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Abstract
Most cellular stress responses converge on the mitochondria. Consequently, the mitochondria must rapidly respond to
maintain cellular homeostasis and physiological demands by fine-tuning a plethora of mitochondria-associated processes.
The outer mitochondrial membrane (OMM) proteins are central to mediating mitochondrial dynamics, coupled with
continuous fission and fusion. These OMM proteins also have vital roles in controlling mitochondrial quality and serving as
mitophagic receptors for autophagosome enclosure during mitophagy. Mitochondrial fission segregates impaired
mitochondria in smaller sizes from the mother mitochondria and may favor mitophagy for eliminating damaged
mitochondria. Conversely, mitochondrial fusion mixes dysfunctional mitochondria with healthy ones to repair the damage
by diluting the impaired components and consequently prevents mitochondrial clearance via mitophagy. Despite extensive
research efforts into deciphering the interplay between fission–fusion and mitophagy, it is still not clear whether
mitochondrial fission essentially precedes mitophagy. In this review, we summarize recent breakthroughs concerning OMM
research, and dissect the functions of these proteins in mitophagy from their traditional roles in fission–fusion dynamics, in
response to distinct context, at the intersection of the OMM platform. These insights into the OMM proteins in mechanistic
researches would lead to new aspects of mitochondrial quality control and better understanding of mitochondrial
homeostasis intimately tied to pathological impacts.

Facts

● Mitochondria undergo continuous fission and fusion
events, referred as mitochondrial dynamics.

● Mitochondrial quality control is precisely governed by
autophagic degradation, termed as “mitophagy”.

● Whether the interplay of mitochondrial dynamics and
mitochondrial quality control simply bases on mito-
chondrial morphology or size remains to be answered.

● Fused mitochondria might be permissible to mitochon-
drial elimination, mostly relying on the orchestration of
OMM proteins.

● The crosstalk between mitochondrial dynamics and
mitophagy should be an emerging area to be addressed.

Open questions

● How does specific OMM proteins engage in regulating
mitochondrial homeostasis by coordinating mitochon-
drial dynamics and mitochondrial quality control?

● How are tubular mitochondria segregated and directly
pinched off to be engulfed by the autophagy isolation
membrane?

● Given the interplay of distinct molecular pathways
of mitophagy, what signal in physiological contexts
would stimulate specific route of mitochondrial
elimination?
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● Is mitochondrial fission a prerequisite for mitochondrial
clearance?

● In tight coordination with damaged mitochondrial
degradation, how would mitochondrial biogenesis be
involved to maintain proper organelle homeostasis,
coupled with mitochondrial dynamics?

● In light of the actions of mitophagic modulators, what
therapeutic strategy would be administrated to target
mitochondria-related diseases?

Introduction

Mitochondria are double-membrane-bound subcellular
organelles found within the cells of all multicellular
eukaryotes. This organelle is considered a “powerhouse” at
the heart of cell metabolism, catalyzing the production of
adenosine triphosphate (ATP) via oxidative phosphoryla-
tion (OXPHOS) [1, 2]. The outer and inner membranes of
the mitochondria are composed of a mosaic of proteins and
phospholipids, with a distinct intermembrane space between
them. The inner membrane invaginates and curves inward
into the mitochondrial matrix to form the cristae [3, 4]. A
number of assembled complexes involved in OXPHOS and
ATP synthesis are located on the cristae [5, 6].

Mitochondria undergo continuous cycles of fusion, dur-
ing which segregated mitochondria join; and fission, during
which the mitochondria divide. Collectively, this process is
referred to as “mitochondrial dynamics” [7–13]. The mito-
chondrial fission and fusion adapt well to maintain the
mitochondrial size, morphology, and position [14, 15].
Adapting to distal metabolic demand, mitochondrial fission
facilitates mitochondrial traffic and is crucial to maintain
organelle distribution [16, 17]. In contrast, mitochondrial
fusion serves in the communication of mitochondrial con-
tent, including mitochondrial DNA (mtDNA) and mito-
chondrial proteins involved in OXPHOS [18, 19], as well as
buffering acute damages within mitochondria [20, 21].
Unrestricted fission in response to cellular stress leads to
small and fragmented mitochondria, during which calcium
signaling and cell death pathways are activated [22]. Con-
versely, excessive fusion not only leads to a hyper-fused
mitochondrial network, that is proposed to counteract
environmental insults and maintain cellular integrity, but
also confers an abnormal copy number of mtDNA [18, 21].

The mitochondrion has acquired a myriad of functions
over its evolution, such as regulating calcium homeostasis,
redox signaling, and heme synthesis [23–25]. In
addition, mitochondria are essential hubs for several
inflammatory processes, including NLRP3 inflammasome
activation [26–28] and cGAS-STING pathways [29].
Moreover, increasing evidence supports that mitochondria
can sense cellular stress challenges and collaborate with

various cellular processes, including apoptosis, autophagy
and mitophagy, to maintain cellular homeostasis [1, 30–34].
Notably, mitochondrial turnover, achieved by selective
autophagy (mitophagy), is one such terminal response to
extreme stress. Mitophagy is a highly hierarchical process
that is composed of isolation membrane enclosure of
mitochondria, formation of mitophagosome and digestion
of mitochondria within lysosome [35–39].

Up till now, most studies have considered mitophagy to
go in-hand with mitochondrial dynamics: short mitochon-
dria generated by mitochondrial fragmentation are easily
targeted by mitophagy, as these small and isolated mito-
chondria are readily engulfed by the autophagy machinery
and permissible for elimination [40–43]. Yet, our under-
standing on their interplay remains limited. Of note, many
proteins accounting for mitochondrial dynamics are also
involved in mitophagic progression [42, 44, 45]. Specifi-
cally, the outer mitochondrial membrane (OMM) proteins
have been intensively studied for their roles in mitochon-
drial morphology and mitochondrial elimination
[42, 43, 46]. However, whether OMM proteins mediate
mitochondrial division, while simultaneously coordinating
mitophagy as a coherent mechanism remains unclear. In this
review, we aim to summarize the recent breakthroughs on
the functions of OMM proteins in mediating the crosstalk of
mitochondrial dynamics and mitochondrial quality control.
We then convey our insights into how mitochondrial
dynamics and mitophagy are coordinated and provide our
perspectives on the future research to advance this field.

Mitochondrial dynamics

Mitochondria are dynamic and mobile organelles [22], which
are transported by various motor proteins along the cytoske-
leton [47]. Fundamentally, the process of mitochondrial
fusion allows for the mixing of numerous mitochondrial
contents between neighboring mitochondria. The com-
plementation process of fusion between damaged mitochon-
drion and healthy mitochondrion helps buffer transient
stresses or defects within a mitochondrion by diluting toxins
[18, 48, 49]. Moreover, any imbalance to fission or fusion
during cell division can impair mtDNA segregation. Conse-
quently, the dysregulation of the mitochondrial fission–fusion
leads to defects in a recalibration of cellular responses and
transmission of diffusible signals within mitochondria, which
subsequently cause mitochondria-associated diseases at the
organismal level [50–54].

Mitochondrial fission machinery

Mitochondrial division is primarily mediated by dynamin-
related guanosine triphosphatases (GTPase) protein,
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dynamin 1 (Dnm1) in yeast [15] and dynamin-related pro-
tein 1 (Drp1) in mammals [55]. Drp1 predominantly loca-
lizes to the cytoplasm and is recruited onto the OMM by
accessory receptors [51, 56]. This oligomeric ring-like
Drp1 structure forces the OMM to furrow; as a result, its
GTPase activity at the scission sites causes the mitochondria
to divide [57]. Despite the importance of Drp1 for the
OMM constriction, Drp1 lacks a transmembrane domain to
target the OMM directly. Several other OMM proteins must
help recruit Dnm1/Drp1: in yeast, the mitochondrial outer
membrane-anchored mitochondrial fission 1 protein (Fis1)
[7], mitochondrial division protein 1 (Mdv1) [58] and
CCR4-associated factor 4 (Caf4) [59] are responsible for
Dnm1 accumulation on the mitochondria. However, to date,
no Mdv1 and Caf4 orthologs have been identified in
mammals. Rather, it seems that mammals employ different
OMM proteins to achieve Drp1-mediated fission (Fig. 1A),
including the mitochondrial fission factor (Mff) [10, 60],
mitochondrial dynamics proteins 49 and 51 (MiD49 and
MiD51) [11, 12, 61]. Although these proteins are all crucial
for mitochondrial fission, they differentially modulate the
activity of Drp1.

For example, overexpression of high Mff levels leads to
mitochondrial fragmentation, whereas cells depleted of Mff
by siRNA or Mff-null cells, have highly-fused mitochondria
and dysregulated Drp1 assembly [10, 11]. While Mff exists
in all metazoans, MiD49 and MiD51 are chordate-specific
to orchestrate mitochondrial dynamics [12]. Cellular over-
expression of MiD49 or MiD51 causes excessive inactive
Drp1 by inhibiting its GTPase activity, causing them to be
sequestered from the OMM [11, 12, 61, 62]. Conversely,
cells loosing MiD49 or MiD51, or MiDs-depleted cells
show abolished oligomerization of Drp1 on the OMM,
resulting in mitochondrial elongation or collapse [11].

The nucleotidyl transferase domain of MiD51 has a high
affinity for adenosine diphosphate (ADP): in the presence of
ADP as an MiD51 cofactor, Drp1 assembles to form spirals
with a high GTPase activity that warps around the mito-
chondrial tubules to sever the OMM [63, 64]. Thus, ADP
binding is structurally indispensable for Drp1-mediated
mitochondrial fission. However, MiD49 shows only partial
conservation as with the MiD51 ADP-binding sequence and
ADP is not considered as a MiD49 cofactor for stimulating
mitochondrial fission [64]. In addition to the distinct
structures of MiD49 and MiD51, little is known about
whether MiD49 and MiD51 differentially regulate mito-
chondrial homeostasis. Until very recently, we revealed that
MiD51, but not MiD49, possesses a specific regulation on
cell death and mitophagy, independent of its fission–fusion
function [65].

In another mitochondrial fission regulatory protein, the
functions of the 16-kDa OMM protein Fis1 on mitochondria
dynamics has been of great interest. Fis1 contains a single

transmembrane domain that integrates with the OMM [8]
and was originally identified in budding yeast Sacchar-
omyces cerevisiae. Fis1 physically interacts with Dnm1 and
mediates Dnm1 assembly on the OMM [7]. Although the
loss of Fis1 in yeast induces defects in mitochondrial Dnm1
recruitment and contributes to failed fission [66], its role in
mammalian cells is debated in recent years [10, 60, 67]. For
example, while high levels of Fis1 in HeLa and COS7 cells
induce fission [67], conditional knockout of Fis1 in colon
carcinoma cells causes Drp1 assembly and mitochondrial
fragmentation [10]. Overall, it seems that Mff, MiD49, and
MiD51 have a more predominant role than Fis1 in reg-
ulating Drp1 recruitment onto mitochondria-associated
membranes (MAM) in mammals [10–12, 68].

Fig. 1 Molecular mechanisms of mammalian mitochondrial
dynamics. A During mitochondrial division, the endoplasmic reticu-
lum (ER) converges with mitochondria. At the constriction sites spa-
tially marked by mitochondria-associated membranes (MAM), Drp1 is
recruited by Mff, MiD49 or MiD51 onto the cytosolic surface of
mitochondria and acts as a GTPase to complete the scission of outer
mitochondrial membrane (OMM). Although Fis1 was originally
identified as an essential Drp1 adapter for fission in yeast, it is dis-
pensable for mitochondrial dynamics in mammals. B In contrast to
fission, OMM proteins Mfn1 and Mfn2 form mitofusin complexes by
homo-dimerization or hetero-dimerization to tether the adjacent outer
membranes. Driven by mitofusin proteins GTPase activity, OMM first
fuses, followed by the subsequent inner mitochondrial membrane
(IMM) fusion, due to the GTPase activity of OPA1.
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Mitochondrial fusion machinery

OMM fusion is mediated by the GTPase proteins mitofusin
1 (Mfn1) and mitofusin 2 (Mfn2) (Fzo1 in yeast) [69].
Subsequent fusion of the inner membrane is achieved by
OPA1 (Mgm1 in yeast) [70] (Fig. 1B). Prior to fusion,
Mfn1 and Mfn2 assemble as homotypic and heterotypic
dimers to tether to the adjacent OMM. They then undergo a
conformational change driven by the GTP hydrolysis that
facilitates the fusion process [71]. Interestingly, loss of
Mfn1 alone displays short mitochondrial tubules or spheres
in uniform sizes; whereas, Mfn2-depleted cells exhibit
mitochondrial spheres of widely varying sizes [50]. How-
ever, depletion of both Mfn1 and Mfn2 together induces a
greater impact of mitochondrial fragmentation with almost
uniformed characteristic mitochondrial fragmentation,
either with very short mitochondrial tubules or very small
spheres. Pathologically, missense mutations of Mfn2 in
human can lead to Charcot–Marie–Tooth neuropathy type
2A (CMT2A), an axonal peripheral sensorimotor neuro-
pathy, and autosomal dominant peripheral neuropathy [72].
Additionally, mice lacking mitofusin proteins die during
mid-gestation [50], implying that mitochondrial fusion is
critical to embryonic development.

OPA1 is the best-studied inner mitochondrial membrane
(IMM) fusion protein: it localizes to the inner membrane,
where it binds negative charged phospholipids and controls
cristae structure [51]. Although intrinsic OPA1 GTPase
activity is low, self-oligomerization induced by association
with phospholipids, such as cardiolipin, promotes GTP
hydrolysis and results in deformation and tubulation of the
inner membrane [52]. There are eight OPA1 isoforms that
are produced by RNA splicing. These isoforms include the
inner membrane-anchored long isoform L-OPA1 and the
intermembrane space-localized short isoform S-OPA1 [73].
The IMM peptidase OMA1 mediates OPA1 cleavage,
responding to mitochondrial membrane potential dissipa-
tion, as a balance between L-OPA1 and S-OPA1 is essential
in maintaining mitochondrial morphology [73, 74].

Mitochondrial fusion is presumably to compensate
defects by diluting stress inside of mitochondria. However,
when the damage reaches to a certain threshold that fusion
is uncapable to fix, a terminal response as destined mito-
chondrial removal may serve to maintain cellular home-
ostasis. Clearly, how interconnected mitochondria undergo
clearance would usher more in-depth understanding of
crosstalk among mitochondrial dynamics.

Mitochondria-associated diseases linked to
mitochondrial dynamics

Inherited defects in genes serving for the machinery of
mitochondrial dynamics contribute to mitochondrial

disorders. Charcot–Marie–Tooth neuropathy type 2A
(CMT2A) is a well-known genetically inherited neuronal
disease, implicated in peripheral nervous system, caused by
Mfn2 gene mutations [75–77]. Most of these mutations
locate within or close to its GTPase domain and mito-
chondrial targeting region, which are responsible for mito-
chondrial fusion competency [76, 78]. OPA1 dysregulation
confers susceptibility to dominant optic atrophy, a heredi-
tary optic neuropathy, coupled with unopposed fragmented
mitochondria [79, 80]. Imbalance of mitochondrial
fission–fusion also causes neurodegenerative diseases. In
the case of Parkinsonism, caused by autosomal recessive
mutations of PINK1 or Parkin gene, possesses small mito-
chondria and abnormal accumulation of Drp1 [21, 81, 82].
In fibroblasts derived from patients with Huntington’s dis-
ease, dysfunctional huntingtin interacts with Drp1 and
facilitates its GTPase activity, resulting in unrestricted
mitochondrial division [83]. In addition to cardiomyo-
pathies arising from hyper-fission, the skeletal muscle from
obese and type 2 diabetic patients displays small and
rounded mitochondria [78, 84–86]. Although significant
progresses have been achieved, readout of fission–fusion
dysregulation may not be sufficiently precise to understand
a variety of pathologic symptoms in mitochondria-
associated diseases. Clearly, continued efforts to under-
stand mitochondrial behaviors, linking mitochondrial
dynamics together with other actions, such as its quality
control pathway, are required. This would essentially con-
tribute to a more comprehensive perspective in therapeutic
interventions about mitochondrial diseases.

Mitochondrial quality control

Mitochondrial unfolded protein response

Mitochondria employ different signaling pathways to
maintain organelle quality in response to cellular stress. One
such pathway is the mitochondrial unfolded protein
response (UPRmt), which ensures mitochondrial proteos-
tasis. This response is activated upon the aggregation of
unfolded proteins within the mitochondria, or an imbalance
of nuclear-encoded and mitochondria-encoded proteins,
which confers proteotoxic stress [87–90]. UPRmt is well-
characterized in C. elegans, which requires the matrix
peptide exporter HAF1 and the bZIP transcription factor
ATFS-1 [91]. In cells with healthy mitochondria, ATFS-1
localizes to the mitochondrial matrix, whereby it is con-
stitutively degraded by AAA+-protease LON [92]. How-
ever, mitochondrial depolarization impairs ATFS-1 import
into the mitochondria, mediated by the transporter protein
HAF1 and triggers UPRmt. A large body of evidence sug-
gests that UPRmt activation recovers mitochondria from

830 H. Xian, Y.-C. Liou



damage and prolongs life span of organisms and is physio-
logically implicated in longevity and aging [90, 93, 94]. It
remains unknow whether the regulation of UPRmt in C.
elegans is developmentally conserved among different
species. Therefore, how this process is regulated at the
molecular level in mammals remains to be further studied.
In addition, given the beneficial impacts of UPRmt as a
defense mechanism induced by proteolysis dysfunction, it is
important to investigate pharmaceutical approaches to target
UPRmt, in a context that life span in higher organisms would
be improved. It would shed new insights into promising
therapeutic success to treat age-related diseases.

Mitophagy

Mitochondrial homeostasis is also achieved by selective
autophagic elimination of mitochondria (mitophagy), which
is active during cellular programming and differentiation.
One example is the clearance of redundant mitochondria
during erythrocyte differentiation [95]. Another instance is
evident during embryogenesis, where the offspring mito-
chondria are exclusively inherited maternally and the
paternal mitochondria must be removed by mitophagy [96].

In general, nonselective bulk autophagy is achieved via
five characteristic stages: (i) isolation membrane initiation,
(ii) phagophore expansion, (iii) autophagosome maturation,
(iv) auto-lysosome fusion and (v) lysosomal degradation
[32, 97–100]. During mitophagy (selective autophagy), the
mitochondria are presumably targeted as autophagic car-
goes, in line with these hierarchical steps for mitophago-
some formation [36, 38, 101–104]. Intriguingly, the
organelle-localized signals that trigger mitophagy or for
bulk autophagy may differ. The question as to how the
selective autophagic signaling assemble mitophagy, within
the steady-state conditions of the whole cell, remains
unclear. In addition, whether mitochondrial fission always
serves to promote mitochondrial elimination is not yet
completely understood [42].

PINK1/Parkin-dependent mitophagy

Mitophagy is differentially activated depending on disparate
stimuli and manifested via specific routes. PINK1/Parkin-
mediated mitophagy is the most prevalent mitophagy
pathway (Fig. 2A). Under basal conditions, PTEN-induced
putative kinase 1 (PINK1) is constitutively imported from
the cytosol into the mitochondrial intermembrane space,
where it is rapidly degraded by mitochondrial proteases and
proteasome [105]. However, under stress conditions, mito-
chondrial depolarization prevents PINK1 import, allowing
PINK1 to instead be stabilized on the OMM [34]. As a
mitochondria serine/threonine kinase, PINK1 subsequently

phosphorylates mitochondrial ubiquitin and the E3 ligase
Parkin [106, 107]. In a feed-forward mechanism, phos-
phorylated Parkin further stimulates Parkin recruitment and
activation [34, 108], allowing Parkin to target and ubiqui-
tinate OMM proteins, including Mfn1 [109], Mfn2
[40, 109], translocase of outer mitochondrial membrane 20
(Tom20), and voltage-dependent anion channel [110] for
degradation via the ubiquitin–proteasome system
[111, 112]. These ubiquitinated OMM proteins yield more
substrates for PINK1 phosphorylation, which in turn further
activates Parkin in a positive amplification loop. Finally,
autophagy receptors sequestosome-1 (p62/SQSTM1) [113],
optineurin (OPTN) [114] and calcium-binding and coiled-
coil domain-containing protein 2 (CALCOCO2/NDP52)
recognize ubiquitin-tagged OMM proteins, and are recrui-
ted to sequester the mitochondria as autophagic cargo [37].
These autophagy adapters contain an LC3 interacting region
(LIR), which directly interacts with autophagosomal LC3,
and instigates mitochondrial elimination via mitophago-
some trafficking and delivery into lysosome [115].

Despite plenty of evidence demonstrating the necessity
of PINK1 and Parkin in maintaining mitochondrial fidelity,
most studies have used in vitro models of ectopic Parkin
overexpression and induced mitochondrial damage with the
mitochondrial uncoupler, carbonyl cyanide m-chlorophenyl
hydrazine (CCCP) at high doses of 10–20 µM
[34, 109, 116, 117]. Less is known about the mitochondrial
“vulnerability” threshold to exogenous toxins, consequently
undergoing autophagic clearance. Of note, a low dose of
CCCP at 5 µM, the time-course of Parkin translocation at
1.5 h, degradation of the OMM proteins and mitochondrial
removal at 16 h, can be readily visualized and tracked [65].
Somewhat surprisingly, the OMM proteins possess dis-
parate modulation in the early versus the late stage of
mitophagy. For example, Mfn2 was found to brake mito-
phagy at an early phase [118] but positively serves for
mitophagy at a later stage of PINK1/Parkin-dependent
mitophagy [65]. Remarkably, our recent study showed that
MiD51 depletion, which induces mitochondrial fusion,
confers susceptibility to Parkin recruitment and is asso-
ciated with rapid clearance of the mitochondria [65]. This
study was the first to illustrate a novel action of MiD51, and
thus functionally segregate MiD51 from MiD49. More
importantly, this finding highlighted that mitochondrial
fission is not always indispensable for mitochondrial turn-
over [65].

PINK1/Parkin-independent mitophagy

Mitophagy receptor-mediated mitophagy

Recent intensive studies on alternative PINK1/Parkin-
independent mitophagy have made great progress in
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understanding mitochondrial quality control in cells devoid
of Parkin activity [45, 95, 119–122]. Studies have shown
that mitophagy receptors directly interact with and recruit
Microtubule-associated protein 1A/1B-light chain 3 (LC3)
[119, 120] or GABA Type A Receptor-Associated Protein
(GABARAP) [122], which are key components of autop-
hagosome membrane, via the LIR motif to help sequester
mitochondria for autophagic degradation. These receptors
thus serve as a degradation “eat-me” signal for damaged
mitochondria (Fig. 2B). Several OMM proteins have been
identified as mitophagy receptors, including Bcl2/adeno-
virus E1B 19 kDa protein-interacting protein 3 (BNIP3)
[123], NIX (also known as BNIP3L) [95], Fun14 Domain-
containing 1 (FUNDC1) [119], FK506-binding protein 8

(FKBP8) [120], and Bcl2-like protein 13 (Bcl2-L-13)
[45, 46].

In response to hypoxia, BNIP3 and NIX are tran-
scriptionally upregulated, and mediated by Hypoxia-
inducible factor 1-alpha (HIF1α) [124, 125] and Forkhead
box protein O3 (FOXO3) [125]. They play crucial com-
plementary roles to govern mitochondrial quality and avoid
abnormal reactive oxygen species (ROS) accumulation
[122, 126]. Moreover, NIX regulates red blood cells
development by removing redundant mitochondria [95].
The phosphorylation of BNIP3 and NIX drives mitophagy.
The phosphorylation of Ser17 and Ser24 flanking the
BNIP3 LIR motif promotes its binding to ATG8 members
[127]. The phosphorylated Ser34/35 juxtaposed to the NIX

Fig. 2 Mammalian mitophagy machinery. A During PINK1/Parkin-
dependent mitophagy, ectopic toxins (such as CCCP) cause mito-
chondrial damage, in which PINK1 cleavage and import fail. PINK1
thus stabilizes on the outer mitochondrial membrane (OMM) and
phosphorylates ubiquitin and Parkin. The attached OMM proteins are
subsequently ubiquitinated by the E3 ligase, Parkin. These ubiquiti-
nated OMM proteins serve as binding partners for P62. P62 further
recruits LC3 and assembles the isolation membrane for selective
autophagic mitochondrial removal. B During receptor-mediated
mitophagy, in which cells are under hypoxic or mitochondrial mem-
brane potential dissipation conditions, FUNDC1, Nix or Bcl-L-13 on

OMM directly attracts LC3 via an LIR motif for mitophagosome
formation. C STX17-induced mitophagy upon Fis1 loss participates in
autonomous mitochondrial elimination through a hierarchical autop-
hagic route. Under basal conditions, Fis1 interacts with STX17, pre-
venting the over-translocation of STX17 onto mitochondria, governing
the initiation of mitophagy. Fis1 loss primes the dynamic shuffling of
STX17 onto mitochondria-associated membranes (MAM) and mito-
chondrial pools. Mitochondrial STX17 then self-oligomerizes and
recruits ATG14. Subsequently, downstream autophagy modulators
assemble on the mitochondria to ensure commitment to mitochondrial
clearance.
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LIR enhances its affinity to LC3A/B [128], and the phos-
phorylation of NIX at Ser212 accounts for its dimerization
and robust recruitment of autophagosome onto mitochon-
dria [129]. Moreover, upon hypoxia, FUNDC1 is phos-
phorylated and associated with LC3 [119], whereas
FKBP8 strongly associates with lipidated LC3A upon
mitochondrial depolarization [120]. Consequently, mito-
chondria are engulfed by autophagosome for autophagic
elimination. Mammalian Bcl2-L-13, a homolog of yeast
protein ATG32, induces mitochondrial fission and mito-
phagy by interacting LC3 in HEK293 cells after CCCP
treatment [45]. In addition to the mechanisms mentioned
above, a novel Parkin- or LC3B-independent but p62/
LC3C-dependent piecemeal-type basal mitophagy has also
been revealed recently [102]. In this pathway, it is sug-
gested that lysosomal targeting of MTX1 by LC3C is
required for the maintenance of mitochondrial network
when cells undergo oxidative phosphorylation; however,
how exactly MTX1 is recognized by LC3C has not yet been
characterized [102].

Interestingly, the phospholipid cardiolipin, synthesized on
the IMM, also contains a unique LIR motif and can initiate
mitochondrial engulfment by LC3 via its externalization from
the IMM to the OMM upon mitochondrial depolarization
[130]. In primary cortical neurons and SH-SY5Y cells, rote-
none induces the redistribution of cardiolipin onto OMM, and
serves as an “eat-me” signal to recruit autophagosome onto
mitochondria [130]. Given by the different extent of mito-
chondrial membrane potential loss caused by rotenone and
CCCP treatment, cardiolipin was proposed to have a com-
plementary role of Parkin for mitophagy [131]. The
cardiolipin-mediated mitophagy is induced by mild stress
caused by rotenone treatment, but CCCP incubation primes
cells to PINK1/Parkin-dependent mitophagy. To this end, it
would be very interesting to examine whether cardiolipin
could function in the Parkin-depleted cells.

Collectively, mitophagy receptors are inactive under rest-
ing conditions, and their activity is elicited upon signals
triggering mitochondrial damage. These receptors then exhibit
a preferential association with LC3 family members, to recruit
autophagosome that encapsulates mitochondria. As a con-
sequence, mitochondria are removed via the autophagic route.
Over the past several years, this field has gained fruitful
achievements in understanding the various mitophagy recep-
tors at the molecular level, particularly focusing on the
autophagosome recruitment step. However, questions such as
what signal exactly triggers the phagophore to engulf mito-
chondria would need to be further explored.

Mitophagy receptor-independent mitophagy

Most of the mitophagic pathways described above have
been shown using acute and extreme stress signals, such

as inducing mitochondrial depolarization with CCCP
[34, 45], or mitochondrial respiration damage with oli-
gomycin plus antimycin A [37], or hypoxia [119]. We,
however, recently identified an additional mitophagy
mechanism without using ectopic inductions [39]. Speci-
fically, we showed that the SNARE protein, Syntaxin 17
(STX17), initiates mitophagy via a macroautophagic
pathway that is triggered by the loss of the OMM protein,
Fis1 [39]. Under basal conditions, Fis1 acts as a “gate-
keeper” to prevent the dynamic trafficking of STX17 from
the endoplasmic reticulum to the mitochondria and
restraining STX17 self-oligomerization. As a result, basal
mitophagy in the resting conditions is minimal. Con-
versely, loss of Fis1 through genetic approaches disables
this protective gatekeeper from the mitochondria, result-
ing in priming of STX17 to actively translocate onto
mitochondria-associated membranes (MAM) and the
mitochondria. STX17 further recruits ATG14 onto the
mitophagosome formation site and assembles the isolation
membrane involving a group of proteins including
DFCP1, WIPI-1, ATG5, and ATG16 on mitochondria
(Fig. 2C). Subsequently, Rab7 is recruited onto the
mitophagosome. As a small GTPase protein, Rab7 cycles
between two nucleotide-bound states, a GDP-bound
inactive state and a GTP-bound active state [132]. In the
presence of an active GTP-bound form, Rab7 drives
mitophagosome-lysosome fusion to ensure mitochondrial
elimination [39, 133]. In demand of mitophagy activation
upon Fis1 deficiency, STX17 also initiates the nuclear
translocation of transcription factor EB (TFEB), a master
regulator of autophagy and lysosome biogenesis [134].
Consequently, the nuclear localization and transcriptional
activity of TFEB serve for the need of mitochondria
turnover via autophagy [135].

More surprisingly, we also found that Drp1-modulated
mitochondrial fission makes little contribution to the
mechanistic regulation of STX17-induced mitophagy. The
hyper-fused mitochondria from the loss of Drp1 can still
undergo mitophagy [39]. Strikingly, this notion that fused
mitochondria are permissible to autophagic clearance casts
doubt to the mainstream concept that mitochondrial fission
is preliminary for mitophagy [21, 22]. We seek to address
this observation by illustrating the potential interplay
between mitochondria dynamics and mitophagy; adapting
to stress, mitochondrial dynamics and mitophagy are inti-
mately integrated and coordinated to maintain mitochon-
drial homeostasis. Of note, dominant-negative mutant of
Drp1, which facilitates mitochondrial fusion, abrogates
mitophagy [41]. A predominant notion in this field is that
mitochondrial fission represents an effort to favor mito-
phagy, given by that smaller mitochondria are easier to be
encapsulated by autophagosome to proceed mitophagy
[21, 22] (Fig. 3B). However, mitochondrial functions
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involve beyond the morphological side. In face of stress,
mitochondrial fusion may be an initial response to aid in
buffering and diluting mitochondrial defects (Fig. 3A). But
when the damage reaches to a certain threshold that fusion
is incompetent to repair, mitochondria are destined to be
cleared wholesale through the autophagic route. Under
intense damage such as calcium overload, oxidative stress
or toxin accumulation, acute shift to mitochondrial fission
may be retarded (Fig. 3B). Consequently, small sizes of
mitochondria fail to be achieved. Instead, fused mitochon-
dria acutely undergo mitophagy to terminate and remove
the damage. In this case, mitochondrial fusion is permissible

to cope with damage removal via mitophagic pathway
(Fig. 3C).

By tethering an autophagy molecule (STX17) and an
OMM protein (Fis1), our work is the first to bridge mito-
chondria and hierarchical autophagic route in a perfect
coalescence, in which autonomous mitophagy regulation
independent of ectopic mitochondrial damages is achieved.
The ER-resident protein STX17 has controversial roles in
PINK1/Parkin-dependent mitophagy; while it modulates the
localization of PGAM5 and the association between
PGAM5 and FUNDC1 to facilitate mitophagy [136],
STX17 is also reported to be dispensable for depolarized

Fig. 3 A schematic illustration about interplay between mito-
chondrial dynamics and mitophagy. A As a first line of defense to
toxins, mitochondrial fusion works as a “transient response”, by
mixing and sharing mitochondrial contents, to dilute and buffer
mitochondrial damage (black dots), as well as to recover bad mito-
chondria back to healthy mitochondria. B When deleterious damage
accumulates in the mitochondria, fission results in the segregation of
impaired mitochondria from healthy ones. Damaged mitochondria in

small sizes are destined for autophagic removal. C In response to acute
stress, mitochondria fuse in self-repair mechanism as a first-aid.
Simultaneously, stress cumulates on the mitochondria. When the
damage reaches a threshold at which “transient response” (fusion) is
incompetent to repair, in the case that mitochondrial fission is retarded
by mitochondria dysfunction or restrained by genetic ablation of fis-
sion machinery, mitochondria undergo autophagic elimination at a
hyper-fused state. Fused mitochondria are permissible to mitophagy.
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mitochondria removal mediated by PINK1/Parkin [137].
Given a novel role of STX17 in PINK1/Parkin-independent
mitophagy [39], future investigations concerning the role of
ER for mitophagy are needed. It is also unclear how the
spatial position of MAM allows for mitophagosome for-
mation. Another important piece of puzzle at the mechan-
istic level is what mitochondrial dysfunction intrinsically
initiates this type of autonomous mitophagy. Furthermore,
subsequent advances in pathological impacts of STX17-
induced mitophagy will promise more in-depth clues of
mitochondria-related diseases.

Bulk autophagy versus mitophagy

Bulk autophagy is an evolutionarily conserved “self-eating”
process, regulated by genetic programming. It is a highly
hierarchical pathway that involves the de novo formation of
vesicles characterized as “autophagosomes”, which engulf
regions of the cytoplasm, damaged or unwanted organelles,
protein aggregates, and invading pathogens [32, 33, 100]. In
particular, mitophagy is a selective form of autophagy:
numerous studies have illustrated that mitophagy employs
general autophagic mediators, such as ULK1 [37, 46, 138],
FIP200, and ATG13 [46, 104, 139], which are recruited
onto damaged mitochondria. It has been reported that Bcl2-
L-13, the mammalian homolog of Atg32, is an essential
mitophagy receptor in yeast and relies on the ULK1 com-
plex to regulate mitochondrial elimination [46]. However,
little is known regarding whether mitophagic formation is
distinguishable from the hierarchy of bulk autophagy.
Indeed, based on our study of STX17-initiated mitophagy
upon Fis1 loss, the mitophagic process directly recruits
ATG14 and PI3P (phosphatidylinositol-3-phosphate) bind-
ing proteins, but independent of upstream proteins ULK1
and ATG9A [39]. Therefore, we suggest that mitophagy is
activated by a specific “organelle-localized” signaling on
mitochondria, that differs from the “global signaling-trig-
gered” bulk autophagy. ULK1 is activated at the early stage
of bulk autophagy. However, the “organelle-localized”
mitophagy does not require ULK1, which is indispensable
for “global signaling-triggered” bulk autophagy, though a
well-established bulk autophagy modulator ATG13 dis-
plays an oscillatory dynamic translocation onto mitochon-
dria and accounts for mitochondrial clearance [104]. Greater
insights into the specific mitophagic machinery, that is
unique from bulk autophagic machinery may allow for a
better understanding of selective autophagy.

Physiological roles of mitophagy

Dysregulated mitophagy is highly implicated in various
pathologies, including those affecting neurons [101, 140–142]
and muscle [143], as well as aging [144, 145] and cancer

[146, 147]. PINK1/Parkin-dependent mitophagy is highly
emphasized in neurodegenerative diseases, such as Parkin-
son’s disease (PD) [101, 140, 148], Alzheimer’s disease (AD)
[142], and Huntington’s disease (HD) [149]. Mutations of
PINK1 and Parkin have been linked to autosomal recessive
PD [101, 140, 141]. Gene mutations cause the inactivity of
PINK1 [148] or Parkin [141, 150], which consequently
decelerates mitophagy in neuron cells. Lack of mitophagy
causes the accumulation of dysfunctional mitochondria,
which result in loss of dopaminergic neurons at the early
onset of PD [141]. In addition, key research on PINK1/Par-
kin-mediated mitophagy has led to an explosion of knowl-
edge regarding its significance in AD [142] and HD [149].
While the overexpression of Parkin in AD mice restored
activity-dependent synaptic plasticity and rescued behavior
abnormalities, including decreasing β-amyloid load [142],
mitophagy was found to be defective in the HD mouse model
[149]. Clearly, the specific mechanism of mitophagy among
different models of neurodegenerative diseases requires to be
further explored. How exactly mitophagy dysregulation con-
tributes to diseases is still enigmatic. Furthermore, the effects
of mitophagy are prominent in skeletal muscle development.
During myogenesis process from immature myoblasts to
mature myotubes, mitophagy is upregulated to ensure the
metabolic shift from glycolysis to OXPHOS, in support of the
increased energetic demand of contractile muscle [143]. Also,
dysfunction of mitophagy by depletion of ATG5 or P62 in
C2C12 cells retards myotube development [143]. Moreover,
the critical role of mitophagy in aging has been manifested by
life span analyses conducted in Drosophila [144, 145] and C.
elegans [151] models, in which mitophagy prolonged long-
evity but declined along with aging, most likely because that
mitophagy removes dysfunctional mitochondria coupled with
mtDNA mutations [152].

In the other spectrum, whether mitophagy positively
regulates tumorigenesis remains debatable
[124, 146, 153, 154]. Parkin loss is closely associated with
cancer progression in various tissues [153], as Parkin
knockout mice show spontaneous tumor growth, suggesting
that the accumulated dysfunctional mitochondria, as a result
of mitophagy defect, generates high ROS levels. Increased
ROS production leads to increased transcriptional activation
of genes involved in glycolysis, which facilitates the War-
burg effect and is optimal for cancer cell survival as well as
development [146]. Moreover, the mitophagy receptor
BNIP3 is responsible for tumor suppression, supported by
that Bnip3 depletion in mice model enables breast cancer
metastasis in the lung, liver, and bone [147]. Nevertheless,
mitophagy can also confer a supportive role in oncology
because hypoxia, a pro-survival microenvironment for
cancer cells, induces mitophagy [124]. Up to now, we are
still in the early stages of understanding the mechanistic
actions of specific molecules in the pathological level,
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mostly focusing on Parkin. Thus, the precise relevance of
mitophagy in potential therapeutic treatments requires more
exploration.

Crosstalk between mitochondrial dynamics
and mitophagy

Mitochondrial dynamics closely links to mitochondrial
quality control, especially mitophagy. A large body of
studies have proposed that mitochondrial fission is neces-
sary for the initiation of mitophagy, but fusion serves as a
“rescue” mechanism preventing mitophagy [20, 21, 41]. A
simple rationale is that mitochondria fission segregates
dysfunctional mitochondria into small sizes to be easily
cleared (Fig. 3B). Conversely, fusion acts as a “transient
response” adapting to mitochondrial stress and dilutes
impaired mitochondrial components (Fig. 3A). Depolar-
ization of mitochondria is a well-established driving force
for mitophagy, involved in PINK1/Parkin [34], NIX [126],
and Bcl2-L-13 [45]-mediated mitochondrial elimination.
Clearly, mitochondrial fragmentation is coupled with
mitochondrial membrane potential loss and precedes mito-
phagosome formation [34, 45, 126]. Upon hypoxic stress,
FUNDC1-dependent mitophagy also associates with mito-
chondrial fission [43]. In support of this positive coherence
between fission and mitophagy, genetic manipulation of the
Drp1 through overexpression of dominant-negative form
[41] or Drp1 deficiency [42, 109] both retarded mitophagy.
Nevertheless, it still remains debatable whether mitochon-
drial fission is indeed a precursor for mitochondrial elim-
ination. Recently, it was proposed that mitochondrial
division is dispensable for mitophagy [155]. Consistently,
our recent studies also found that certain OMM proteins that
mediate mitochondrial dynamics do not necessarily involve
in mitophagy formation via fission–fusion [39, 65]. As
discussed, MiD51 depletion even primes cells for PINK1/
Parkin-mediated mitochondrial removal, despite that
MiD51 loss triggers mitochondrial fusion. We elucidated
that the modulation of mitochondrial quality control
uncouples from mitochondrial dynamics [65]. In line with
this, we also reveal that over-fusion of mitochondria,
resulted from Drp1 or Mff silencing using RNA inter-
ference, has no effect on STX17-initiated mitophagy upon
Fis1 loss, further substantiating the idea that mitochondrial
fission–fusion dynamics is not a prerequisite for and may be
split from mitophagy [39]. Undoubtedly, more studies are
needed to define the crosstalk between mitochondrial
dynamics and mitophagy. The key question as to how
tubular mitochondria are directly pinched off from main
mitochondrial bodies engulfed by autophagy isolation
membrane remains to be answered. Furthermore, autono-
mous mitochondrial damage at the genetic level, not

induced by ectopic toxins, may be a driving force for
mitophagy, and closer investigations of how specific OMM
proteins engage in regulating mitochondrial homeostasis in
this specific context is also necessary. We consider that
future work which focuses on developing pathological
models, based on the physiological contributions by these
mechanisms, will yield a better understanding of transla-
tional significances related to mitochondrial functions.

Of note, MAM, the interface between ER and mito-
chondria, has been highly emphasized in mitochondrial
dynamics and mitophagy [156–160], and is responsible for
mitochondrial constriction [161]. Mitochondrial Drp1
receptors and Drp1 oligomers assemble on MAM, whereby
ER wraps around mitochondria, to form a fission site
[68, 162]. In addition, Mfn2 enriched on MAM tightens the
juxtaposition of mitochondria and ER, and positively reg-
ulates mitochondrial calcium influx [163]. It was reported
that Mfn2 ablation in cells disrupted ER morphology and
loosened ER and mitochondria interactions. The increased
distance between ER and mitochondria couples with mito-
chondrial fragmentation [163]. In addition, the GTPase
protein S-OPA1 also accumulates and localizes on MAM to
accelerate fission [164]. All these studies support that MAM
is critical to mitochondrial dynamics. On the other hand, the
ER-resident protein STX17, shuffles among ER, MAM, and
mitochondria in response to nutrient levels, conferring
important roles in switching between mitochondrial
dynamics and autophagosome formation [158, 165]. Closer
investigations of STX17 on MAM have demonstrated that
MAM is involved in mitophagy [39, 136, 137], implying a
broad role of MAM in mitochondrial homeostasis. Cur-
rently, we still lack a comprehensive picture of the coor-
dination between fission and mitophagy initiation on MAM.
It will be intriguing to answer whether the Drp1-mediated
fission on MAM is a “trigger” or “brake” for mitophagy
initiation. Is the site that Drp1 severs mitochondria also
accounting for mitophagosome formation? An important
question is how exactly fission and mitophagy are orche-
strated remains to be elucidated.

Conclusion

In summary, the advent of studies about the multi-facets of
mitochondrial behaviors usher in the exciting areas con-
cerning the crosstalk among these actions. OMM proteins
distribute on the interface between mitochondria and cyto-
sol, or ER, in a geographic advantage that they crucially
play for the interplay of various mitochondrial signaling
pathways. Up to now, exciting breakthroughs into deci-
phering OMM proteins in mitochondrial dynamics and
mitophagy have informatively shed light into mitochondrial
homeostasis (Table 1). But greater insights into the
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significance of mitochondrial functions and mitochondria-
associated diseases are still needed for further investigation.
Given the promising advances of more metabolic and
genomic approaches, more in-depth understanding into
animal disease models and pathological causes will allow
for a better prospect in rational therapeutic application.
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