binds K63-linked, while ZnF7 has a pre-
ference for linear ubiquitin chains [61–63]. A20 is also a
ubiquitin-editing enzyme that can mediate ubiquitination
(using its ZnF4) or deubiquitination (through its OTU
domain) of signaling complex components (e.g., RIP1)
[64]. Whole body deficiency of A20 results in a severe
multiorgan inflammation, which is not surprising given its
crucial role in many signaling processes [65]. In addition,
extensive studies with conditional knockouts of A20 in
mice further underline the importance of A20 during
infections and in maintenance of homeostasis (summarized
by Martens and van Loo [66]). Inactivation of A20 by
mutagenesis of the DUB active site (C103A) or disruption
of ZnF4 function (C609A, C612A) resulted in viable ani-
mals with no overt phenotype [67, 68]. In both cases,
mutagenesis sensitized mice in inflammatory disease mod-
els, such as DSS-induced colitis [68], EAE (experimental
autoimmune encephalomyelitis), or TNF-induced shock
(SIRS) [67]. In contrast, mutagenesis of the ZnF7 domain
(C764A, C767A) resulted in inflammatory arthritis [69, 70],
and combined inactivation of ZnF4 and ZnF7 domains
phenocopied A20 KO mice [69]. Polykratis et al. addi-
tionally showed that ZnF7 mutagenesis resulted in less
linear chains in complex I [70] providing further evidence
that A20 protects linear chains from degradation via its
recruitment to modified RIP1 as described before by Draber
et al. [43].

The other TNF signaling–associated DUB, CYLD, is a
USP domain–containing DUB with specificity for K63-
linked and linear ubiquitin chains [71, 72]. CYLD is
recruited to the TNFR complex in a LUBAC-dependent
fashion through interaction bridged by the adapter protein
SPATA2 (Spermatogenesis Associated 2) [73–75]. CYLD
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can limit TNF-induced prosurvival signaling and promote
cell death [76–78]. Accordingly, absence of SPATA2 pro-
vides protection against TNF-induced cell death [79].
Genetic disruption of CYLD function can lead to embryonic
lethality, increased cancer formation or developmental
defects, suggesting a complex role of CYLD in regulating
multiple signaling pathways [80].

Otulin (FAM105B) is a DUB with high specificity for
hydrolyzing linear ubiquitin chains [81]. Like CYLD,
Otulin interacts with LUBAC [43, 82]. However, Otulin is
not recruited to the TNFR1 complex; instead, it regulates
TNF signaling indirectly by acting on LUBAC [43].
Indeed, studies with catalytic inactive Otulin (Otulin
C129A) showed that Otulin plays a critical role in deubi-
quitinating LUBAC components thus regulating their sta-
bility [83]. Furthermore, Otulin inactivation reduces TNFR1
complex formation and increases cell death [83]. Loss of
Otulin in the hematopoietic compartment resulted in a TNF-
dependent inflammatory phenotype [84]. Otulin C129A/
C129A embryos died at E10.5 with extensive cell death in
placenta and yolk sac, which was rescued partially by
inactivating TNF cell death effectors caspase-8 and RIPK3
[83]. These findings suggest that dysregulated linear
ubiquitination triggers cell death and implicate LUBAC,
Otulin, and associated proteins in the regulation of cell
death activation and inhibition.

Ubiquitination during TNF-induced cell death

Apart from mediating TNFR1-associated complex I assembly
and MAPK and NF-κB activation, ubiquitination also plays a
critical role in TNF-induced cell death complexes. These
complexes include the cytosolic complex II and the necro-
some, as well as the recently described bridging complex
[85], which mediates the transition of RIP1 from complex I to
the cytosol. This bridging complex consists of heavily ubi-
quitinated RIP1 and, based on caspase-8 activity, it can either
induce RIP1 kinase–dependent apoptosis or necroptosis [85].
During necroptotic cell death, RIP1 undergoes ubiquitination
with K63 and linear ubiquitin chains [86] (Fig. 3), with K115
as a prominent site of ubiquitination [87]. Ripk1K115R/K115R

mice did not show a developmental phenotype, but were more
sensitive to TNF-induced systemic shock [26]. Although
ubiquitin ligase(s) that modify RIP1 during necroptotic sig-
naling are not well known, a study found that the E3 PELI1
(Pellino1) can promote RIP1 ubiquitination during necropto-
sis [88]. In addition to RIP1, PELI1 can also modulate RIP3
protein levels. Phosphorylation of RIP3 at T182 recruits
PELI1 to promote K48-linked RIP3 ubiquitination on Lys363
leading to its proteasomal degradation thus restricting
necroptosis [89]. Similarly, ubiquitin ligase CHIP (carboxyl
terminus of Hsp70-interacting protein) can induce RIP3
lysosomal degradation and restrict necroptosis in a

Fig. 3 Ubiquitination in the regulation of cell death and inflam-
masome. Ubiquitination of the key components of TNF-stimulated
cell death and NLRP3 inflammasome–mediated signaling regulate cell

survival and inflammation. Green indicates ubiquitin ligases and yel-
low deubiquitinase. Ubiquitin linkage types are indicated in the figure.
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phosphorylation independent manner [89] (Fig. 3). Loss of
RIP3 in vivo can partially rescue the phenotype observed in
CHIP KO mice, suggesting that the absence of CHIP cha-
perone function can lead to cell death [90].

In addition to its role in proliferative signaling, A20 can
directly influence necroptosis by deubiquitinating RIP3
at Lysine5, thus leading to reduced cell death [91].
Deubiquitination of RIP1 by CYLD in the necrosome was
also suggested to facilitate necroptosis [92]. While it is clear
that ubiquitination of complex II components take place
during TNF-mediated cell death signaling, there is further
research needed to fully understand its significance in reg-
ulating cell death and inflammatory responses.

E3 activity of IAPs in direct regulation of cell death
signaling

IAPs have been studied initially due to their ability to
inhibit caspases [93]. However, the inhibitory activity of
IAPs can be counteracted by the mitochondrial protein
SMAC [94, 95]. Once released from the mitochondria,
SMAC binds BIR domains of IAPs thus blocking their
inhibitory ability [93, 94, 96]. This finding has led to the
development of a class of small molecules called IAP
antagonists or SMAC mimetics [97]. Treatment with IAP
antagonists causes a conformational change that opens the
c-IAP structure and allows c-IAP RING domain dimeriza-
tion and consequent activation of c-IAP1/2 E3 ligase
activity leading to autoubiquitination and subsequent
proteasomal degradation [98, 99]. The prompt activation of
c-IAP E3 activity triggers initial RIP1 ubiquitination and
NF-κB and MAPK activation [20]. However, proteasomal
degradation of c-IAPs allows NIK stabilization and
stimulation of the noncanonical NF-κB pathway [55, 100].
NF-κB and MAPK activation cause upregulation of TNF
and trigger TNFR1 mediated signaling, which cannot pro-
mote RIP1 ubiquitination and prosurvival signaling in the
absence of c-IAPs [18, 59, 100]. Instead, RIP1 will form the
apoptotic complex with FADD/caspase-8 or complex
with RIP3 to promote apoptotic or necroptotic cell death,
respectively [20]. This is a great example of the link
between exacerbated ubiquitination and cell death induc-
tion, and it represents a mechanistic platform for develop-
ment of IAP antagonists for treatment of various human
diseases: from cancer to HIV latency [96, 97, 101].

Pattern recognition receptor signaling and ubiquitination

The innate immune system must operate in an efficient and
safe manner to maintain organismal homeostasis by
recognizing invading pathogens and initiating the host
defense mechanisms [102]. Important components of this
defense mechanism are proteins that recognize microbe-

associated molecular patterns (MAMPs), such as
nucleotide-binding oligomerization domain (NOD)-like
receptor (NLRs) family [103]. Among the NLR group,
NOD1 and NOD2 are crucial for innate immune responses
to some bacterial infections as they sense bacterial pepti-
doglycans and stimulate NF-κB and MAPK signaling
resulting in the expression of proinflammatory cytokines
and chemokines [103]. NOD2 is particularly relevant for
human pathologies as mutations in the NOD2 locus are
linked with inflammatory genetic diseases such as Crohn’s
disease, early onset sarcoidosis, and Blau syndrome [104].

NOD2-mediated signaling relies on RIP2 (kinase
receptor-interacting protein 2; RIPK2) [105], which recruits
a number of signaling regulators to the NOD2-associated
protein complex including several ubiquitin ligases and
DUBs [106]. Several RIP2-modifying E3s have been
reported including c-IAP1/2, XIAP (X-linked inhibitor of
apoptosis), Pellino3, ITCH (Itchy E3 Ubiquitin Protein
Ligase), TRAF6, and TRIM27 (Tripartite Motif Containing
27), but the critical E3 in NOD/RIP2 pathways is XIAP
[106]. XIAP binds the kinase domain of RIP2 with its BIR2
domain to promote K63-linked ubiquitination of RIP2 [107]
(Fig. 2). This enables LUBAC recruitment and linear ubi-
quitination of RIP2 resulting in the activation of NF-κB and
MAPK to promote production of inflammatory cytokines
and chemokines [108]. Interestingly, the kinase domain of
RIP2 does not have enzymatic role in NOD2 signaling, only
scaffolding, as it serves as a docking module that enables
XIAP to bind and ubiquitinate RIP2 [109, 110]. Disruption
of RIP2-XIAP binding blocks RIP2 ubiquitination and
inhibits NOD2 signaling, demonstrating that XIAP-
mediated RIP2 ubiquitination is critical in this inflamma-
tory pathway [109]. Comparable to TNF signaling, the same
trio of DUBs (A20, CYLD, and Otulin) removes K63-
linked and linear ubiquitin chains from RIP2 thus restricting
NOD2 proinflammatory signaling [108].

Inflammasomes

While some pattern recognition receptors (PRRs) recognize
MAMPs, others are stimulated by damage-associated
molecular patterns (DAMPs) leading to inflammasome
activation and an inflammatory response (Fig. 3) [111].
Activated inflammasomes lead to catalytically active
capase-1, which process the proinflammatory cytokines IL-
1β and IL-18 [112, 113]. The most studied PRR is NLRP3
(nucleotide-binding and leucine-rich repeat-containing pro-
tein 3), which can be stimulated by a variety of DAMPs or
MAMPs in a two-step process that involves priming (step 1)
and subsequent activation (step 2) [114, 115]. Besides a
cytokine response, inflammasome activation can lead to
pyroptotic cell death. Pyroptosis is induced by caspase-1/
11-mediated cleavage of GSDMD (gasdermin D), which
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separates the inhibitory and the lytic domains of GSDMD.
The cell death inducing N-terminal domain forms mem-
brane pores and allows spillage of cellular contents and ion
flux [116, 117].

NLRP3 activity is regulated by various mechanisms. Its
levels can be induced by the priming step [118] and ubi-
quitination can regulate its stability as well as its activity
[119]. Several E3 ligases (TRIM31, SCFFBXL2, and
MARCH7) can induce degradation of NLRP3 by K48-
linked ubiquitination and subsequent proteasomal or
autophagosomal degradation [120–122] (Fig. 3). The E3
ARIH2 (Ariadne homolog 2) inactivates NLRP3 by K63-
linked ubiquitination without induction of degradation
[123]. NLRP3 ubiquitination can also be stimulatory, as
is the case with E3 Pellino2, which promotes K63-
linked NLRP3 modification [124]. Ubiquitination of other
inflammasome-associated proteins such as ASC (apoptosis-
associated speck-like protein containing a CARD) can
modulate their activity as well. TRAF6 directly or indirectly
induces ASC degradation by K63-linked ubiquitin chains
[125], while LUBAC can contribute to inflammasome
activation by linear ubiquitination [126, 127]. In an analo-
gous fashion to other signaling pathways, deubiquitination
can also regulate inflammasome activity. The BRISC DUB
complex components BRCC3 (BRCA1/BRCA2-containing
complex subunit 3) and ABRO (Abraxas brother 1) are
critical in mediating NLRP3 inflammasome activation
by deubiquitination [128, 129]. In contrast, A20 activity
dampens inflammasome activation although it likely does
not act directly on NLRP3 but rather on multiple
proteins whose activity and/or stability play important role
in inflammasome activity (RIP1, RIP2, RIP3, IL1-β)
[130, 131].

IL-1β and TLR signaling

IL-1β is one of the two major proinflammatory cytokines
released during pyroptosis. It is activated by cleavage and
released from the cell in a passive manner. Upon binding of
IL-1β to IL-1 receptor, the adapter protein MyD88 (myeloid
differentiation primary response 88) is recruited via TIR
(Toll/interleukin-1 receptor) domain interaction [132, 133].
Through a series of homotypic DD–DD interactions, MyD88,
IRAK1/2 (Interleukin-1 receptor–associated kinase), and
subsequently IRAK4 are recruited to the complex. IRAK4
transactivates itself by autophosphorylation and also phos-
phorylates and activates IRAK1 [134]. E3s Pellino1/2 and
TRAF6 can bind IRAK1, which activates Pellino1/2 by
phosphorylation [135, 136] (Fig. 2). These ubiquitin ligases
mediate K63-linked ubiquitination of the complex [137, 138],
resulting in LUBAC recruitment as well as the activation of
MAPK and NF-κB signaling via TAB2/3-TAK1 and the IKK
complex (as described above). Signaling by LPS-binding

receptor TLR4 (toll-like receptor 4) shares the same pathway
components such as IL-1R signaling complex, and both TLR/
IL-1R-mediated signaling events can be restricted by DUBs
A20 and CYLD68, [139] (Fig. 2). In addition, IL-1β is also
deubiquitinated by POH1 inhibiting its cleavage by caspase-1
[140] (Fig. 3). TLRs can form a different kind of intercellular
complex. The TIR domain of TLR4 can recruit RHIM
domain–containing adapter TRIF, which allows the recruit-
ment of a different subsets of signaling mediators leading to
MyD88-independent NF-κB signaling via RIP1 and TRAF6
[141, 142]. During TLR4-mediated necroptotic cell death,
TRIF can recruit RIP3, and with it MLKL, therefore enabling
RIP3 and MLKL ubiquitination [143]. The pathway is further
activated by E3 ligases such as TRIM56, TRIM62, and Pel-
lino, or it can be restricted by TRIM38 (summarized by Ullah
et al. [144]). TRIF may also activate the TBK1 (tank-binding
kinase 1) and IKKε to activate the transcription factor IRF3,
resulting in the induction of Type 1 interferon response
[145, 146]. K63-linked polyubiquitination of TBK1 is
required for the induction of Type 1 interferons that is
mediated by the E3s MIB1 (Mind Bomb 1), MIB2, and
Nrdp1, whereas the DUBs CYLD and A20 reverse TBK1
ubiquitination and dampen Type 1 interferon signaling [147]
(Fig. 2).

Pathologies associated with inflammatory pathway
components

Mutations in E3s and DUBs participating in inflammatory
pathways have been associated with various disease.
Besides causing autoimmune and autoinflammatory dis-
eases, mutations in these E3s/DUBs can be found in various
types of cancers due to the prosurvival signaling function of
the pathways. CYLD was first identified as a gene mutated
in cylindromatosis, a hereditary form of skin cancer [148],
due to dysregulation of NF-κB signaling [76]. A20 seems to
have a dual role in cancer. In some cancers, A20 loss of
function mutations were identified, suggesting a tumor
suppressive role, while high expression of A20 was asso-
ciated with poor survival in other types (summarized by
Martens and van Loo [66]). Copy number gains of c-IAP1/2
have been described in diffuse large B cell lymphoma [149]
and carcinomas [150], indicating a role as mediators
of TNF-mediated NF-κB signaling. Moreover, deletions of
c-IAP1/2 or their adapters TRAF2/3 were described in
patients with multiple myeloma that lead to increased
noncanonical NF-κB signaling [151, 152]. The IAP family
member XIAP, and inherited loss of XIAP, has been
implication in X-linked lymphoproliferative type 2 disorder
(XLP2), which manifests with lymphohystiocytosis, hypo-
gammaglobulinemia, and lymphomas [153].

Besides their roles in oncogenesis, several TNF pathway
components have been associated with autoinflammatory
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diseases in patients. Haploinsufficiency of A20 was iden-
tified in multiple studies resulting in inflammatory diseases
marked by hyperactivated NF-κB signaling [154] (for
detailed summary [66]). Mutations in Otulin were identified
in three patients suffering from autoinflammatory disease
(named ORAS or OTULIN-related autoinflammatory syn-
drome) manifested by panniculitis and recurrent fever
[84, 155]. Analysis of one mutation showed reduced protein
stability leading to dysregulation of TNF signaling and
sensitization to TNF-induced cell death [155]. Treatment of
patients with ORAS with anti-TNF antibodies resulted in a
decrease of measured inflammatory parameters such as CRP
or neutrophil counts [84]. Mutations in the LUBAC com-
ponents HOIP and HOIL-1 have also been associated with
inflammatory phenotypes in human patients [156–158].
Fatal HOIL-1 mutations were identified in three patients of
two families, resulting in systemic autoinflammation and
susceptibility to infections [157]. Mutations in HOIP lead-
ing to loss of expression were associated with multiorgan
autoinflammation and immunodeficiency [156, 158]. All
described HOIL-1 or HOIP mutations lower the expression
of all LUBAC components, which speaks to the critical role
of all components for the complex stability. Furthermore, it
is increasingly apparent that dysregulation of linear ubi-
quitination affects many critical signaling events and leads
to inflammatory diseases.

Therapeutic modulation of the ubiquitin system

In addition to the IAP antagonists described above, we
highlight proteasome inhibitors, immunomodulatory com-
pounds, and SARS-CoV2 protease inhibitors as emerging
strategies to target the ubiquitin/proteasome enzymes and
pathways featured in this review.

Proteasome inhibition and inflammation response

The proteasome is an important mediator of proliferative
response in tumor and immune cells by regulating NF-κB
signaling. More specifically, the proteasome participates in
the activation of the canonical NF-κB pathway by degrad-
ing the negative regulator IκBα to release the tran-
scriptionally active p50 and p65 heterodimer, and in the
non-canonical NF-κB pathway, by proteolytically proces-
sing the active p52 NF-κB subunit from the longer pre-
cursor p100 (Fig. 2) [51]. The clinically approved inhibitors
of the b5 proteasomal protease are bortezomib, carfilzomib,
and ixazomib, which have multifaceted antiproliferative
effects, including inhibition of NF-κB signaling, and have
shown the most clinical benefit in multiple myeloma [159].

The clinical benefit of proteasome inhibitors in multiple
myeloma was originally proposed to be a consequence of
the genetic aberrations that activate NF-κB signaling in

multiple myeloma cells, for example as mentioned above
[151, 152], that impose NF-κB-dependence [160]. That
said, bortezomib was also shown to paradoxically activate
NF-κB signaling in multiple myeloma cell lines, primary
multiple myeloma cells, and in xenografts, indicating that
bortezomib-induced cytotoxicity in multiple myeloma
cells is not fully attributable to inhibition of NF-κB
signaling [161, 162]. However, the more selective protea-
some inhibitors carfilzomib and ixazomib have demon-
strated NF-κB repression in multiple myeloma cells
[163, 164]. This inhibitory activity reduces the expression
of NF-κB–induced cytokines and growth factors that reg-
ulate multiple myeloma cells and also pre-osteoclasts,
resulting in less bone destruction [165–167].

Proteasome inhibition also exhibits multiple effects on
the host immune cells. At clinical doses (≤20 nM), borte-
zomib treatment increases the levels of immunostimulatory
cytokines (IL-2, IL-12, IL-15) in lymphocytes, stabilizes
their receptors, and increases their effector function against
tumor cells [168]. Bortezomib was also shown to decrease
expression of HLA class 1 molecules in multiple myeloma
cells and sensitize them to NK cell–mediated lysis [169]. In
addition, bortezomib treatment upregulates immunostimu-
latory tumor antigens, priming the cancer cells for NK cell
toxicity. [170]. These studies have shown that bortezomib
treatment mediates a dual antitumor effect, by inhibiting
tumor cell proliferation and by increasing sensitivity to
cytotoxic immune cells. Therefore, immunotherapeutic
strategies with antitumor T cell and/or NK cell could
provide a combinatorial benefit with bortezomib treatment.
In agreement, bortezomib is reported to synergize with the
apoptotic potential of cytokines in tumors [171].

Immunomodulatory drugs and the ubiquitin
proteasome system

The iMiDs, such as thalidomide, are a class of compounds
that display potent anti-inflammatory, antiangiogenic, anti-
proliferative, and immunomodulatory effects. One of the
defining characteristics of the iMiDs is their ability to
inhibit the LPS-induced production of the proinflammatory
cytokine TNF-α [172], and iMiDs are capable of rescuing
mice from endotoxic shock [173]. Similarly, iMiDs reduce
the production of IL12 [174], but IL6 is unaffected [172].
In the production of cytokines induced by the MYD88-
independent TLR4 pathway, translocation of the transcrip-
tion factor IRF3 (interferon regulatory factor 3) to the
nucleus following its phosphorylation is critical in the
regulation of the IFN-1 response [145]. It has been shown
that iMiDs prevent this translocation, leading to a reduction
in the IFN-1 response [175]. While it is known that IRF3 is
tightly regulated by polyubiquitination and subsequent
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proteasomal degradation [145], how this process is directly
or indirectly affected by iMiD treatment is unknown.

Thalidomide, and the structurally related iMiD analogs
lenalidomide and pomalidomide, have been shown to har-
ness ubiquitin machinery through recruitment of neo-
substrates to the ubiquitin ligase complex CRL4CRBN

(CUL4-RBX1-DDB1-CRBN) for ubiquitination and sub-
sequent proteasomal degradation. The clinical efficacy of
lenalidomide and pomalidomide in treating multiple mye-
loma is linked to the degradation of the transcription factors
IKZF1/3 (Ikaros zinc finger proteins 1 and 3), as well as the
accompanied IL2 upregulation [176–179]. In addition,
lenalidomide uniquely induces the degradation of CK1α
(casein kinsase 1α) and leads to synthetic lethality in del(5q)
myelodysplastic syndrome [180]. A more recent study
revealed that the “molecular glue” feature of iMiDs induces
ternary complex formation between cereblon (CRBN) and a
number of Cys2-His2 (C2H2) ZnF proteins, promoting their
subsequent ubiquitination and degradation [181]. This
structural plasticity of CRBN has inspired the development
of next-generation iMiDs (known as CRBN modulators)
and heterobifunctional protein degraders [182, 183].
It remains to be explored whether the degradation of non-
IKZF1/3 targets may contribute to the therapeutic activities
of established and novel iMiDs.

While the antitumor effects of iMiDs are dependent on
CRBN [184], CRBN-independent activity accounts for
30–40% TNF-α inhibition following TLR4 activation
[172, 175]. IRF3 translocation and resultant IFN-1 signaling
has been shown to proceed in the absence of CRBN in
murine studies, which at least partly accounts for the
described CRBN-independent activity [175]. The remainder
of the anti-inflammatory activity displayed by iMiDs may
therefore be CRBN-dependent. It is possible that iMiDs
may similarly recruit key proteins that regulate inflamma-
tion to the CRL4CRBN complex to promote their proteasomal
degradation.

Modulation of the immune response by the SARS-
CoV-2 protease PLpro

SARS-CoV-2 is the human coronavirus responsible for the
COVID-19 global pandemic, and a defining factor
of SARS-CoV-2 pathogenesis is the inhibition of innate
immune sensing and reduced interferon response
[185, 186]. CoV-2 PLpro, the papain-like protease of
SARS-CoV-2, is required for viral polyprotein cleavage and
is thus essential for viral replication [187]. In addition,
CoV-2 PLpro cleaves both ubiquitin and the ubiquitin-like
protein ISG-15 from host proteins, thereby displaying DUB
and de-ISGylase activity [188]. One notable target is IRF3,
which is a critical component in the type I interferon
pathway activated by TLR4 as previously discussed in

the context of iMiDs [146]. ISGylation of IRF3 typically
provides an activating role by shielding IRF3 from ubi-
quitylation and subsequent degradation, allowing its phos-
phorylation and nuclear translocation [145]. Heterologous
expression of PLpro within mammalian cells, or by infec-
tion with SARS-CoV-2, is reported to decrease phosphor-
ylation of both IRF3 and its activator; TBK1. TBK1
phosphorylation is also an activator of the NF-κB pathway,
causing upregulation of inflammatory signaling [189].
Concordantly, INF-β and NF-κB expression levels follow-
ing poly(I:C) and TNF-α treatments, respectively, were also
significantly decreased by infection or PLpro expression
[190]. This shows a clear role for the DUB/deISGylation
activity of PLpro in the suppression of both IFN and NF-κB
signaling pathways, and may contribute to the pathogenesis
of the virus.

The effects of CoV-2 PLpro on the IFN and NF-κB
signaling pathways, which facilitate establishment of viral
infection, as well as being essential for viral replication,
make it a promising target for therapeutics. A number of so-
called naphthalene-based inhibitors, originally developed
against PLpro enzyme of SARS-CoV responsible for the
2003 SARS outbreak [190–193], have shown biochemical
and cellular activity against CoV-2 PLPro, owing to the two
proteins’ high homology (82% sequence identity). Two
related scaffolds in this class are exemplified by GRL-0617
[190] and 3k [194], which both inhibit purified CoV-2
PLpro and prevent viral replication in cells. Interestingly,
inhibitors in this series occupy the S4/S3 binding pockets,
which are located away from the catalytic triad but block the
entry of the ISG-15 C-terminus to cause inhibition. Two
newly developed peptide-based inhibitors of CoV-2 PLpro,
VIR250 and VIR251, mimic the sequence of PLPro clea-
vage sites and irreversibly bind to the catalytic Cys111
[195]. While these compounds have not been investigated
for antiviral activity in cells, VIR251 showed a clear inhi-
bition of the DUB/deISGylation activity of CoV-2 PLpro.

Conclusions

The ubiquitin system is complex, multifaceted, and is crucial
for the modulation of a vast number of cellular processes.
Ubiquitination is tightly regulated by a number of enzymes
including E1s, E2s, E3s, and DUBs, and dynamically reg-
ulates inflammation and a number of programmed cell death
mechanisms. Notably, the TNF signaling pathway is con-
trolled by competing ubiquitin conjugation and deubiquiti-
nation that governs both proteasomal degradation and
signaling complex formation. Aberrant ubiquitin regulation of
inflammatory pathways is reported in a number of pathologies
including cancers and autoinflammatory diseases. Ubiquiti-
nation is capable of both activating and dampening
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inflammasome activation through the control of either protein
stability, complex formation, and, in some cases, directly
affecting receptor activity.

Targeting dysfunctional aspects of the ubiquitin system
is a promising approach in the treatment of inflammatory
disease, cancers, and infectious disease. Proteasome inhi-
bitors decrease tumor cell proliferation, reduce osteoblast
activity, and promote sensitivity to immune cells. Although
the antiproliferative effects of proteasome inhibitors are
complex and not fully understood, inhibition of the NF-κB
signaling pathway appears to play a key role. iMiDs co-opt
the UPS by recruiting neosubstrates to the ubiquitin ligase
complex CRL4CRBN, thus directing their degradation, and
have been designed to show promising specificity. The
mechanisms underlying the therapeutic benefits of IMiDs
are also complex, as their anti-inflammatory activity is
partially CRBN-independent, and their regulation of
IRF3 signaling remains to be fully elucidated. Finally, the
novel coronavirus SARS-CoV-2 modifies the TLR4-
induced production of host cytokines through the DUB/
deISGylating activity of its papain-like protease PLPro. Pre-
clinical inhibitors of PLpro reverse this effect and attenuate
viral replication, thus PLPro may be a therapeutic target to
combat SARS-CoV-2 morbidity and mortality, and poten-
tially future coronaviruses that utilize similar mechanisms.
Looking forward, future work that deepens our under-
standing of the complex cellular role of the ubiquitin sys-
tem, including its role in disease processes, is vital. Such
work could lead to the identification of novel targets and
efficacious therapeutics to treat the wide array of diseases in
which the ubiquitin system is implicated.
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