Article | Published:

VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression

Cell Death & Differentiationvolume 26pages348361 (2019) | Download Citation

Subjects

Abstract

Aberrant extra-vascular expression of VE-cadherin (VEC) has been observed in metastasis associated with vasculogenic mimicry (VM); however, the ultimate reason why non-endothelial VEC favors the acquisition of this phenotype is not established. In this study, we show that human malignant melanoma cells have a constitutively high expression of phoshoVEC (pVEC) at Y658; pVEC is a target of focal adhesion kinase (FAK) and forms a complex with p120-catenin and the transcriptional repressor kaiso in the nucleus. FAK inhibition enabled kaiso to suppress the expression of its target genes and enhanced kaiso recruitment to KBS-containing promoters. Finally we have found that ablation of kaiso-repressed genes WNT11 and CCDN1 abolished VM. Thus, identification of pVEC as a component of the kaiso transcriptional complex establishes a molecular paradigm that links FAK-dependent phosphorylation of VEC as a major mechanism by which ectopical VEC expression exerts its function in VM.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Edited by H. Ichijo.

References

  1. 1.

    Ellis LM, Fidler IJ. Finding the tumor copycat. Therapy fails, patients don’t. Nat Med. 2010;16:974–5.

  2. 2.

    Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155:739–52.

  3. 3.

    Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol. 2000;156:361–81.

  4. 4.

    Hess AR, Seftor EA, Seftor RE, Hendrix MJ. Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res. 2003;63:4757–62.

  5. 5.

    Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406:536–40.

  6. 6.

    Delgado-Bellido D, Serrano-Saenz S, Fernandez-Cortes M, Oliver FJ. Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer. 2017;16:65.

  7. 7.

    Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16:209–21.

  8. 8.

    Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA. 2001;98:8018–23.

  9. 9.

    Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci. 2008;121(Pt 13):2115–22.

  10. 10.

    Vockel M, Vestweber D. How T cells trigger the dissociation of the endothelial receptor phosphatase VE-PTP from VE-cadherin. Blood. 2013;122:2512–22.

  11. 11.

    Chen XL, Nam JO, Jean C, Lawson C, Walsh CT, Goka E, et al. VEGF-induced vascular permeability is mediated by FAK. Dev Cell. 2012;22:146–57.

  12. 12.

    Schwock J, Dhani N, Hedley DW. Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets. 2010;14:77–94.

  13. 13.

    Infante JR, Camidge DR, Mileshkin LR, Chen EX, Hicks RJ, Rischin D, et al. Safety, pharmacokinetic, and pharmacodynamic phase I dose-escalation trial of PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors. J Clin Oncol. 2012;30:1527–33.

  14. 14.

    Haskell H, Natarajan M, Hecker TP, Ding Q, Stewart J Jr., Grammer JR, et al. Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells. Clin Cancer Res. 2003;9:2157–65.

  15. 15.

    Lu C, Bonome T, Li Y, Kamat AA, Han LY, Schmandt R, et al. Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res. 2007;67:1757–68.

  16. 16.

    Hess AR, Postovit L-M, Margaryan NV, Seftor EA, Schneider GB, Seftor RE, et al. Focal adhesion kinase promotes the aggressive melanoma phenotype. Cancer Res. 2005;65:9851–60.

  17. 17.

    Jean C, Chen XL, Nam JO, Tancioni I, Uryu S, Lawson C, et al. Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J Cell Biol. 2014;204:247–63.

  18. 18.

    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31:827.

  19. 19.

    Salmon P, Trono D. Production and titration of lentiviral vectors. Curr Protoc Neurosci. 2006;Chapter 4:Unit 4.21.

  20. 20.

    Rodriguez MI, Peralta-Leal A, O’Valle F, Rodriguez-Vargas JM, Gonzalez-Flores A, Majuelos-Melguizo J, et al. PARP-1 regulates metastatic melanoma through modulation of vimentin-induced malignant transformation. PLoS Genet. 2013;9:e1003531.

  21. 21.

    Hatanaka K, Simons M, Murakami M. Phosphorylation of VE-cadherin controls endothelial phenotypes via p120-catenin coupling and Rac1 activation. Am J Physiol Heart Circ Physiol. 2011;300:H162–72.

  22. 22.

    Wessel F, Winderlich M, Holm M, Frye M, Rivera-Galdos R, Vockel M, et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat Immunol. 2014;15:223–30.

  23. 23.

    Ward KK, Tancioni I, Lawson C, Miller NL, Jean C, Chen XL, et al. Inhibition of focal adhesion kinase (FAK) activity prevents anchorage-independent ovarian carcinoma cell growth and tumor progression. Clin Exp Metastasis. 2013;30:579–94.

  24. 24.

    Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8:1223–34.

  25. 25.

    Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell. 1999;4:915–24.

  26. 26.

    Xiao K, Garner J, Buckley KM, Vincent PA, Chiasson CM, Dejana E, et al. p120-Catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol Biol Cell. 2005;16:5141–51.

  27. 27.

    Daniel JM. Dancing in and out of the nucleus: p120(ctn) and the transcription factor Kaiso. Biochim Biophys Acta. 2007;1773:59–68.

  28. 28.

    Pozner A, Terooatea TW, Buck-Koehntop BA. Cell-specific Kaiso (ZBTB33) regulation of cell cycle through cyclin D1 and cyclin E1. J Biol Chem. 2016;291:24538–50.

  29. 29.

    Kim SW, Park JI, Spring CM, Sater AK, Ji H, Otchere AA, et al. Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin. Nat Cell Biol. 2004;6:1212–20.

  30. 30.

    Spring CM, Kelly KF, O’Kelly I, Graham M, Crawford HC, Daniel JM. The catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the beta-catenin/TCF target gene matrilysin. Exp Cell Res. 2005;305:253–65.

  31. 31.

    Nanes BA, Chiasson-MacKenzie C, Lowery AM, Ishiyama N, Faundez V, Ikura M, et al. p120-catenin binding masks an endocytic signal conserved in classical cadherins. J Cell Biol. 2012;199:365–80.

  32. 32.

    Su YJ, Chang YW, Lin WH, Liang CL, Lee JL. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/beta-catenin-elicited promotion of the cancer stem cell phenotype. Oncogenesis. 2015;4:e157.

  33. 33.

    Zhao X, Peng X, Sun S, Park AY, Guan JL. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development. J Cell Biol. 2010;189:955–65.

  34. 34.

    McCrea PD, Maher MT, Gottardi CJ. Nuclear signaling from cadherin adhesion complexes. Curr Top Dev Biol. 2015;112:129–96.

  35. 35.

    Daniel JM, Reynolds AB. The cateninp120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol. 1999;19:3614–23.

  36. 36.

    Daniel JM, Spring CM, Crawford HC, Reynolds AB, Baig A. Thep120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res. 2002;30:2911–9.

  37. 37.

    Prokhortchouk A, Hendrich B, Jorgensen H, Ruzov A, Wilm M, Georgiev G, et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001;15:1613–8.

  38. 38.

    Park JI, Kim SW, Lyons JP, Ji H, Nguyen TT, Cho K, et al. Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev Cell. 2005;8:843–54.

  39. 39.

    Ouko L, Ziegler TR, Gu LH, Eisenberg LM, Yang VW. Wnt11 signaling promotes proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J Biol Chem. 2004;279:26707–15.

  40. 40.

    Mori H, Yao Y, Learman BS, Kurozumi K, Ishida J, Ramakrishnan SK, et al. Induction of WNT11 by hypoxia and hypoxia-inducible factor-1alpha regulates cell proliferation, migration and invasion. Sci Rep. 2016;6:21520.

  41. 41.

    Zhang T, Nanney LB, Luongo C, Lamps L, Heppner KJ, DuBois RN, et al. Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res. 1997;57:169–75.

Download references

Acknowledgements

This work was supported by Junta de Andalucía, project of Excellence from Junta de Andalucía P10-CTS-0662, P12-CTS-383, Spanish Ministry of Economy and Competitiveness SAF2012-40011-C02-01, SAF2015-70520-R, RTICC RD12/0036/0026, and CIBERONC ISCIII CB16/12/00421.

Author contributions

DD-B performed the experiments, analyzed, interpreted the data, and designed the research; MF-C performed the experiments and analyzed the data; MI-R performed the experiments and interpreted the data; AG-D designed the research, interpreted and analyzed the data; AK interpreted and analyzed the data; FJO designed the research, interpreted and analyzed the data; DD-B, AG-D, and FJO wrote the manuscript.

Author information

Affiliations

  1. Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain

    • Daniel Delgado-Bellido
    • , Mónica Fernández-Cortés
    • , Santiago Serrano-Sáenz
    • , Angel Garcia-Diaz
    •  & F Javier Oliver
  2. CIBERONC, Instituto de Salud Carlos III, Madrid, Spain

    • Daniel Delgado-Bellido
    • , Mónica Fernández-Cortés
    • , Santiago Serrano-Sáenz
    • , Arkaitz Carracedo
    •  & F Javier Oliver
  3. Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación, Oncológica (GENYO), Granada, Spain

    • María Isabel Rodríguez
  4. CIC bioGUNE, Derio, Spain

    • Arkaitz Carracedo

Authors

  1. Search for Daniel Delgado-Bellido in:

  2. Search for Mónica Fernández-Cortés in:

  3. Search for María Isabel Rodríguez in:

  4. Search for Santiago Serrano-Sáenz in:

  5. Search for Arkaitz Carracedo in:

  6. Search for Angel Garcia-Diaz in:

  7. Search for F Javier Oliver in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Angel Garcia-Diaz or F Javier Oliver.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41418-018-0125-4