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Abstract
Perturbation of metabolism elicits cellular stress which profoundly modulates the cellular proteome and thus protein
homeostasis (proteostasis). Consequently, changes in the cellular proteome due to metabolic shift require adaptive
mechanisms by molecular protein quality control. The mechanisms vitally controlling proteostasis embrace the entire life
cycle of a protein involving translational control at the ribosome, chaperone-assisted native folding, and subcellular sorting
as well as proteolysis by the proteasome or autophagy. While metabolic imbalance and proteostasis decline have been
recognized as hallmarks of aging and age-associated diseases, both processes are largely considered independently. Here, we
delineate how proteome stability is governed by insulin/IGF1 signaling (IIS), mechanistic target of Rapamycin (TOR), 5′
adenosine monophosphate-activated protein kinase (AMPK), and NAD-dependent deacetylases (Sir2-like proteins known as
sirtuins). This comprehensive overview is emphasizing the regulatory interconnection between central metabolic pathways
and proteostasis, indicating the relevance of shared signaling nodes as targets for future therapeutic interventions.

Facts

● Metabolic imbalance and proteostasis decline have been
recognized as hallmarks of aging and age-associated
diseases, both processes are largely considered
independently.

● Coordination of protein and metabolic homeostasis is
crucial for balanced energy homeostasis, organismal
physiology, and health.

● Both, metabolic imbalance and proteostasis decline are
causally linked to aging and aging-associated pathologic
disorders.

Open questions

● Common signaling nodes and shared mechanisms of
proteostasis networks and metabolism remain to be
identified.

● How are metabolic perturbations and proteotoxicity
interconnected and are protein quality control mechan-
isms relevant targets for clinical intervention?

● How do changes in the activity of growth pathways that
significantly shape the cellular proteome, affect orga-
nismal viability, and physiology?

● How are environmental and/or nutritional cues incorpo-
rated into proteostasis pathways and could these cues be
used as health benefit?

Introduction

Proteostasis surveillance mechanisms

The composition and functional integrity of the cellular
proteome is under constant surveillance to maintain a
balanced state of proteostasis. The importance of a stable
proteome for physiological health is underscored by
numerous human pathologies that are causally associated
with proteostasis impairment. Neurodegenerative diseases
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such as Parkinson’s-, Huntington’s-, and Alzheimer’s
disease (PD, HD, AD), or amyothrophic lateral sclerosis
(ALS) are characterized by prototypic deposition of inso-
luble protein aggregates. Cancer cells also display hallmarks
of defective proteostasis, which has led to the discovery of
chemotherapeutic interventions to selectively eliminate
tumors that are consequently vulnerable to proteotoxic
treatment [1]. Thus, proteostasis imbalance has become
recognized as a central driving force and hallmark for age-
associated pathologies [2].

Eukaryotic cells exhibit different protein quality control
mechanisms and surveillance strategies to counteract ulti-
mate proteostasis collapse (Fig. 1). The abundance of pro-
teins and the composition of the cellular proteome are
largely regulated at the level of protein biosynthesis.
Regulation of protein translation is coupled to mRNA
processing and is further controlled at different steps,
including initiation, elongation, as well as termination [3].

Molecular chaperones facilitate functional folding of nas-
cent polypeptides and assist in correct subcellular localiza-
tion of matured proteins [4]. Otherwise, the ribosomal-
quality control pathway eliminates aggregation-prone
translation products as a consequence of impaired transla-
tion fidelity [5]. Following translation, cytosolic and
compartment-specific chaperoning systems facilitate protein
transport across membranes as well as supervise the integ-
rity of the proteome either by assisting in functional (re-)
folding or targeted protein turnover [6, 7]. In case proteins
are permanently damaged and cannot be restored by cha-
peroning systems, protein degradation mechanisms catalyze
proteolytic disposal. In this context, the ubiquitin–
proteasome system (UPS) and macro-autophagy (hereafter
autophagy) constitute the two major proteolytic pathways in
eukaryotic cells [8]. Protein degradation by the 26S pro-
teasome is triggered by conjugation of ubiquitin to substrate
proteins [9]. The ubiquitylation reaction involves an enzy-
matic cascade of so called E1, E2, and E3 enzymes, ear-
marking proteins for shuttling to and proteolysis by the
proteasome. In contrast, autophagic degradation of proteins
and macromolecules is triggered by engulfment of cytosolic
content by de novo formation of a double-layered mem-
brane, the phagophore, which upon maturation to a vesi-
cular autophagosome fuses with the lysosome to allow
degradation of its content by lysosomal hydrolases [10].
The content of the phagophore/autophagosome is largely
dependent on autophagy receptors that mediate selective
engulfment of cargo substrates. Dedicated receptors mediate
autophagic degradation of ubiquitin conjugates by recruit-
ing ubiquitin to the phagophore, which itself is marked by
the ubiquitin-like molecules LC3/GABARAP. Otherwise,
organelle-specific receptors can also facilitate ubiquitin-
independent autophagy [11].

When proteostasis is challenged, eukaryotic cells are
capable of sensing and responding to proteotoxic insults
through compartment-specific transcriptional programs,
including the cytosolic heat-shock response (HSR) and the
unfolded protein responses in the endoplasmic reticulum
(ER) and mitochondria (UPRER and UPRMT), respectively
[12–14]. A commonality of HSR and UPRs is the activation
of key regulatory transcription factors (TFs), which occurs
in a compartment-specific manner and triggers a dedicated
compensatory response. The consequence of HSR/UPR
induction is essentially to limit the load of unfolded and
nonfunctional proteins by three means: (a) a decrease in
global translation, accompanied with (b) increased expres-
sion of chaperones facilitating proteostatic capacity, and (c)
enforced proteasomal degradation (Fig. 1). The integrated
stress-response (ISR) is activated by various stressors, e.g.,
viral infection or Heme deprivation, but also in response to
amino-acid shortage or ER-stress [15, 16]. Central to the
ISR is the phosphorylation of eukaryotic translation

Fig. 1 Proteostasis pathways. Schematic overview of cellular pro-
teostasis pathways. Protein (orange) synthesis at the ribosome (blue) is
controlled at multiple level through regulated translation initiation or
elongation. Already during translation molecular chaperones facilitate
native protein folding and compartment-specific sorting (purple).
Cytosolic and compartment-specific chaperones play a crucial role in
protein quality control by supporting functional folding or prevention
of protein aggregation (purple). In addition, dedicated molecular
chaperones also facilitate protein ubiquitylation and proteasomal tar-
geting or promote aggregate formation and autophagic disposal
(dashed purple arrow). In case proteins are terminally misfolded or not
used, proteolysis by the proteasome and autophagosome catalyze
turnover (red). Noteworthy, both proteasomal and autophagosomal
protein degradation are triggered by substrate ubiquitylation. Dedi-
cated stress-response pathways coordinate proteostasis mechanisms
(gray). Proteotoxic stress results in activation of specific transcription
factors (TF) that bind to distinct regulatory elements (RE) in the DNA
and mediate stress-compensatory responses to restore proteostasis. See
text for details.
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initiation factor 2A (eIF2A), which triggers translational
reprogramming through global inhibition of protein synth-
esis along with selective expression of particular stress-
response genes harboring upstream open reading frames
(uORFs). The physiological relevance of the described
stress pathways is emphasized by various pathologies
linked to impaired stress response and consequent loss of
proteostasis [2, 7, 15].

Metabolism and proteostasis in aging and disease

Proteostasis mechanisms shape the proteome by regulating
either the synthesis or degradation of proteins and are
therefore connected to the cellular pool of amino acids that
are utilized for protein biosynthesis or liberated during
proteolysis. Both synthesis and degradation of proteins are
processes that consume ATP and thus particularly condi-
tioned by energy metabolism. Through a multitude of enzy-
matically catalyzed chemical reactions cellular metabolism
essentially contributes to the production or turnover of cellular
energy and structural biomolecules. Anabolic pathways are
directed toward synthesis of higher-order biomolecules from
small metabolites to generate biomass, critical for growth or
as resource for energy-generating catabolic processes. Cata-
bolic pathways use complex biomolecules, e.g., extracted
from food, to turn them over into smaller metabolites that
cells use to build macromolecules or generate energy. In
healthy cells, anabolic and catabolic pathways are intricately
orchestrated in order to achieve a balanced state of growth and
energy homeostasis (Figs. 2, 3).

A growing body of evidence points out that changes in
metabolism signify a source of cellular stress [17]. In con-
ditions of nutrient scarcity and consequently low ATP level,
cells need to manage energy generation without under-
cutting overall cellular physiology [18]. Conversely, also
overnutrition and excess metabolic activity can threat cel-
lular function, e.g., through resulting metabolites or gen-
eration of reactive oxygen species (ROS). Increased energy
generation and mitochondrial electron transport chain
activity is a well-established source of toxic ROS level,
which triggers oxidative damage of macromolecules and
metabolic pathologies [19]. Next to ROS, other metabolites
e.g., O-linked uridine-diphosphate-acteylglucosamine
(UDP-O-GlcNAc) or Acetyl-CoA emerge as critical reg-
ulators of cellular physiology. UDP-O-GlcNAc originates
from the carbohydrate metabolizing hexosamine pathway
and serves as basis for posttranslational protein glycosyla-
tion. Acetyl-CoA is generated by Acetyl-CoA synthetase or
catabolic cleavage of citrate and is used for acetylation of
lysine-residues (K-acetylation). Noteworthy, O-
GlcNAcylation and K-acetylation play critical roles in
proteostasis maintenance by regulating gene expression,
protein quality control and stress-response pathways as well

as the UPS and autophagy [20, 21]. Coordination of
metabolism and proteostasis is crucial for balanced energy
homeostasis, organismal physiology and health (Fig. 4,
Table 1). In contrast, deficits in proteostasis contribute to
the development of metabolic diseases including diabetes
and cancer [1, 2, 22]. Therefore, it is of outstanding interest
to understand how metabolic perturbation and proteotoxi-
city are interconnected to design promising strategies for
therapeutic interventions.

Metabolic pathways that control
proteostasis

Protein and metabolic homeostasis are two regulatory nodes
for maintenance of cellular and organismal physiology.
However, their functional interconnection and how pertur-
bations in one system affect the other are widely under-
appreciated. In the following paragraphs we will provide an
overview about the key metabolic pathways/regulators
including insulin/IGF1 signaling (IIS), TOR, adenosine
monophosphate-activated protein kinase (AMPK), and sir-
tuins and discuss the impact on proteostasis (Fig. 2). While
this review article focusses on protein homeostasis, it
should be noted that metabolic adaptations also occur in
parallel to the regulations in proteostasis pathways, which is
summarized in Fig. 4.

Insulin/IGF1 signaling

As the prevalent hormone involved in the regulation of
many important biological functions, insulin affects meta-
bolism, cell growth, mitochondrial biogenesis, and phy-
siology but also tissue differentiation and remodeling
[23, 24] (Fig. 4). Consequently, perturbation of insulin/
IGF1 signaling (IIS) is usually associated with metabolic
diseases like Diabetes mellitus and obesity (Table 1).
Insulin acts on many tissues with distinct effects on glucose,
protein, and lipid metabolism (Fig. 4).

The IIS pathway is primarily activated by insulin and
IGF1 (insulin-like growth factor 1). In the mammalian
system, insulin/IGF1 binds to the IGF1/insulin receptor
(IGF1R/IR) upon high blood glucose levels [24]. This class
of tyrosine kinase receptors activates the insulin receptor
substrate family which recruits the phosphoinositide 3-
kinase (PI3K). PI3K activity leads to elevated tri-
phosphorylated inositol PtdIns(3,4,5)P3 (PIP3) levels
which activate the serine/threonine kinase AKT. Upon
activation, AKT phosphorylates a variety of downstream
effectors of IIS which further modulate glucose uptake by
the glucose transporter type 4 (GLUT4), glycogen synthesis
by glycogen synthase kinase 3 (GSK3), protein and lipid
synthesis by TOR (mechanistic target of rapamycin,
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see below) and gene expression by forkhead box-O class
(FOXO) TFs [25] (Fig. 3).

FOXO (DAF-16 in Caenorhabditis elegans) regulates
the expression of target genes implicated in metabolism, cell
growth, cell proliferation, stress resistance, and differentia-
tion [26]. AKT-mediated phosphorylation of FOXO affects
gene expression by nuclear exclusion of the transcription
factor [27]. Loss-of-function mutations in foxo/daf-16
negatively affect life span and stress resistance in flies,
worms, rodents, and potentially also humans, indicating a
central role in organismal longevity [23, 26]. In addition,
decreased IIS has been shown to affect proteostasis during
the aging process [28, 29] and the role of the IR homolog
DAF-2 in organismal proteostasis and life span has been
extensively studied in C. elegans [30, 31]. Although the
underlying mechanisms supporting lifespan extension by
reduced IIS are multilayered (Fig. 4), one of the major
effects is through activation of FOXO and HSF1 (heat-
shock factor 1), which positively affect proteostasis
[32, 33]. HSF1 is a transcription factor central to stress
responses induced by various stimuli not only including
heat shock, but also osmotic or oxidative stress and glucose
starvation. FOXO and HSF1 cooperate to regulate the
transcription of target genes encoding for chaperones like
small heat-shock proteins (HSPs) [34]. AKT phosphoryla-
tion also leads to the inactivation of GSK3, a negative

regulator of HSF1 [35]. GSK3 has been implicated in a
many human pathologies including cancer, neurodegen-
erative disorders and diabetes [36, 37]. GSK3 can phos-
phorylate HSF1 to inhibit its transcriptional activity by
forcing its nuclear exclusion, thereby reducing expression
of HSPs [38, 39]. This negative regulation of HSF1 impli-
cates a novel role of GSK3 in proteostasis regulation and in
some cancers reduced GSK3 activity may contribute to
malignant transformation at least partially via HSF1 acti-
vation. In C. elegans IIS can negatively regulate HSF-1
through DDL-1 (homolog of human WASHC3), which
binds to and represses HSF-1 [40]. Life span extension,
mediated by decreased IIS, was shown to remodel the ER-
stress response and to involve autophagy [41, 42]. TOR is
activated by IIS, resulting in autophagy inhibition and
increased protein synthesis [43]. Moreover, IIS activates
XBP-1, a key component of the IRE1 sensor pathway of the
UPRER via PI3K binding [44, 45].

The function of insulin in controlling glucose home-
ostasis is well established, whereas its role in maintaining
proteostasis remained unclear. IIS controls protein synth-
esis/degradation and posttranslational modifications in dif-
ferent tissues, thus orchestrating proteostasis at the
organismal level (Figs. 2, 4). Already early in vitro studies
showed that insulin inhibits protein degradation in muscle
[46], but further investigation of ubiquitin ligases and

Fig. 2 Metabolic regulation of proteostasis pathways. Schematic
overview of central metabolic pathways. Arrowheads indicate the
abundance of stimuli/metabolites activating respective signaling
pathways (▲ upwards, high abundance/▼ downwards, low abun-
dance). The effect of active signaling on proteostasis pathways
is shown on the level of protein synthesis (blue), proteasomal
and autophagosomal degradation (red), and responsiveness of

stress-compensatory pathways (gray). The effect of pathway activation
on the metabolic profile is indicated for anabolism (growth, pro-
liferation) and catabolism (biomolecules, metabolites), respectively.
The availability of cellular energy under physiological pathway acti-
vation is shown as loaded or empty battery icon, respectively. See text
for details.
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proteasome inhibitors provided insight into the underlying
mechanisms of how insulin and IGF1 control protein
degradation pathways. Studies in insulin-deficient rats
revealed an increase in muscle proteolysis predominantly by
ubiquitylation and proteasomal degradation which was
suppressed by the proteasomal inhibitor MG132 [47, 48].
Similar effects have been observed in insulin-resistant,
diabetic (db/db) mice [49]. In muscle, IGF1 and FOXOs
are involved in the control of ubiquitin-mediated protein
turnover (proteasomal degradation and autophagy) by reg-
ulating the expression of the E3-ubiquitin ligases atrogin-1
(MAFbx) and MuRF1 and autophagy-related genes
[50–52]. A recent study suggests a direct impact of IIS
on the modulation of proteasome activity via DAF-16-
mediated downregulation of the proteasome-associated
deubiquitinating enzyme (DUB) UBH-4 in C. elegans.
UBH-4, also known as Uch37 in yeast, might act as a
tissue-specific proteasome inhibitor and its function is
conserved in mammalian cells, where downregulation of the
UBH-4 ortholog UCHL5 leads to an increased degradation
of proteotoxic proteins [53].

In D. melanogaster FOXO and its target Thor/4E-BP, a
critical regulator of cap-dependent translation, have an

important role in the pathogenesis of age-related muscle
weakness. Increased activity of FOXO/4E-BP preserves
muscle function by promoting autophagy which delays the
age-associated decline in protein quality control. Moreover,
FOXO/4E-BP signaling is involved in life span extension
and regulates organismal proteostasis by modulating feed-
ing behavior, insulin secretion, and 4E-BP induction in non-
muscle tissues [54] (Fig. 4). Taken together these findings
underline the direct impact of IIS on muscle-specific UPS
regulation [51].

IIS integrates complex signaling events to maintain cel-
lular homeostasis. Therefore, the functionality of IIS factors
is tightly regulated by a variety of control pathways
including the UPS [55]. On the one hand, the UPS shapes
the activity of IIS via modulating the availability, stability,
and activity of key regulatory factors through ubiquitin-
mediated signaling [56]. On the other hand, insulin directly
impacts the UPS by modulation of ATP production and
gene expression [57]. Recent studies reported a complex
crosstalk between IIS and UPS critical for maintaining
proteostasis. In human skeletal muscle insulin triggers the
expression of a number of E2 enzymes and proteasomal
subunits [58] and also the DUB USP16, which further
modulates gene expression through histone deubiquitylation
[55, 58]. We have recently shown that the E3-ubiquitin
ligase CHIP executes a dual function by either acting in
chaperone-assisted degradation of misfolded and aggre-
gated proteins or inducing endocytic-lysosomal degradation
of the IR [33]. In this context, the overexpression of
aggregation-prone polyglutamine (polyQ) shifted CHIP’s
activity from IR binding to protein degradation in inclusion
bodies, promoting IR stabilization, increased insulin sig-
naling, and downregulation of longevity supporting genes,
all of which are signs of aging. Detailed reviews about
insulin signaling and its implication in proteostasis and
metabolic disorders can be found elsewhere [59, 60] (Fig. 4,
Table 1).

All together, these observations underline the fact that
IIS and proteostasis mechanisms are part of a complex
interwoven network of metabolic pathways. Thus, the
dysregulation of insulin signaling caused by elevated stress
conditions, aging, or other environmental insults can have
major pathological consequences including neurodegen-
eration, muscle wasting, and diabetes (Table 1).

TOR signaling

The mechanistic target of rapamycin (mTOR, or TOR) is
the major regulator of anabolic pathways mediating growth
under nutrient rich conditions [61]. TOR is the central
serine/threonine kinase at the core of two structurally and
functionally discrete signaling complexes, TORC1 and
TORC2, respectively. TORC1 is a key regulator of cellular

Fig. 3 Orchestration of metabolic pathways. A schematic depiction
of the interconnection between key metabolic pathways and pharma-
cological interventions. IIS and TOR signaling are activated upon
energy availability and are connected via the serine/threonine kinase
AKT. IIS promotes AKT activation in a PI3K- and PDK1-dependent
manner. AKT in turn phosphorylates FOXO transcription factors and
thereby prevents nuclear translocation. AKT and AMPK act antag-
onistically to regulate TOR signaling through inhibitory and activating
phosphorylation of TSC2, respectively. AMPK and sirtuin activity are
both induced by low-energy conditions. AMPK can possibly stimulate
sirtuins by elevating the production the NAD+ biosynthetic enzyme
Nampt, which increases the NAD+/NADH ratio. Vice versa, sitruins
might deacetylate LKB1, which targets the AMPK-related kinase
MARK1 ultimately enhancing AMPK phosphorylation. Sirtuin and
AMPK signaling also promote FOXO-mediated transcriptional activ-
ity, either by direct deacetylation (−Ac) or by the phosphorylation-
dependent activation of histone deacetylases (HDACs), respectively.
Moreover, AMPK can block IIS by induction of the PIP3 phosphatase
PTEN. Several pharmacological interventions are available that reduce
(▼) or stimulate (▲) the activity of the different metabolic pathways
and are in part used to treat metabolic disorders in human patients. See
text for details.
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growth controlling protein biosynthesis, transcription,
nutrient uptake, and energy expenditure as well as autop-
hagic activity. Consistent with its central role in the reg-
ulation of energy homeostasis, TORC1 activity is closely
coordinated with key metabolic pathways such as IIS, AKT,
and AMPK (Fig. 3) as well as via endocrine signaling of the
central nervous system. TORC1 is the direct pharmacolo-
gical target of rapamycin, which inhibits TORC1 activity.
The alternative TORC2 complex, however, has been shown
to be inhibited only after prolonged rapamycin treatment
[62]. TORC2 critically regulates cytoskeletal organization,
and activity of several kinases (e.g., AKT and SGK1) and
consequently associated downstream processes.

In contrast to IIS, which is responsive to high glucose
conditions, TOR activity is regulated through amino-acid
levels. Glucose levels, however, also impact on TOR
indirectly through AKT, thus integrating IIS and stress-
response signals (Fig. 3). TOR signaling attracted most
attention due to its beneficial effect on aging and age-related
diseases, either by pharmacological or genetic intervention.
In several model organisms TOR inhibition increases life-
expectancy and provides positive effects on metabolic
parameters [63, 64], mitochondrial activity, and insulin
sensitivity upon long-term rapamycin treatment [65].

Interestingly, lifespan extension by rapamycin in Droso-
phila was shown to be independent of impaired IIS or
dietary restriction [66]. In fact, increased lifespan is medi-
ated by TORC1-dependent regulation of proteostasis path-
ways including protein biosynthesis and autophagy [66].

Regulation of proteostasis via TOR signaling occurs on
several levels, reshaping the cellular proteome (Fig. 2). Two
central downstream effector proteins of TORC1, eukaryotic
translation initiation factor 4E-binding protein (4E-BP) and
ribosomal protein S6 kinase 1 (S6K1), control protein
biosynthesis. Upon TORC1-dependent phosphorylation of
4E-BP, its sequestering activity towards eukaryotic trans-
lation initiation factor 4E (eIF4E) is released, consequently
reinforcing translation initiation of 5′ capped mRNAs
[67, 68]. Activation of 4E-BP upon TORC1 inhibition has
beneficial consequences on several aging parameters and
lifespan regulation [54, 69, 70]. Of note, downstream
effectors of 4E-BP namely MTFP1, TFAM, and PGC-1-
alpha stimulate health-promoting effects of 4E-BP via
mitochondrial functionality [61, 63].

Similar to 4E-BP, S6K1 phosphorylation upon TORC1
activation promotes global protein biosynthesis [71, 72],
whereas S6K1 inactivation increases lifespan and metabolic
health [73]. Downstream targets of S6K1 again illustrate the

Fig. 4 Organ-specific physiological regulation of metabolism.
Overview on metabolic pathways and how they influence the meta-
bolic profile of different tissues including, liver, adipose tissue, mus-
cle, and brain. IIS and TOR signaling are activated upon nutrient
deprivation and either trigger anabolic nutrient utilization or counteract
catabolic processes that increase nutrient availability and lower
appetite and feeding behavior. In contrast, AMPK signaling and

sirtuins act in response to nutrient deprivation promoting nutrient
replenishment but inhibiting nutrient/energy storage. Sirtuins promote
feeding behavior and growth hormone (GH, somatotropin) as well
as thyroid-stimulating hormone (TSH) secretion, which antagonize
the action of insulin and increase fat breakdown to provide the
energy necessary for tissue growth. Arrows indicate inhibition (▼) or
stimulation (▲) of the metabolic processes.
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Table 1 Disease models linked to proteostasis decline are associated with altered metabolic activity.

Disease Metabolic pathway Effect on proteostasis Organism References

Neuro- and muscle degenerative disorders

Alzheimer’s disease IIS/DAF-2▼ Reduced aggregation-mediated Aβ toxicity Ce Cohen et al. [29]

FOXO/DAF-16▲ Mm Cohen et al. [165]

Sirtuins▲ SIRT1 overexpression and resveratrol treatment reduced tau
phosphorylation and Aβ accumulation/neurotoxicity

Rn Chen et al. [166]

Mm, Hs Min et al. [167]

Mm, Rn, Hs Kim et al. [168]

TOR▼ Activation of autophagy, clearance of Aβ-aggregates Mm Caccamo et al. [169]

Parkinson’s disease Sirtuins▼ Deletion of Sir2 abrogates α-synuclein toxicity through modulation of
autophagy

Sc Sampaio-Marques
et al. [170]

Sirtuins▲ Resveratrol-mediated activation of SIRT1 enhanced α-synuclein
degradation via autophagy induction

Hs, Rn Wu et al. [171]

Sir2.1 suppresses α-synuclein inclusion Ce van Ham [172]

TOR▼ Activation of autophagy and the proteasome, clearance of α-synuclein
aggregates

Rn Webb et al. [173]

TOR▼, AMPK▲ Activation of autophagy, clearance of preformed α-synuclein fibrils Hs Gao et al. [174]

AMPK▼,
constitutively active

Mitigation of α-synuclein toxicity Mm Bobela et al. [175]

AMPK▲ PARP overexpression depleted ATP pool, suppressing
neurodegeneration dependent on AMPK

Mm Kim et al. [108]

Huntington’s disease IIS▲ FOXO/
DAF-16▼

More proteotoxic polyQ-aggregates in the background of reduced
FOXO/DAF-16 signaling

Ce Morley et al. [176]

Hsu et al. [34]

Mm Cohen et al. [165]

Sirtuins▲ Resveratrol supplementation protected against mutant huntingtin-
induced cytotoxicity

Mm Parker et al. [177]

TOR▼ Activation of autophagy, clearance of polyQ-aggregates Hs, Mm, Dm Ravikumar et al. [178]

TOR▼ Activation of autophagy, clearance of polyQ-aggregates Hs Roscic et al. [179]

TOR▼ Perturbation of amino-acid levels inhibits TOR and activates autophagy Dm Vernizzi et al. [180]

AMPK ▲ Reduced number of protein aggregates, induction of autophagy,
improved neuronal function

Ce Gómez-Escribano
et al. [181]

Amyotropic lateral
sclerosis

TOR▼ Mutations in ubiquillin genes induce ER-stress and proteotoxicity that
reduces TOR signaling and induces autophagy

Dm Şentürk et al. [85]

TOR▼ Proteasomal degradation of VAB(P58S)-aggregates Dm Chaplot et al. [182]

SOD1▼
Sirtuins▲ SIRT1 activation by resveratrol reduced SOD-1-mediated

proteotoxicity
Mm Markert et al. [183]

Kim et al. [168]

Ischemic brain injury TOR▼ Perturbation of amino-acid levels inhibits TOR and activates autophagy Mm, Hs Yamada et al. [184]

Prions disease TOR▼ Decreased lateral spreading due to decrease in exosomal release Mm Abdulrahman et al. [185]

Duchenne muscular
dystrophy

IIS▼ FOXO/DAF-16▲ Less protein aggregates and age-dependent proteostasis disruption in
muscle cells

Ce Oh and Kim [186]

Metabolic disorders

Hyperinsulinemia/insulin
resistance/deficiency

IIS▼ Increased (cardiac) muscle proteolysis promotes synthesis and stability
of chaperones and UPRER components and suppresses autophagy

Mm, Rn Wang et al. [49]

Hu et al. [187]

Yang et al. [188]

Otoda et al. [189]

Minrad et al. [190]

T1DM IIS▼ Increased whole body protein degradation Hs, Mm Nair et al. [191]

Increased proteasome function Mm Xu et al. [99]

T2DM IIS▼ Increased protein aggregation in β-cells Zr, Rat, Hs Kaniuk et al. [192]

Hyperglycemia IIS▼ Enhanced 26S proteasome functionality through peroxynitrite/
superoxide-mediated PA700-dependent proteasomal activation

Mm, Hs Liu et al. [193]

Cancer

Glioblastoma TOR▲ Gliomagenesis is promoted by a positive feedback loop involving
TORC2/AKT/HSF1/RICTOR

Hs Holmes et al. [194]

Multiple myeloma AKT▼ Inhibition of translation initiation as target to induce breach of
proteostasis and apoptosis in MM cells

Hs Zismanov et al. [195]

TOR▼ Zismanov et al. [196]

Sirtuins▼ SIRT6 depletion renders cells tumorigenic. SIRT6 regulates cell
proliferation by acting as a corepressor of c-Myc, inhibiting the
expression of ribosomal genes

Mm Sebastián et al. [197]

Table displays metabolic pathways with elevated (▲) or reduced (▼) activity and correlation to effects on proteostasis pathways in model
systems of human disease. Model systems used in referenced studies are indicated as Homo sapiens (Hs), Mus musculus (Mm), Rattus norwegicus
(Rn), Zucker rat (Zr), Drosophila melanogaster (Dm), Caenorhabditis elegans (Ce), Saccharomyces cerevisiae (Sc).
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intricate interconnection of signaling pathways linked to
energy homeostasis. On the one hand, beneficial effects of
S6K1 inactivation are genetically dependent on AMPK (see
below) and likely do not result from global translation
regulation [73]. On the other hand, S6K1 has been shown to
impede IIS under nutrient rich conditions through inhibitory
phosphorylation of IRS1 and IRS2 [69, 73].

In addition to its role in promoting protein biosynthesis,
ubiquitin-mediated protein degradation via the proteasome
and autophagy are regulated by TOR signaling. In contrast
to enhanced protein biosynthesis, protein degradation is
suppressed by TOR activation. Inhibition of both, TORC1
and TORC2 results in elevated ubiquitylation and protein
degradation [74]. In both yeast and mammalian cells, TOR
inhibition activates the Map-Kinases Mpk1 and ERK5,
respectively, increasing the abundance of active protea-
somes through chaperone-assisted assembly [75]. An
independent study, however, reported decreased transcrip-
tion of proteasomal subunits upon genetic TOR activation,
which is dependent on the nuclear respiratory factor 1 [76].
These controversial observations on proteasome regulation
by TOR might be explained by experimental context. Acute
TOR inhibition by rapamycin treatment might promote
proteasomal activity [74, 75], whereas chronic activation
can also increase proteasome abundance, possibly to pro-
vide free amino acids for protein biosynthesis [76].

Aside from regulating proteasomal protein turnover,
TOR is recognized as a well-established inhibitor of protein
degradation by autophagy. Decreased autophagy is medi-
ated through TORC1-dependent inhibition of UNC-51-like
autophagy-activating kinase 1 (ULK1) [77] as well as
inhibition of transcription factor EB (TFEB), preventing
TFEB-mediated lysosomal biogenesis and autophagy
[78–80]. Interestingly, also TORC2 activity has been linked
to a selective form of autophagy that is mediated by
chaperone-assisted lysosomal import. TORC2 that is loca-
lized to the lysosomal membrane inhibits import and turn-
over of chaperone-mediated autophagy substrates [81].

Of note, increased autophagic turnover has beneficial
effects on aging parameters and cellular physiology and has
been considered as health- and lifespan supporting
mechanism of TOR inhibition. In this regard, the let-7
microRNA was identified as a physiological regulator of
autophagy in the context of TOR activation. Under nutrient
starvation, let-7 inhibits amino-acid sensing and conse-
quently TOR activation to allow autophagy induction [82].
In the context of mechanical muscle stress, the co-
chaperone BAG3 locally sequesters the TORC1 inhibitor
TSC to facilitate autophagy induction at defined sites of
filament damage, while at the same time allowing TORC1-
mediated protein biosynthesis in the cytosol [83]. A recent
study overexpressing molecular chaperones in yeast
revealed that improved chaperoning capacity results in

TORC1 inactivation along with AMPK activation, thus
implying that proteostasis also serves as a regulator of
metabolic pathways [84]. This concept is supported by
findings in a Drosophila model of ALS. Loss-of-function
mutation in ALS-linked ubiquillin genes, generates pro-
teotoxicity and ER-stress, which in turn inhibits TORC1
activity and autophagy induction. In this case, however,
autophagy induction is insufficient to compensate proteo-
toxicity due to failure in lysosomal acidification and con-
sequent autophagic clearance [85].

Another proteostasis mechanism regulated by TOR sig-
naling is linked to stress-response pathways of the ER. The
two branches of the UPRER, mediated through the ER-
resident sensors IRE1 and PERK, are modulated by TORC1
activity. Whether TOR signaling also affects the third
ATF6-dependend branch of the UPRER remains to be elu-
cidated. Inhibition of TORC1 suppressed IRE1 and PERK
signaling including downstream effector pathways such as
JNK and NF-kappa-B [86–88]. A potential mechanism was
suggested by the recent finding that lysosomal degradation
and cytosolic resorption of amino acid is critical for ER
functionality and prevents UPRER induction [89]. Besides
UPRER, PERK has another established role in ISR activa-
tion parallel to other activating kinases [15, 16].
TORC1 signaling impacts on eIF2A at multiple levels
through either phosphorylation or de-phosphorylation steps.
Activation of TORC1, via nutrient or growth factor supply
or by genetic ablation of the TORC1 inhibitor TSC, results
in eIF2A de-phosphorylation and thus inactivation of the
ISR [88, 90]. Similarly, TORC1 inhibition results in ele-
vated eIF2A phosphorylation which is necessary for effi-
cient autophagy induction [91]. In the context of amino-acid
deprivation the general control non-depressible protein 2
(GCN2) kinase activates the ISR through eIF2A phos-
phorylation [16]. Interestingly, GCN2 and TOR control
protein synthesis in parallel pathways [92, 93], implicating
GCN2 as another critical module connecting metabolic
adaptation to proteostasis regulation.

AMPK signaling

AMPK signaling acts as a pivotal sensor of cellular energy
levels and becomes activated when available energy is
scarce. AMPK activity is thus directed toward preservation
of ATP through catabolic metabolism and simultaneous
inhibition of anabolic pathways, including TOR signaling
[94] (Figs. 3, 4). AMPK is activated by high AMP levels,
allosterically [95] and indirectly through phosphorylation
by liver kinase B1 (LKB1). Moreover, other molecules
characteristic for cellular energy consumption activate
AMPK [94]. Conversely, AMPK activity is inhibited when
energy supply is high, e.g., through amino acids or AKT
(Figs. 2, 3) and TNF-alpha signaling. The repertoire of
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substrates is huge and exemplifies the diversity of cellular
processes regulated by AMPK [96]. In this regard it should
be noted that AMPK constitutes a key regulator of cellular
glucose and lipid catabolism, aiming at ATP generation
(Fig. 4). Consequently, dysregulated AMPK signaling has
been intensively linked to metabolic pathologies including
diabetes, cancer, cardiovascular disease, neurodegeneration,
and aging (Table 1).

A connection between AMPK signaling and proteostasis
is well established at the level of proteasomal protein
degradation (Fig. 2). For instance, high levels of extra-
cellular glucose are known to increase the activity of the
26S proteasome. Of note, increased proteasomal activity
under high glucose levels is dependent on AMPK activity.
Both pharmacological activation or expression of a con-
stitutively active AMPK variant suppressed glucose-
induced proteasome activity [97]. Accordingly, genetic
ablation or inhibition of AMPK leads to enhanced protea-
somal activity [97, 98]. The molecular mechanism of pro-
teasome inhibition by AMPK remains less defined. One
study reports a role of posttranslational modification of the
19S regulatory particle of the proteasome by O-
GlcNAcylation. O-GlcNAcylation of proteasome subunits
suppresses the assembly of the 26S holoenzyme and con-
sequently its degradation capacity [20]. Inhibition of AMPK
activity is linked to concomitant increase in 19S O-
GlcNAcylation, thus explaining increased 26S proteasomal
activity [99]. An alternative regulatory mechanism was
proposed based on the protein–protein interaction of AMPK
with the proteasomal subunit PSMD11 (Rpn6p in yeast)
[100]. How phosphorylation of PSMD11 is correlated with
proteasomal activity remains to be determined. In this
regard it should be mentioned that PSMD11 has been
recognized as a potent and evolutionary conserved deter-
minant of proteasomal activity ensuring stress resistance
and longevity [101, 102]. As elevated proteasomal activity
upon PSMD11 expression is dependent on the FOXO4
transcription factor, regulation of proteasome activity by
AMPK and IIS signaling might be cross-connected via
controlling PSMD11. Next to regulation of the proteasome,
AMPK signaling has also been implicated in controlling the
activity of several ubiquitin E3 ligases, which could also
impact cellular proteostasis [103]. Pharmacologic activation
of AMPK has been shown to increase protein degradation in
muscle cells through increased expression of atrophy-
related ubiquitin ligases, depending on the FOXO1 and
FOXO3 TFs [104]. Protein turnover in muscle tissue is
attributed to the UPS upon exercise. In a human study of
trained athletes, exercise-induced proteolysis could be par-
tially suppressed by administration of branched-chain
amino acids, which was correlated with elevated AMPK
activity [105], suggesting a physiological role of AMPK in
controlling proteostasis in muscle. Experimental activation

of AMPK through elevated AMP/ATP ratio revealed the
transcription factor HSF1 as a direct target of AMPK
phosphorylation, diminishing HSR induction, consequently
rendering cells sensitized to proteotoxic stress [106]. This
finding is physiologically relevant as proteotoxic stress
inhibits AMPK activity, allowing adaptive transcriptional
response via HSF1 [106] (Fig. 2).

In the context of proteostasis mechanisms critical in
lifespan regulation, AMPK signaling has been linked to the
autophagic degradation as well. Under nutrient scarcity
AMPK activation drives the restoration of cellular amino-
acid levels and probably other metabolites through lysoso-
mal turnover and subsequent resorption into the cytosol
(Fig. 2). Autophagy regulation by AMPK is mediated
through cAMP-regulated transcriptional coactivators
(CRTCs), modulating cAMP-responsive element binding
protein (CREB) signaling [107]. Direct substrates of AMPK
are components of the autophagy regulating complexes
TORC1, ULK1, and PIK3C3/VPS34 that contribute to
autophagy induction [77, 108]. In addition, AMPK controls
autophagy in an indirect manner through the transcriptional
regulation of target gene expression of the TFs FOXO3
[109], TFEB [110], and BRD4 [111]. Alternative to
autophagosome formation and subsequent lysosomal
fusion, degradation inside the lysosome is also mediated
through direct vesicular uptake from the cytosol, called
microautophagy. In yeast cells starved for glucose, com-
promised proteasome particles are selectively removed via
microautophagy in an AMPK-dependent manner. This
regulation allows storage of functional proteasomes in
cytosolic deposits, which facilitates rapid resumption of
proteasomal activity upon glucose availability [112]. In
addition to the inhibitory role of protein quality control and
degradation, AMPK attenuates protein biosynthesis at sev-
eral steps. In parts, AMPK inhibits protein biosynthesis by
TOR inhibition [113, 114] but also by TOR-independent
negative regulation of ribosomal RNA (rRNA) synthesis
[115] as well as translational elongation [116, 117].

It should be noted that AMPK activity, aside from its
impact on proteostasis that is depicted here, is a nexus for
the regulation of diverse metabolic processes which are
intricately interconnected (Figs. 3, 4). AMPK emerges as a
critical regulator of mitochondrial biogenesis through PGC-
1-alpha and NAD-dependent acetylation, which has strong
implications in protein quality control mechanisms
[118, 119].

Sirtuin signaling

Sirtuins are evolutionally conserved members of the atypi-
cal class III histone deacetylase family, which require
nicotinamide adenine dinucleotide (NAD) as cofactor [120].
As an important metabolic molecule NAD directly links the
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activity of sirtuins to the metabolic state of the cell. Sirtuins
sense energy states by detecting high NAD levels. Seven
mammalian sirtuins, SIRT1–7, have been identified to
regulate a variety of biological functions including stress
responses, cell cycle regulation and metabolism [121]. In
the nucleus, SIRT1, SIRT6, and SIRT7 epigenetically shape
gene expression by deacetylating histones [122]. SIRT2 is
considered cytosolic, but has also been described to mod-
ulate cell cycle progression in the nucleus [123]. The
mitochondrial SIRT3, SIRT4, and SIRT5 regulate meta-
bolic enzyme activity and oxidative stress [124] and
respond to caloric restriction (CR) by inducing cellular
programs that favor mitochondrial oxidative metabolism as
wells as increasing stress tolerance. CR upregulates SIRT1,
SIRT3, and SIRT5 in mice and SIRT1 in humans [122]. In
contrast, mice fed a high-fat diet show a loss of SIRT1 via
proteolysis [125] and obesity can lower the expression of
SIRT1 in humans [126]. Upon fasting or CR, SIRT1 con-
tributes to coordinating a metabolic switch from anabolic to
catabolic processes, including glycogen degradation and
subsequent gluconeogenesis as well as ketone body pro-
duction, lipolysis, and lipid oxidation to maintain energy
levels [127] (Fig. 4). In this context, SIRT1 deacetylates and
regulates the activity of metabolic enzymes and TFs [128].

The effects of sirtuins on life span an tumorgenesis have
been heavily debated in the past years. Depending on the
molecular context and cancer type, some sirtuins function as
proto-oncogenes, while others exhibit features of tumor
suppressors. Despite recent reports that challenge the posi-
tive effects of sirtuins on lifespan extension [129], it has
been shown that nutrient limitation supports longevity
sirtuin-dependently [130] and overexpression of sirtuins
extends life span [121, 131, 132]. Moreover, the fact that
sirtuins require NAD for their enzymatic activity directly
links metabolism to aging and aging-associated diseases. A
comprehensive overview on the controversial discussion
about the impact of sirtuins on lifespan an tumorgenesis can
be found elsewhere [133].

Among other longevity pathways, sirtuins interact with
FOXO TFs to target cellular pathways (Fig. 3), that are
often deregulated during aging such as metabolism, cell
cycle progression and cellular senescence as well as stress
resistance and programmed cell death [134, 135]. Sirtuins
deacetylate FOXO TFs in response to cellular stress which
positively affects lifespan in worms, flies and mammals
[23, 133, 136].

So far, the impact of sirtuins on aging is mainly linked
towards CR, regulation of energy metabolism (Fig. 4),
and control of circadian rhythm as well as cell death
[122, 133–135]. However, a potential role of sirtuins in
maintaining cellular proteostasis introduces a new perspective
for sirtuin-mediated lifespan regulation (Fig. 2). NAD-
dependent life span extension in aged worms and mice

requires sirtuins to activate both, FOXO/DAF-16-mediated
antioxidant stress signaling and the UPRMT [137]. A crosstalk
between sirtuins and UPRER has been reported in mammals,
whereby SIRT1 deacetylates the IRE1‐dependent transcrip-
tion factor XBP-1 to inhibit its activity [138, 139]. SIRT1 also
suppresses translational inhibition by PERK‐eIF2A [140].
Moreover, SIRT7 positively affects translation by promoting
the transcription of ribosomal RNA by RNA polymerase I,
thereby contributing to ribosome biogenesis [141] (Fig. 2).

Furthermore, SIRT1 might support proteostasis and
protect against proteotoxicity through activating HSF1. In
mammalian cells, SIRT1 directly modulates the HSR by
deacetylating HSF1, suggesting that the HSR is under
metabolic control. Along that line, a recent study in C.
elegans uncovered a sir2.1-dependent synergistic effect of
CR and HSR on the induction of hsp70 gene expression,
thereby increasing survival and fitness upon proteotoxic
stress conditions [142]. Furthermore, it was reported that the
SIRT1 homolog in yeast, Sir2, interconnects the UPRER and
HSR [143], which is necessary for HSR induction and that
Sir2 overexpression mimics HSR [143, 144]. The authors
demonstrated that activation of the UPRER by tunicamycin
treatment upregulates Sir2, which acts as a negative mod-
ulator of the UPRER ensuring only transient activation of
this pathway. Sir2 and an intact UPRER are required for
eliciting HSF1-mediated HSR, which impacts on stress-
response networks amongst different organelles [143].

As described above, CR and nutrient scarcity modulate
nutrient-sensing and metabolic pathways, including sirtuins,
TOR, and AMPK, to promote longevity possibly by reg-
ulating autophagy [145, 146]. In contrast to the TOR
pathway, Sir2 activates autophagy in yeast [147]. In mam-
malian cells, SIRT1 plays an important role in maintaining
autophagy upon nutrient deprivation by regulating the
autophagic factors ATG5, ATG7, ATG8, and ATG12 via
deacetylation [148]. For a more detailed overview, the role
of sirtuins in autophagy has been recently reviewed [149].
Interestingly CR and sirtuins and their influence on autop-
hagy have been linked to the pathogenesis of age-related
neurodegenerative diseases including AD, HD, PD, and
ALS (Table 1).

These observations collectively show that besides energy
metabolism (Fig. 4), sirtuins also impact on proteostasis
mechanisms and cellular stress-response pathways. Espe-
cially the ability to regulate autophagy renders sirtuins as
promising therapeutic targets for fighting neurodegenerative
disorders.

Discussion

This review provides an overview of how key metabolic
regulators impact on proteostasis mechanisms. Both,
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metabolic imbalance and proteostatic decline are causally
linked to aging and aging-associated pathologic disorders
(Table 1), underscoring the need to identify common sig-
naling nodes and shared mechanisms. Despite numerous
implications for an intricate interconnection of both pro-
cesses, metabolism and proteostasis are mostly studied from
independent perspectives. Future research is needed to
address the impact of declined proteostasis on metabolic
diseases and whether targeting protein quality control
mechanisms might be a relevant clinical intervention.
Conversely, targeting metabolic signaling pathways should
be considered as possible strategy for treatment of neuro-
degenerative disorders.

One interesting question remains how viability and
functionality are ensured when turning on/off growth
pathways that remarkably remodel the cellular proteome.
This implies that specificity in protein biosynthetic and
degradation pathways need to exist. In the case of selected
regulation of stress-response genes through uORFs or 5′-
capped mRNAs, global translation inhibition can be coor-
dinated with simultaneous activation of tailored adaptive
responses. Conversely, little is known about the selectivity
of protein degradation pathways in that context. In this
regard, two recent comprehensive proteomic studies suggest
that autophagic degradation upon TOR inhibition or amino-
acid withdrawal specifically affect autophagic degradation
of ER components (ER-phagy) but not ribosomes (Ribo-
phagy) to regenerate amino-acid levels [150, 151]. Pro-
teomic analyses in long-lived C. elegans mutants lacking
the insulin receptor DAF-2 revealed a significant increase in
global protein half-life. However, it remains to be examined
how a long-lived proteome contributes to organismal health
and longevity and what are the molecular mechanisms that
preserve proteostasis under these conditions [152, 153].
Generally, enhanced autophagic degradation has established
beneficial effects in health parameters and models of neu-
rodegenerative diseases (Table 1). In contrast, the con-
tribution of translational regulation to proteostasis
maintenance in the context of metabolic regulation remains
to be further explored.

The disease-related accumulation of neurotoxic aggre-
gates and misfolded proteins is often accompanied with
systemic changes in metabolism occurring also in distal
tissues lacking protein aggregates. Likewise, stress
responses often trigger cell-non-autonomous communica-
tion which allows organism-wide regulation of proteostasis
[154–156]. However, the mechanisms by which the central
nervous system induces a response towards proteotoxic
stress in distal tissues remained unknown. Although there is
clear evidence that proteostasis networks are regulated in a
cell-non-autonomous manner there are still many open
questions on how the different layers of proteostasis control

are coordinated and which factors mediate the interorgan
communication. External stimuli play a key role in the
context of organismal regulation of proteostasis and meta-
bolism. Amongst them, a balanced diet, food quality, and
microbiota composition define stress resistance and orga-
nismal health. Besides cognitive decline, a common
pathology in neurodegenerative diseases include gastro-
intestinal symptoms and dysfunctions [157, 158]. Recent
research focused on deciphering the underlying commu-
nication pathways between gut bacteria and the central
nervous system (microbiota–gut–brain axis) and dysregu-
lation in this communication have been implicated in the
pathophysiology of neurological diseases [159]. Moreover,
a diverse, healthy diet correlates with diverging gut
microbiota, which is associated with improved overall
global indices of health, frailty, and immune function,
especially in the elderly population [160]. However, not
only the food intake and the composition of the microbiome
but also food perception has an influence on metabolism.
Recent studies implicate that sensory perception modulates
energy homeostasis via integration of neuronal signals ori-
ginating from sensory tissues [161, 162]. Moreover, olfac-
tory dysfunction has been acknowledged as a symptom
present in dementias and the elderly population [163].
Interestingly, our recent study links sensory food perception
to organismal proteostasis in C. elegans, which is cell-non-
autonomously communicated via neuronal signaling
between olfactory neurons and intestinal cells [164]. How-
ever, it is still unclear how environmental and/or nutritional
cues are incorporated into proteostasis pathways and how
this could be used as health benefit. Irrespective of the
progress made in characterizing systemic stress-response
programs, a major challenge in this research area is to
extend our fundamental understanding of the mechanistic
coordination of energy metabolism, microbiota–gut–brain
axis, food perception and the control of protein quality
mechanisms.
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