Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A possible non-proteolytic role of ubiquitin conjugation in alleviating the pathology of Huntingtin’s aggregation

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Site specific ubiquitination of Huntingtin on lysine residues 6 and 9 results in the formation of fewer but larger, probably multi-adduct aggregates.


  1. 1.

    Ghosh R, Tabrizi SJ. Huntington disease. Handb Clin Neurol. 2018;147:255–78.

    Article  Google Scholar 

  2. 2.

    Vitet H, Brandt V, Saudou F. Traffic signaling: new functions of Huntingtin and axonal transport in neurological disease. Curr Opin Neurobiol. 2020;63:122–30.

    CAS  Article  Google Scholar 

  3. 3.

    Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87:493–506.

    CAS  Article  Google Scholar 

  4. 4.

    Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90:537–48.

    CAS  Article  Google Scholar 

  5. 5.

    Yang H, Yang S, Jing L, Huang L, Chen L, Zhao X, et al. Truncation of mutant huntingtin in knock-in mice demonstrates exon1 huntingtin is a key pathogenic form. Nat Commun. 2020;11:2582.

    CAS  Article  Google Scholar 

  6. 6.

    DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997;277:1990–3.

    CAS  Article  Google Scholar 

  7. 7.

    Waelter S, Boeddrich A, Lurz R, Scherzinger E, Lueder G, Lehrach H, et al. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell. 2001;12:1393–407.

    CAS  Article  Google Scholar 

  8. 8.

    Hakim V, Cohen LD, Zuchman R, Ziv T, Ziv NE. The effects of proteasomal inhibition on synaptic proteostasis. EMBO J. 2016;35:2238–62.

    CAS  Article  Google Scholar 

  9. 9.

    Shacham T, Sharma N, Lederkremer GZ. Protein misfolding and ER stress in Huntington’s Disease. Front Mol Biosci. 2019;6:20.

    CAS  Article  Google Scholar 

  10. 10.

    Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science. 2006;311:1471–4.

    CAS  Article  Google Scholar 

  11. 11.

    Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y-H, Ciechanover A, et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron. 1999;24:879–92.

    CAS  Article  Google Scholar 

  12. 12.

    Sap KA, Guler AT, Bezstarosti K, Bury AE, Juenemann K, Demmers JAA, et al. Global proteome and ubiquitinome changes in the soluble and insoluble fractions of Q175 Huntington mice brains. Mol Cell Proteom. 2019;18:1705–20.

    CAS  Article  Google Scholar 

  13. 13.

    Hakim-Eshed V, Boulos A, Cohen-Rosenzweig C, Yu-Taeger L, Ziv T, Kwon YT, et al. Site-specific ubiquitination of pathogenic huntingtin attenuates its deleterious effects. Proc Natl Acad Sci USA. 2019;117:18661–9.

    Article  Google Scholar 

  14. 14.

    Arndt JR, Chaibva M, Legleiter J. The emerging role of the first 17 amino acids of huntingtin in Huntington’s disease. Biomol Concepts. 2015;6:33–46.

    CAS  Article  Google Scholar 

  15. 15.

    Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, et al. SUMO modification of Huntingtin and Huntington’s disease pathology. Science 2004;304:100–4.

    CAS  Article  Google Scholar 

  16. 16.

    Chaibva M, Jawahery S, Pilkington AW 4th, Arndt JR, Sarver O, Valentine S, et al. Acetylation within the first 17 residues of huntingtin exon 1 alters aggregation and lipid binding. Biophys J. 2016;111:349–62.

    CAS  Article  Google Scholar 

  17. 17.

    Schaffert LN, Carter WG. Do post-translational modifications influence protein aggregation in neurodegenerative diseases: a systematic review. Brain Sci. 2020;10:232.

    CAS  Article  Google Scholar 

  18. 18.

    Ramdzan YM, Trubetskov MM, Ormsby AR, Newcombe EA, Sui X, Tobin MJ, et al. Huntingtin inclusions trigger cellular quiescence, deactivate apoptosis, and lead to delayed necrosis. Cell Rep. 2017;19:919–27.

    CAS  Article  Google Scholar 

  19. 19.

    Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci USA. 1999;96:4604–9.

    CAS  Article  Google Scholar 

  20. 20.

    Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon IJ, et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol. 2009;16:380–9.

    CAS  Article  Google Scholar 

  21. 21.

    Rott R, Szargel R, Haskin J, Shani V, Shainskaya A, Manov I, et al. Monoubiquitylation of alpha-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells. J Biol Chem. 2008;283:3316–28.

    CAS  Article  Google Scholar 

  22. 22.

    Lee JT, Wheeler TC, Li L, Chin LS. Ubiquitination of alpha-synuclein by Siah-1 promotes alpha-synuclein aggregation and apoptotic cell death. Hum Mol Genet. 2008;17:906–17.

    CAS  Article  Google Scholar 

  23. 23.

    Ma Q, Ruan H, Peng L, Zhang M, Gack MU, Yao WD. Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity. Proc Natl Acad Sci USA. 2017;114:E8760–E8769.

    CAS  Article  Google Scholar 

  24. 24.

    Rott R, Szargel R, Shani V, Hamza H, Savyon M, Abd Elghani F, et al. SUMOylation and ubiquitination reciprocally regulate α-synuclein degradation and pathological aggregation. Proc Natl Acad Sci USA. 2017;114:13176–81.

    CAS  Article  Google Scholar 

  25. 25.

    Vogl AM, Brockmann MM, Giusti SA, Maccarrone G, Vercelli CA, Bauder CA, et al. NEDDylation inhibition impairs spine development, destabilizes synapses and deteriorates cognition. Nat Neurosci. 2015;18:239–51.

    CAS  Article  Google Scholar 

Download references


NEZ and AC were supported during the study on ubiquitination of Huntingtin by grants from the European Community’s Seventh Framework Programme FP7/2012 (TreatPolyQ, Grant Agreement No. 264508), the German-Israeli Foundation for Scientific Research and Development (GIF; I-1437-418.13/2017), the Rappaport Family Institute for Biomedical Research at the Technion-Israel Institute of Technology, and the Allen and Jewel Prince Center for Neurodegenerative Disorders of the Brain. AC is supported by grants from the Adelson Medical Research Foundation (AMRF), the Israel Science Foundation (ISF), the Technion-University of Michigan at Ann Arbor Collaborative Program and by an Israel Cancer Research Fund (ICRF) Professorship.

Author information



Corresponding authors

Correspondence to Noam E. Ziv or Aaron Ciechanover.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ziv, N.E., Ciechanover, A. A possible non-proteolytic role of ubiquitin conjugation in alleviating the pathology of Huntingtin’s aggregation. Cell Death Differ 28, 814–817 (2021).

Download citation

Further reading


Quick links