In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by H-U Simon


  1. 1.

    Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014;2:323–32.

  2. 2.

    Powers ET, Balch WE. Diversity in the origins of proteostasis networks--a driver for protein function in evolution. Nat Rev Mol Cell Biol. 2013;14:237–48.

  3. 3.

    Bayer TA. Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders? Eur Neuropsychopharmacol. 2015;25:713–24.

  4. 4.

    Pievani M, Filippini N, van den Heuvel MP, Cappa SF, Frisoni GB. Brain connectivity in neurodegenerative diseases--from phenotype to proteinopathy. Nat Rev Neurol. 2014;10:620–33.

  5. 5.

    Go YM, Chandler JD, Jones DP. The cysteine proteome. Free Radic Biol Med. 2015;84:227–45.

  6. 6.

    Toledano MB, Delaunay-Moisan A, Outten CE, Igbaria A. Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast. Antioxid Redox Signal. 2013;18:1699–711.

  7. 7.

    Lu J, Holmgren A. The thioredoxin superfamily in oxidative protein folding. Antioxid Redox Signal. 2014;21:457–70.

  8. 8.

    Poet GJ, Oka OB, van Lith M, Cao Z, Robinson PJ, Pringle MA, et al. Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER. EMBO J. 2017;36:693–702.

  9. 9.

    Ponsero AJ, Igbaria A, Darch MA, Miled S, Outten CE, Winther JR, et al. Endoplasmic reticulum transport of glutathione by Sec61 is regulated by Ero1 and Bip. Mol Cell. 2017;67:962–73.

  10. 10.

    Romero-Aristizabal C, Marks DS, Fontana W, Apfeld J. Regulated spatial organization and sensitivity of cytosolic protein oxidation in Caenorhabditis elegans. Nat Commun. 2014;5:5020.

  11. 11.

    Johnston AD, Ebert PR. The redox system in C. elegans, a phylogenetic approach. J Toxicol. 2012;2012:546915.

  12. 12.

    Miranda-Vizuete A, Veal EA. Caenorhabditis elegans as a model for understanding ROS function in physiology and disease. Redox Biol. 2017;11:708–14.

  13. 13.

    Feleciano DR, Arnsburg K, Kirstein J. Interplay between redox and protein homeostasis. Worm. 2016;5:e1170273.

  14. 14.

    Miranda-Vizuete A, Fierro Gonzalez JC, Gahmon G, Burghoorn J, Navas P, Swoboda P. Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons. FEBS Lett. 2006;580:484–90.

  15. 15.

    Cacho-Valadez B, Munoz-Lobato F, Pedrajas JR, Cabello J, Fierro-Gonzalez JC, Navas P, et al. The characterization of the Caenorhabditis elegans mitochondrial thioredoxin system uncovers an unexpected protective role of thioredoxin reductase 2 in beta-amyloid peptide toxicity. Antioxid Redox Signal. 2012;16:1384–1400.

  16. 16.

    Stenvall J, Fierro-Gonzalez JC, Swoboda P, Saamarthy K, Cheng Q, Cacho-Valadez B, et al. Selenoprotein TRXR-1 and GSR-1 are essential for removal of old cuticle during molting in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2011;108:1064–9.

  17. 17.

    Jimenez-Hidalgo M, Kurz CL, Pedrajas JR, Naranjo-Galindo FJ, Gonzalez-Barrios M, Cabello J, et al. Functional characterization of thioredoxin 3 (TRX-3), a Caenorhabditis elegans intestine-specific thioredoxin. Free Radic Biol Med. 2014;68:205–19.

  18. 18.

    Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, et al. Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol Rev. 2016;96:307–64.

  19. 19.

    Eriksson S, Prigge JR, Talago EA, Arner ES, Schmidt EE. Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver. Nat Commun. 2015;6:6479.

  20. 20.

    Mora-Lorca JA, Saenz-Narciso B, Gaffney CJ, Naranjo-Galindo FJ, Pedrajas JR, Guerrero-Gomez D, et al. Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development. Free Radic Biol Med. 2016;96:446–61.

  21. 21.

    Go YM, Jones DP. Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta. 2008;1780:1273–90.

  22. 22.

    Kirstein J, Morito D, Kakihana T, Sugihara M, Minnen A, Hipp MS, et al. Proteotoxic stress and ageing triggers the loss of redox homeostasis across cellular compartments. EMBO J. 2015;34:2334–49.

  23. 23.

    Edgley ML, Baillie DL, Riddle DL, Rose AM. Genetic balancers. WormBook 2006;6:1–32.

  24. 24.

    Link CD. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA. 1995;92:9368–72.

  25. 25.

    van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet. 2008;4:e1000027.

  26. 26.

    Morley JF, Brignull HR, Weyers JJ, Morimoto RI. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2002;99:10417–22.

  27. 27.

    Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. Science. 2009;326:1208–12.

  28. 28.

    Fackler OT, Grosse R. Cell motility through plasma membrane blebbing. J Cell Biol. 2008;181:879–84.

  29. 29.

    Takesono A, Heasman SJ, Wojciak-Stothard B, Garg R, Ridley AJ. Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells. PLoS ONE. 2010;5:e8774.

  30. 30.

    Sugiyama T, Pramanik MK, Yumura S. Microtubule-mediated inositol lipid signaling plays critical roles in regulation of blebbing. PLoS ONE. 2015;10:e0137032.

  31. 31.

    Teixeira-Castro A, Ailion M, Jalles A, Brignull HR, Vilaca JL, Dias N, et al. Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum Mol Genet. 2011;20:2996–3009.

  32. 32.

    Tourette C, Farina F, Vazquez-Manrique RP, Orfila AM, Voisin J, Hernandez S, et al. The Wnt receptor Ryk reduces neuronal and cell survival capacity by repressing FOXO activity during the early phases of mutant Huntingtin pathogenicity. PLoS Biol. 2014;12:e1001895.

  33. 33.

    Moronetti Mazzeo LE, Dersh D, Boccitto M, Kalb RG, Lamitina T. Stress and aging induce distinct polyQ protein aggregation states. Proc Natl Acad Sci USA. 2012;109:10587–92.

  34. 34.

    McColl G, Roberts BR, Pukala TL, Kenche VB, Roberts CM, Link CD, et al. Utility of an improved model of amyloid-beta (Abeta(1)(-)(4)(2)) toxicity in Caenorhabditis elegans for drug screening for Alzheimer's disease. Mol Neurodegener. 2012;7:57.

  35. 35.

    Fong S, Teo E, Ng LF, Chen CB, Lakshmanan LN, Tsoi SY, et al. Energy crisis precedes global metabolic failure in a novel Caenorhabditis elegans Alzheimer disease model. Sci Rep. 2016;6:33781.

  36. 36.

    Cao S, Gelwix CC, Caldwell KA, Caldwell GA. Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci. 2005;25:3801–12.

  37. 37.

    Flames N, Hobert O. Gene regulatory logic of dopamine neuron differentiation. Nature. 2009;458:885–9.

  38. 38.

    Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science. 2006;311:1471–4.

  39. 39.

    Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun. 2013;4:2267.

  40. 40.

    Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–33.

  41. 41.

    O'Rourke EJ, Ruvkun G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol. 2013;15:668–76.

  42. 42.

    Kumsta C, Chang JT, Schmalz J, Hansen M. Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans . Nat Commun. 2017;8:14337.

  43. 43.

    Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, et al. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell. 2010;141:1042–55.

  44. 44.

    Jia K, Hart AC, Levine B. Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy. 2007;3:21–25.

  45. 45.

    Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci USA. 2008;105:728–33.

  46. 46.

    Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT, Link CD. Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy. 2007;3:569–80.

  47. 47.

    Dasgupta A, Zheng J, Bizzozero OA. Protein carbonylation and aggregation precede neuronal apoptosis induced by partial glutathione depletion. ASN Neuro. 2012;4:e00084.

  48. 48.

    Chang JT, Kumsta C, Hellman AB, Adams LM, Hansen M. Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. eLife 2017;6:e18459.

  49. 49.

    Dehay B, Bertolotti A. Critical role of the proline-rich region in Huntingtin for aggregation and cytotoxicity in yeast. J Biol Chem. 2006;281:35608–15.

  50. 50.

    Shpilka T, Weidberg H, Pietrokovski S, Elazar Z. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol. 2011;12:226.

  51. 51.

    Zheng L, Cedazo-Minguez A, Hallbeck M, Jerhammar F, Marcusson J, Terman A. Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system. Transl Neurodegener. 2012;1:19.

  52. 52.

    Urban N, Tsitsipatis D, Hausig F, Kreuzer K, Erler K, Stein V, et al. Non-linear impact of glutathione depletion on C. elegans life span and stress resistance. Redox Biol. 2017;11:502–15.

  53. 53.

    Gidalevitz T, Wang N, Deravaj T, Alexander-Floyd J, Morimoto RI. Natural genetic variation determines susceptibility to aggregation or toxicity in a C. elegans model for polyglutamine disease. BMC Biol. 2013;11:100.

  54. 54.

    Melentijevic I, Toth ML, Arnold ML, Guasp RJ, Harinath G, Nguyen KC, et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature. 2017;542:367–71.

  55. 55.

    Guan L, Ma X, Zhang J, Liu JJ, Wang Y, Ding M. The calponin family member CHDP-1 interacts with Rac/CED-10 to promote cell protrusions. PLoS Genet. 2016;12:e1006163.

  56. 56.

    Saenz-Narciso B, Gomez-Orte E, Zheleva A, Gastaca I, Cabello J. Control of developmental networks by Rac/Rho small GTPases: how cytoskeletal changes during embryogenesis are orchestrated. Bioessays. 2016;38:1246–54.

  57. 57.

    Wittmann T, Bokoch GM, Waterman-Storer CM. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J Cell Biol. 2003;161:845–51.

  58. 58.

    Waterman-Storer CM, Worthylake RA, Liu BP, Burridge K, Salmon ED. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat Cell Biol. 1999;1:45–50.

  59. 59.

    Kim H, Calatayud C, Guha S, Fernandez-Carasa I, Berkowitz L, Carballo-Carbajal I, et al. The small GTPase RAC1/CED-10 is essential in maintaining dopaminergic neuron function and survival against alpha-synuclein-induced toxicity. Mol Neurobiol. 2018;55:7533–52.

  60. 60.

    Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal. 2008;10:1941–88.

  61. 61.

    Hobbs GA, Mitchell LE, Arrington ME, Gunawardena HP, DeCristo MJ, Loeser RF, et al. Redox regulation of Rac1 by thiol oxidation. Free Radic Biol Med. 2015;79:237–50.

  62. 62.

    Shelton MD, Chock PB, Mieyal JJ. Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal. 2005;7:348–66.

  63. 63.

    Zhou C, Slaughter BD, Unruh JR, Guo F, Yu Z, Mickey K, et al. Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell. 2014;159:530–42.

  64. 64.

    Ruan L, Zhou C, Jin E, Kucharavy A, Zhang Y, Wen Z, et al. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature. 2017;543:443–6.

  65. 65.

    Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, del Razo LM, Quintanilla-Vega B, et al. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid Redox Signal. 2014;21:66–85.

  66. 66.

    Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22:377–88.

  67. 67.

    Carroll B, Otten EG, Manni D, Stefanatos R, Menzies FM, Smith GR, et al. Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nat Commun. 2018;9:256.

  68. 68.

    Perez-Perez ME, Zaffagnini M, Marchand CH, Crespo JL, Lemaire SD. The yeast autophagy protease Atg4 is regulated by thioredoxin. Autophagy. 2014;10:1953–64.

  69. 69.

    Frudd K, Burgoyne T, Burgoyne JR. Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun. 2018;9:95.

  70. 70.

    Back P, De Vos WH, Depuydt GG, Matthijssens F, Vanfleteren JR, Braeckman BP. Exploring real-time in vivo redox biology of developing and aging Caenorhabditis elegans. Free Radic Biol Med. 2012;52:850–9.

  71. 71.

    Banerjee Mustafi S, Chakraborty PK, Dey RS, Raha S. Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt. Cell Stress Chaperon-. 2009;14:579–89.

  72. 72.

    Dunlop EA, Tee AR. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol. 2014;36:121–9.

  73. 73.

    Luersen K, Stegehake D, Daniel J, Drescher M, Ajonina I, Ajonina C, et al. The glutathione reductase GSR-1 determines stress tolerance and longevity in Caenorhabditis elegans . PLoS ONE. 2013;8:e60731.

  74. 74.

    Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature. 2015;521:525–8.

  75. 75.

    Dodson M, Redmann M, Rajasekaran NS, Darley-Usmar V, Zhang J. KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity. Biochem J. 2015;469:347–55.

  76. 76.

    Jiang T, Harder B, Rojo de la Vega M, Wong PK, Chapman E, Zhang DD. p62 links autophagy and Nrf2 signaling. Free Radic Biol Med. 2015;88:199–204.

  77. 77.

    Kim S, Choi KJ, Cho SJ, Yun SM, Jeon JP, Koh YH, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933.

  78. 78.

    Stiernagle T. Maintenance of C. elegans. WormBook 2006;11:1–11.

  79. 79.

    Parker JA, Connolly JB, Wellington C, Hayden M, Dausset J, Neri C. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci USA. 2001;98:13318–23.

  80. 80.

    Nieto C, Almendinger J, Gysi S, Gomez-Orte E, Kaech A, Hengartner MO, et al. ccz-1 mediates the digestion of apoptotic corpses in C. elegans. J Cell Sci. 2010;123:2001–7.

  81. 81.

    Askjaer P, Galy V, Meister P. Modern tools to study nuclear pore complexes and nucleocytoplasmic transport in Caenorhabditis elegans. Methods Cell Biol. 2014;122:277–310.

Download references


We thank CGC (Caenorhabiditis Genetics Center) and NBRP (National BioResource Project), Richard Morimoto, Christian Pohl, Jan Gruber, Guy Caldwell, Randy Blakely, Hong Zhang, Enriq Herrero, Anne Bertolotti, and Susan Lindquist for providing strains and plasmids and Leticia Lemus for help with yeast viability assays. Cristina Ayuso García and the Live Cell Imaging Facility, Karolinska Institutet, Sweden (supported by grants from the Knut and Alice Wallenberg Foundation, the Swedish Research Council, the Centre for Innovative Medicine and the Jonasson Centre at RIT, Sweden) are acknowledged for technical assistance. The Spanish Ministry of Economy and Competitiveness supported EF-S and VG (BFU2016–78265-P), PA (BFU2016–79313-P and MDM-2016–0687), and AM-V (BFU2015–64408-P). AM-V was also supported by the Instituto de Salud Carlos III (PI11/00072) and RPV-M (CPII16/00004, PI14/00949 and PI17/00011). All projects were cofinanced by the Fondo Social Europeo (FEDER). AM-V is a member of the GENIE and EU-ROS Cost Actions of the European Union and RPV-M is a Marie Curie Fellow (CIG322034, EU).

Author contributions

DG-G, JAM-L, and AM-V designed the study, performed most experiments using C. elegans, analyzed the data, and wrote the manuscript. BS-N and JC performed the embryo recordings, quantified the blebbing/exploding phenotypes, and contributed to the design of the study. FJN-G and FM-L carried out the initial candidate RNAi screen and generated several strains. CP-F, JG, and AC-M performed the mammalian cell experiments. CDL generated some strains and performed paralysis and DEM toxicity experiments. CN contributed essential reagents and analyzed the data. MDS and RPV-M generated C. elegans strains and carried out mechanosensory assays. EF-S, VG, RP, and EC contributed with the yeast experiments. PA performed the embryo confocal live imaging and immunostaining. All authors edited and revised the manuscript.

Author information

Author notes

  1. These authors contributed equally: Juan Cabello, Antonio Miranda-Vizuete


  1. Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain

    • David Guerrero-Gómez
    • , José Antonio Mora-Lorca
    • , Francisco José Naranjo-Galindo
    • , Fernando Muñoz-Lobato
    •  & Antonio Miranda-Vizuete
  2. Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain

    • José Antonio Mora-Lorca
  3. CIBIR (Center for Biomedical Research of La Rioja), 26006, Logroño, Spain

    • Beatriz Sáenz-Narciso
    •  & Juan Cabello
  4. Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden

    • Cristina Parrado-Fernández
    • , Julen Goikolea
    •  & Ángel Cedazo-Minguez
  5. Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, 80309, USA

    • Christopher D. Link
  6. Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative and Aging (Brain-C), F-75252, Paris, France

    • Christian Neri
  7. Research Group in Molecular, Cellular and Genomic Biomedicine, Health Research Institute‐La Fe, 46026, Valencia, Spain

    • María Dolores Sequedo
    •  & Rafael P. Vázquez-Manrique
  8. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain

    • María Dolores Sequedo
    •  & Rafael P. Vázquez-Manrique
  9. Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain

    • Elena Fernández-Suárez
    •  & Veit Goder
  10. Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Spain

    • Roser Pané
    •  & Elisa Cabiscol
  11. Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013, Seville, Spain

    • Peter Askjaer


  1. Search for David Guerrero-Gómez in:

  2. Search for José Antonio Mora-Lorca in:

  3. Search for Beatriz Sáenz-Narciso in:

  4. Search for Francisco José Naranjo-Galindo in:

  5. Search for Fernando Muñoz-Lobato in:

  6. Search for Cristina Parrado-Fernández in:

  7. Search for Julen Goikolea in:

  8. Search for Ángel Cedazo-Minguez in:

  9. Search for Christopher D. Link in:

  10. Search for Christian Neri in:

  11. Search for María Dolores Sequedo in:

  12. Search for Rafael P. Vázquez-Manrique in:

  13. Search for Elena Fernández-Suárez in:

  14. Search for Veit Goder in:

  15. Search for Roser Pané in:

  16. Search for Elisa Cabiscol in:

  17. Search for Peter Askjaer in:

  18. Search for Juan Cabello in:

  19. Search for Antonio Miranda-Vizuete in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Juan Cabello or Antonio Miranda-Vizuete.

Supplementary information

About this article

Publication history