Wg secreted by conventional Golgi transport diffuses and forms Wg gradient whereas Wg tethered to extracellular vesicles do not diffuse

Abstracts

Wingless (Wg)/Wnt family proteins are essential for animal development and adult homeostasis. Drosophila Wg secreted from the dorsal-ventral (DV) midline in wing discs forms a concentration gradient that is shaped by diffusion rate and stability of Wg. To understand how the gradient of extracellular Wg is generated, we compared the secretion route of NRT-Wg, an artificial membrane-tethered form of Wg that is supposedly not secreted but still supports fly development, to that of wild-type Wg. We found that wild-type Wg is secreted by both conventional Golgi transport and via extracellular vesicles (EVs), and NRT-Wg can be also secreted via EVs. Furthermore, wild-type Wg secreted by Golgi transport diffused and formed Wg gradient but Wg-containing EVs did not diffuse at all. In case of Wg stability, Sol narae (Sona), a metalloprotease that cleaves Wg, contributes to generate a steep Wg gradient. Interestingly, Wg was also produced in the presumptive wing blade region, which indicates that NRT-Wg on EVs expressed in the blade allows the blade cells to proliferate and differentiate without Wg diffused from the DV midline. We propose that EV-associated Wg induces Wg signaling in autocrine and juxtaposed manners whereas Wg secreted by Golgi transport forms gradient and acts in the long-range signaling, and different organs differentially utilize these two types of Wg signaling for their own development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: NRT-Wg is secreted via EVs and processed by Sona.
Fig. 2: NRT-Wg-containing EVs do not diffuse in wing discs.
Fig. 3: Extracellular Wg-NTD diffuses whereas Wg-CTD does not diffuse.
Fig. 4: Slopes of Wg gradient in sona wing discs are shallower than wild-type.
Fig. 5: Transcription patterns of wg and sona are patchy in the wing blade.
Fig. 6: The pattern of wg in the blade is opposite to vgQE, but similar to Dl.
Fig. 7: Wg containing EVs induces the short-range Wg signaling whereas Wg in a multi-protein complex induces the long-range signaling.

References

  1. 1.

    Teo JL, Kahn M. The Wnt signaling pathway in cellular proliferation and differentiation: a tale of two coactivators. Adv Drug Deliv Rev. 2010;62:1149–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;145:dev146589.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  3. 3.

    Masckauchan TN, Shawber CJ, Funahashi Y, Li CM, Kitajewski J. Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis. 2005;8:43–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Humphries AC, Mlodzik M. From instruction to output: Wnt/PCP signaling in development and cancer. Curr Opin Cell Biol. 2018;51:110–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Nusse R, Fuerer C, Ching W, Harnish K, Logan C, Zeng A, et al. Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol. 2008;73:59–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Kiecker C, Niehrs C. A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development. 2001;128:4189–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Yamaguchi TP. Heads or tails: Wnts and anterior-posterior patterning. Curr Biol. 2001;11:R713–724.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Petersen CP, Reddien PW. Wnt signaling and the polarity of the primary body axis. Cell. 2009;139:1056–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Simons M, Mlodzik M. Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet. 2008;42:517–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Sharma RP. Wingless - a new mutant in D. melanogaster. Drosoph Inf Serv. 1973;50:134.

    Google Scholar 

  12. 12.

    Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31:99–109.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Mann MC. The occurrence and hereditary behavior of two new dominant mutations in an inbred strain of Drosophila melanogaster. Genetics. 1923;8:27–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Strigini M, Cohen SM. Wingless gradient formation in the Drosophila wing. Curr Biol. 2000;10:293–300.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Delanoue R, Legent K, Godefroy N, Flagiello D, Dutriaux A, Vaudin P, et al. The Drosophila wing differentiation factor Vestigial-Scalloped is required for cell proliferation and cell survival at the dorso-ventral boundary of the wing imaginal disc. Cell Death Differ. 2004;11:110–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Neumann CJ, Cohen SM. A hierarchy of cross-regulation involving Notch, wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development. 1996;122:3477–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zecca M, Basler K, Struhl G. Direct and long-range action of a wingless morphogen gradient. Cell. 1996;87:833–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Alexandre C, Baena-Lopez A, Vincent JP. Patterning and growth control by membrane-tethered Wingless. Nature. 2014;505:180–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Tian A, Duwadi D, Benchabane H, Ahmed Y. Essential long-range action of Wingless/Wnt in adult intestinal compartmentalization. PLoS Genet. 2019;15:e1008111.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Wartlick O, Kicheva A, Gonzalez-Gaitan M. Morphogen gradient formation. Cold Spring Harb Perspect Biol. 2009;1:a001255.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Won JH, Kim GW, Kim JY, Cho DG, Kwon B, Bae YK, et al. ADAMTS Sol narae cleaves extracellular Wingless to generate a novel active form that regulates cell proliferation in Drosophila. Cell Death Dis. 2019;10:564.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC. Structural basis of Wnt recognition by Frizzled. Science. 2012;337:59–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Bazan JF, Janda CY, Garcia KC. Structural architecture and functional evolution of Wnts. Dev Cell. 2012;23:227–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    von Maltzahn J, Zinoviev R, Chang NC, Bentzinger CF, Rudnicki MA. A truncated Wnt7a retains full biological activity in skeletal muscle. Nat Commun. 2013;4:2869.

    Article  CAS  Google Scholar 

  26. 26.

    Port F, Basler K. Wnt Trafficking: new Insights into Wnt Maturation, Secretion and Spreading. Traffic. 2010;11:1265–71.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14:1036–45.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Gross JC, Boutros M. Secretion and extracellular space travel of Wnt proteins. Curr Opin Genet Dev. 2013;23:385–90.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9:581–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Lee SS, Won JH, Lim GJ, Han J, Lee JY, Cho KO, et al. A novel population of extracellular vesicles smaller than exosomes promotes cell proliferation. Cell Commun Signal. 2019;17:95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Beckett K, Monier S, Palmer L, Alexandre C, Green H, Bonneil E, et al. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic. 2013;14:82–96.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Panakova D, Sprong H, Marois E, Thiele C, Eaton S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature. 2005;435:58–65.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Barthalay Y, Hipeau-Jacquotte R, de la Escalera S, Jimenez F, Piovant M. Drosophila neurotactin mediates heterophilic cell adhesion. EMBO J. 1990;9:3603–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    de la Escalera S, Bockamp EO, Moya F, Piovant M, Jimenez F. Characterization and gene cloning of neurotactin, a Drosophila transmembrane protein related to cholinesterases. EMBO J. 1990;9:3593–601.

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Chaudhary V, Hingole S, Frei J, Port F, Strutt D, Boutros M. Robust Wnt signaling is maintained by a Wg protein gradient and Fz2 receptor activity in the developing Drosophila wing. Development. 2019;146:dev174789.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Katanaev VL, Solis GP, Hausmann G, Buestorf S, Katanayeva N, Schrock Y, et al. Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila. EMBO J. 2008;27:509–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Neumann CJ, Cohen SM. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development. 1997;124:871–80.

    CAS  PubMed  Google Scholar 

  39. 39.

    Lecuit T, Cohen SM. Proximal-distal axis formation in the Drosophila leg. Nature. 1997;388:139–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Kim GW, Won JH, Lee OK, Lee SS, Han JH, Tsogtbaatar O, et al. Sol narae (Sona) is a Drosophila ADAMTS involved in Wg signaling. Sci Rep. 2016;6:31863.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Couso JP, Bate M, Martinez-Arias A. A wingless-dependent polar coordinate system in Drosophila imaginal discs. Science. 1993;259:484–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Ng M, Diaz-Benjumea FJ, Vincent JP, Wu J, Cohen SM. Specification of the wing by localized expression of wingless protein. Nature. 1996;381:316–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Blair SS. A role for the segment polarity gene shaggy-zeste white 3 in the specification of regional identity in the developing wing of Drosophila. Dev Biol. 1994;162:229–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Phillips RG, Whittle JR. Wingless expression mediates determination of peripheral nervous system elements in late stages of Drosophila wing disc development. Development. 1993;118:427–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Giraldez AJ, Copley RR, Cohen SM. HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient. Dev Cell. 2002;2:667–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Evans CJ, Olson JM, Ngo KT, Kim E, Lee NE, Kuoy E, et al. G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods. 2009;6:603–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Maves L, Schubiger G. A molecular basis for transdetermination in Drosophila imaginal discs: interactions between wingless and decapentaplegic signaling. Development. 1998;125:115–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Klein T, Arias AM. Different spatial and temporal interactions between Notch, wingless, and vestigial specify proximal and distal pattern elements of the wing in Drosophila. Dev Biol. 1998;194:196–212.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Kooh PJ, Fehon RG, Muskavitch MA. Implications of dynamic patterns of Delta and Notch expression for cellular interactions during Drosophila development. Development. 1993;117:493–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19.

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Zhang ZG, Buller B, Chopp M. Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol. 2019;15:193–203.

    PubMed  Article  Google Scholar 

  52. 52.

    Baena-Lopez LA, Franch-Marro X, Vincent JP. Wingless promotes proliferative growth in a gradient-independent manner. Sci Signal. 2009;2:ra60.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Ekstrom EJ, Bergenfelz C, von Bulow V, Serifler F, Carlemalm E, Jonsson G, et al. WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol Cancer. 2014;13:88.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Hooper C, Sainz-Fuertes R, Lynham S, Hye A, Killick R, Warley A, et al. Wnt3a induces exosome secretion from primary cultured rat microglia. BMC Neurosci. 2012;13:144.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530:340–3.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Yamamoto H, Awada C, Hanaki H, Sakane H, Tsujimoto I, Takahashi Y, et al. The apical and basolateral secretion of Wnt11 and Wnt3a in polarized epithelial cells is regulated by different mechanisms. J Cell Sci. 2013;126:2931–43.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Beaven R, Denholm B. Release and spread of Wingless is required to pattern the proximo-distal axis of Drosophila renal tubules. Elife. 2018;7:e35373.

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Apitz H, Salecker I. Spatio-temporal relays control layer identity of direction-selective neuron subtypes in Drosophila. Nat Commun. 2018;9:2295.

  59. 59.

    Vincent JP, Magee T. Tiki casts a spell on Wnt. Cell. 2012;149:1426–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Sanchez-Pulido L, Ponting CP. Tiki, at the head of a new superfamily of enzymes. Bioinformatics. 2013;29:2371–4.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Zhang X, Abreu JG, Yokota C, MacDonald BT, Singh S, Coburn KL, et al. Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell. 2012;149:1565–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Zhang X, MacDonald BT, Gao H, Shamashkin M, Coyle AJ, Martinez RV, et al. Characterization of Tiki, a New Family of Wnt-specific Metalloproteases. J Biol Chem. 2016;291:2435–43.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Klein T. Wing disc development in the fly: the early stages. Curr Opin Genet Dev. 2001;11:470–5.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Pfeiffer S, Ricardo S, Manneville JB, Alexandre C, Vincent JP. Producing cells retain and recycle Wingless in Drosophila embryos. Curr Biol. 2002;12:957–62.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Baena-Lopez LA, Alexandre C, Mitchell A, Pasakarnis L, Vincent JP. Accelerated homologous recombination and subsequent genome modification in Drosophila. Development. 2013;140:4818–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Prasad M, Bajpai R, Shashidhara LS. Regulation of Wingless and Vestigial expression in wing and haltere discs of Drosophila. Development. 2003;130:1537–47.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Pignoni F, Zipursky SL. Induction of Drosophila eye development by decapentaplegic. Development. 1997;124:271–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Jung and J.Y. Kim for their critical reading of this paper. We are in debt to J. P. Vincent, K. Basler, S. Eaton, S. M. Cohen, L. S. Shashidhara, R. Holmgren for fly lines, Gary Struhl, J.W. Kim, K. Basler, and J. P. Vincent for DNA constructs, and two reviewers who helped to improve this report. We thank Bloomington Stock Center, Drosophila Genetic Resource Center, Korea Drosophila Resource Center, and Developmental Studies Hybridoma Bank for fly strains and antibodies. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1A2B4009254, 2019R1H1A2039726, and 2019R1A6A1A10073887).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyung-Ok Cho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by E. Baehrecke

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Won, JH., Cho, KO. Wg secreted by conventional Golgi transport diffuses and forms Wg gradient whereas Wg tethered to extracellular vesicles do not diffuse. Cell Death Differ (2020). https://doi.org/10.1038/s41418-020-00632-8

Download citation

Search