
Cell Death & Differentiation (2018) 25:1040–1049
https://doi.org/10.1038/s41418-018-0066-y

ARTICLE

FOXQ1 controls the induced differentiation of melanocytic cells

Archis Bagati1,7 ● Anna Bianchi-Smiraglia 1
● Sudha Moparthy1 ● Kateryna Kolesnikova1 ● Emily E. Fink1 ●

Masha Kolesnikova1 ● Matthew V. Roll1 ● Peter Jowdy1 ● David W. Wolff1 ● Anthony Polechetti1 ● Dong Hyun Yun1
●

Brittany C. Lipchick1 ● Leslie M. Paul1 ● Brian Wrazen1
● Kalyana Moparthy1 ● Shaila Mudambi1 ●

Galina E. Morozevich2
● Sofia G. Georgieva3 ● Jianmin Wang4

● Gal Shafirstein1
● Song Liu4

● Eugene S. Kandel1 ●

Albert E. Berman2
● Neil F. Box5 ● Gyorgy Paragh1,6

● Mikhail A. Nikiforov 1

Received: 9 October 2017 / Revised: 26 December 2017 / Accepted: 11 January 2018 / Published online: 20 February 2018
© ADMC Associazione Differenziamento e Morte Cellulare 2018

Abstract
Oncogenic transcription factor FOXQ1 has been implicated in promotion of multiple transformed phenotypes in carcinoma
cells. Recently, we have characterized FOXQ1 as a melanoma tumor suppressor that acts via repression of N-cadherin gene,
and invasion and metastasis. Here we report that FOXQ1 induces differentiation in normal and transformed melanocytic
cells at least partially via direct transcriptional activation of MITF gene, melanocytic lineage-specific regulator of
differentiation. Importantly, we demonstrate that pigmentation induced in cultured melanocytic cells and in mice by
activation of cAMP/CREB1 pathway depends in large part on FOXQ1. Moreover, our data reveal that FOXQ1 acts as a
critical mediator of BRAFV600E-dependent regulation of MITF levels, thus providing a novel link between two major signal
transduction pathways controlling MITF and differentiation in melanocytic cells.

Introduction

Metastatic melanoma is one of the most deadly forms of
skin cancer with rising incidence [1, 2]. Exposure to
harmful ultraviolet radiation from the sun is a major
extrinsic risk factor [3, 4]. Melanocytes, found in the basal
epidermal layer of the human skin, produce melanin, which
offers protection to both melanocytes and keratinocytes
from ultraviolet radiation [5, 6]. Baseline epidermal melanin
content and pigmentary response to ultraviolet exposure are
major determinants of skin type, the most important factor
determining melanoma and non-melanoma skin cancer risk
[3, 6]. Therefore, molecular mechanisms underlying mela-
nin production in response to external stimuli are critical for
skin cancer prevention and may provide therapeutic targets
and insight into individual skin cancer susceptibility.

A tanning response is initiated by keratinocytes which
sense ultraviolet radiation induced DNA damage in a p53-
dependent manner [7] and promote the secretion of ɑ-
melanocyte stimulating hormone (α-MSH), which in turn
activates cyclic AMP (cAMP) signaling via Gs-coupled
melanocortin 1 receptor [8]. Subsequently, cAMP via
the cAMP responsive element binding protein (CREB1)
activates the expression of micropthalmia-associated
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transcription factor MITF, a melanocytic lineage-specific
transcription factor that regulates expression of several
pigmentation enzymes and melanosome components,
including tyrosinase (TYR), dopachrome tautomerase, sil-
ver, etc. [8, 9]. In addition, several other signaling path-
ways, including RAF/MAPK [10–13], have been implicated
in the regulation of MITF expression [11]. MITF has a
critical role not only in melanocyte differentiation and
survival but in melanoma progression [11, 14].

Forkhead transcription factor Forkhead box Q1
(FOXQ1) has been characterized as a major activator of
epithelial-to-mesenchymal transition (EMT), invasion, and
metastasis in cells derived from several carcinomas
including breast, colon, ovarian, and lung, where its
levels also correlate with poor prognosis [15–20].
Mechanistically, FOXQ1 has been shown to exert onco-
genic activity in large part by promoting EMT, via direct
regulation of E/N cadherin switch [18, 19]. On the contrary,
we have recently demonstrated that levels of FOXQ1
decreased during melanoma progression and in melanoma
cells as compared with melanocytes [21]. Moreover, unlike
in carcinoma cells, in melanoma cells FOXQ1 suppresses
EMT-like processes [21]. Mechanistically, opposite func-
tions of FOXQ1 in carcinoma and melanoma cells were
largely due to its ability to transactivate (in carcinoma) or
trans-repress (in melanoma) expression of the N-cadherin
gene (CDH2).

Here we report that FOXQ1 is also a potent inducer of
differentiation and an important mediator of two major
signal transduction pathways, namely cAMP/CREB1 and
RAF/MAPK, in melanocytic cells.

Results

FOXQ1 induces melanocyte differentiation through
direct binding to MITF

To evaluate differentiation-associated phenotypes induced
by FOXQ1 we set up experiments to manipulate its levels in
human and mouse melanocytic cells. To this end, we first
transduced FOXQ1 cDNA in normal human melanocytes
(NHMs), and normal and transformed mouse melanocytic
cells (Melan-a and B16, respectively). FOXQ1 upregulated
mRNA and protein levels of MITF, MITF direct target gene
TYR, and induced differentiation evidenced by visible
hyperpigmentation (Fig. 1a-c and Supplementary Fig-
ures S1a-c). Conversely, depletion of FOXQ1 in NHMs,
Melan-a, and B16 suppressed pigmentation and decreased
MITF and TYR levels (Fig. 1d-f and Supplementary Fig-
ures S1d-f). In addition, overexpression of FOXQ1
decreased proliferation of NHM, whereas FOXQ1 depletion
did not significantly affect it (Fig. 1g).

Sequence analysis of human MITF promoter revealed
several potential FOXQ1 binding sites (Fig. 1h). Promoter
regions encompassing some of these sites were significantly
enriched in material precipitated with FOXQ1-specific but
not IgG antibodies in chromatin immunoprecipitation
(ChIP) assay performed in NHM cells treated with either
vehicle or Forskolin (FSK, an activator of adenylate cyclase
and an established inducer of MITF [22]) (Fig. 1i).

Therefore, these data demonstrate that FOXQ1 induces
differentiation in melanocytic cells via direct transcriptional
regulation of the MITF gene.

FOXQ1 mediates cAMP/CREB1-dependent
differentiation in cultured melanocytic cells and in
mouse skin

The cAMP/CREB1 pathway has a major role in induction
of pigmentation in melanocytic cells [23]. Treatment of
NHM, Melan-a, and B16 cells with FSK significantly
upregulated FOXQ1 levels in a dose- and time-dependent
manner (Fig. 2a and Supplementary Figure S2a). Impor-
tantly, depletion of FOXQ1 significantly suppressed FSK-
induced upregulation of MITF and pigmentation in these
cells (Fig. 2b,c and Supplementary Figures S2b-g).

FSK has been widely used to induce pigmentation in the
mouse skin [23]. To test the functional involvement of
Foxq1 in regulation of pigmentation in in vivo settings, we
generated Foxq1 knockout mice. In line with previous
reports [24], Foxq1-deficient mice were viable and healthy,
exhibiting 100% penetrance of the satin sheen phenotype
[24]. Wild type and Foxq1 knockout mice were treated
topically with either vehicle (dimethyl sulfoxide (DMSO),
left ear) or 100 µM FSK (in DMSO, right ear) twice daily
for 10 days. Epidermal pigmentation was detected visually
(Fig. 2d) and assessed via reflective spectroscopy (Fig. 2e)
and hematoxylin and eosin staining of skin sections
(Fig. 2f). We did not detect a significant difference in basal
pigmentation between wild-type and knockout mice.
However, although treatment with FSK induced robust
epidermal pigmentation in wild-type mice, it failed to elicit
such a response in Foxq1–/– mice (Fig. 2d-f). We therefore
concluded that FOXQ1 has a major role in inducing pig-
mentation in cultured melanocytic cells and mouse skin.

CREB1 is an established effector of FSK-induced pheno-
types in melanocytic cells where it functions as a direct
transcriptional activator of MITF [25]. On the other hand, data
presented in Figs. 1 and 2 suggest that activation of cAMP/
CREB1 pathway requires FOXQ1 for upregulation of MITF
and melanocytic differentiation. We hypothesized that
CREB1 transcriptionally activates FOXQ1, and that such
activation is at least in part required for induction of MITF
and differentiation by CREB1. Depletion of
CREB1 substantially decreased levels of Foxq1 mRNA and
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protein in Melan-a and B16 cells, concomitant with changes
in Mitf, Tyr, and melanin content (Fig. 3a-c). Analysis of the
promoter of human and mouse FOXQ1 genes indicated the
presence of several conserved CREB1-binding sites (Fig. 3d).
ChIP assays in NHM, Melan-a, and B16 cells revealed that
several of these sequences were enriched in the material
precipitated with CREB1-specific but not IgG antibodies.
Treatment with 10 µM FSK substantially increasing CREB1
binding to the FOXQ1 promoter (Fig. 3e).

In summary, our data identify FOXQ1 as a major med-
iator of cAMP/CREB1-dependent regulation of MITF and
MITF-dependent pigmentation in melanocytic cells in vitro
and in vivo.

Suppression of FOXQ1 contributes to BRAFV600E-
induced repression of MITF and inhibition of
transformation

Ectopic expression of BRAFV600E in normal melanocytic
cells downregulates β-catenin and MITF levels [26]. Con-
versely, BRAFV600E inhibition leads to increased pigmen-
tation in cultured melanoma cells [10] and in some nevi
[27]. In addition, in Melan-a cells, BRAFV600E over-
expression was reported to cause transformation [12].

We identified that in addition to suppressing the levels
of β-catenin, MITF, and pigmentation (Fig. 4a-c),
ectopic expression of BRAFV600E in human and mouse
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Fig. 1 FOXQ1 induces MITF-dependent differentiation. a, b NHM
transduced with empty vector (VECTOR) or FOXQ1-expressing
vector (FOXQ1) were probed in immunoblotting with indicated anti-
bodies (left) or in Q-RT-PCR (right). FOXQ1/ACTB,MITF/ACTB, and
TYR/ACTB signal ratios are shown. c Cells described in a were imaged
as adherent cells or as cell pellets followed by quantification of total
melanin content (white boxes). d, e Cells transduced with control (CL)
or FOXQ1 (F1, F2) shRNAs were probed in immunoblotting with the
indicated antibodies (left panel) or in Q-RT-PCR (right panel).
FOXQ1/ACTB, MITF/ACTB, and TYR/ACTB signal ratios are shown. f
NHM described in d, e) were imaged as adherent cells or as cell pellets
followed by quantification of total melanin content (white boxes). g

NHM expressing empty vector (V), FOXQ1 cDNA f, or control (CL)
or FOXQ1 shRNAs (F1, F2) were counted for 72 h starting 48 h post
infection. The cell numbers at 72 h were normalized by those before
plating and by the ratio of these numbers in vector or control cells. h
Human MITF promoter. Shown are FOXQ1-binding sites (diamonds)
and PCR primers (arrows). i Q-PCR signals in reactions with DNA
precipitated with FOXQ1-specific antibodies from untreated and FSK-
treated NHM cells were normalized by corresponding signals in DNA
precipitated with IgG antibodies and by signals obtained with MITF
nonspecific control primers (NS). All data represent mean± SEM.
Statistical significance was assessed using two-tailed Student’s t-tests.
A p< 0.05 (*) was considered significant

1042 A. Bagati et al.



melanocytes (NHM and Melan-a cells, respectively)
causes a significant decrease in FOXQ1 mRNA and protein
levels (Fig. 4a,b). Consistently, shRNA-mediated depletion

of β-catenin also downregulated Foxq1 in Melan-a cells as
it has been shown previously in carcinoma cells [28, 29]
(Fig. 4d,e).
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To determine the functional role of FOXQ1 in regulation
of MITF and colony formation by the BRAFV600E–β-catenin
axis, we restored FOXQ1 levels in BRAFV600E-expressing
Melan-a cells approximately to its levels in control cells
(Fig. 4a). Such restoration strongly reverted BRAFV600E-
dependent downregulation of MITF and associated pig-
mentation in NHM and Melan-a cells (Fig. 4a,c). In addi-
tion, restoration of FOXQ1 levels in BRAFV600E-
overexpressing Melan-a cells inhibited BRAFV600E-induced
transformation evidenced by colony formation in semi-solid
agar (Fig. 4e). These data argue that FOXQ1 is a major
mediator of BRAFV600E–β-catenin signaling in melanocytic
cells.

Discussion

Epidermal melanin content and melanogenesis in response
to ultraviolet stimulus are amongst the most important
determinants of skin cancer susceptibility [30–32]. Although
skin cancers are the highest incidence human malignancies
and melanoma is one of the malignancies associated with
most active life years lost [32] benign alterations of pig-
mentation (solar lentigines, melasma, post-inflammatory
hyperpigmentation, etc.) poses an important psychosocial
problem for many people. Our current work establishes
FOXQ1 as a crucial transcriptional regulator of exogenous
stress induced melanogenesis and establishes FOXQ1 as
novel target for skin cancer prevention and treatment of
cutaneous hyperpigmentation.

A member of forkhead box protein family, FOXQ1, is a
transcription factor that has been reported to regulate differ-
entiation in several cell types[18, 33]. Recently, an increasing
number of studies have demonstrated that FOXQ1 is sig-
nificantly associated with the pathogenesis of tumors. Here
we describe FOXQ1 as a regulator of melanin production and
tanning response via direct regulation of MITF in response to
the complex interplay of upstream signaling pathways
including α-MSH/cAMP/CREB1 and RAF/MAPK.

MITF has a complex role in melanoma biology, apart
from its established role in melanocytic differentiation [11,
14]. Depending on its levels MITF has been described as
oncogene or tumor a suppressor. In order to integrate these
conflicting reports a ‘rheostat model’ of MITF functioning
has been proposed where terminal differentiation and inhi-
bition of proliferation is induced by high levels of MITF;
cells with intermediate MITF levels proliferate rapidly but
possess reduced invasive potential; low MITF levels
decrease proliferation but increase invasive properties of a
cell.

Because of its central role in normal and transformed
melanocytic cells, several signal transduction programs
including BRAFV600E/MAPK- and cAMP/CREB1-depen-
dent pathways converge on MITF. By demonstrating that
MITF is a direct transcriptional target of FOXQ1, we were
interested in identifying the role of FOXQ1 in these
pathways.

Physiologically, melanogenesis is stimulated by ultra-
violet radiation [34]-induced DNA damage and resultant α-
MSH release [35], which induce the cAMP/CREB1 path-
way. cAMP-elevating agents such as FSK have been widely
used to study cAMP/CREB1-dependent melanogenesis
[23]. Our data position FOXQ1 as a direct CREB1-
downstream target and a rate-limiting mediator of FSK-
induced melanogenesis, as depletion of FOXQ1 severely
suppresses both FSK- and CREB1-induced pigmentation
and MITF activation. Interestingly, CREB1 itself has been
shown to bind to the MITF promoter and activate its tran-
scription [11]. This suggests a potential functional coop-
eration between FOXQ1 and CREB1 similar to that
between SOX10 and its target gene PAX3. Similar to
FOXQ1, SOX10 also directly activates MITF [36] and is
also required for full-scale activation of MITF by PAX3
[37]. On the other hand, cooperation between FOXQ1 and
CREB1 does not exclude functional involvement in MITF
regulation of other CREB1-dependent targets.

Although inactivation of several upstream regulators of
MITF including SOX10 [36, 38], PAX3 [36, 39], and YY1
[40] among others [11] results in coat-color phenotypes,
Foxq1-null mice retain baseline pigmentation. This obser-
vation is consistent with other studies demonstrating that
mice deficient of CREB1 or another MITF activator PGC1α
also demonstrate “no coat-color” phenotype, underlining the
complexity of basal versus induced pigmentation in mouse
skin [14, 41]. These findings, taken together with our
results, indicate that FOXQ1 is a crucial regulator of
adaptive, DNA damage signaling induced melanogenesis.
As its deficiency alters hyperpigmentation but not baseline
pigmentation, Foxq1 can be considered as an ideal ther-
apeutic target.

Activated BRAFV600E in normal human and mouse
melanocytes has been shown to decrease β-catenin and

Fig. 2 FOXQ1 regulates cAMP/CREB1-dependent pigmentation. a
NHM were treated with the indicated doses of Forskolin (FSK) for 5 h
(left panel) or with 50 μM of FSK for indicated duration (right panel)
followed by immunoblotting with the indicated antibodies. b NHM
were transduced with control (CL) or FOXQ1 (F1, F2) shRNAs and
treated with vehicle (DMSO) or the indicated doses of Forskolin (FSK)
for 5 h followed by immunoblotting with the indicated antibodies. c
Melanin content in cells described in b. d Representative images of
ears from Foxq1+/+ or Foxq1–/– mice (n= 3) treated with either
vehicle (DMSO, left ear) or vehicle containing 100μM Forskolin
(FSK, right ear). e Pigmentation was quantified using a reflectance
spectrometer and represented as fold change in the coefficient of
absorption “mua”. f Representative images of H&E staining of mouse
ear tissues shown in d. All data represent mean± SEM. Statistical
significance was assessed using two-tailed Student’s t-tests. A p< 0.05
(*) was considered significant
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consequently MITF levels [26, 42]. We confirmed these
findings and further demonstrated that BRAFV600E causes
transcriptional repression of FOXQ1, a direct target of β-
catenin [28, 29]. On the other hand, restoration of FOXQ1
levels in BRAFV600E melanocytes while not affecting
nuclear β-catenin, upregulated MITF close to its levels in
vector melanocytes. These data argue that suppression of
FOXQ1 is required for transcriptional repression of MITF
by the BRAFV600E–β-catenin axis.

In summary, our data discovered FOXQ1 is a critical
mediator of two major signal transduction pathways in
melanocytic cells.

Materials and methods

Cell culture

Populations of NHMs were purchased from Invitrogen and
maintained in Medium 254 (Invitrogen) supplemented with
human melanocyte growth supplement (Invitrogen). B16-
F0 cells were purchased from ATCC. HMLER cells were a
gift from Dr. Robert A Weinberg (Whitehead Institute).
Melan-a mouse melanocytes were grown at 37 °C (10%
CO2) in RPMI media containing 12-O-Tetra-
decanoylphorbol-13-acetate.
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Fig. 3 FOXQ1 is important for cAMP/CREB1-dependent pigmenta-
tion. a, b Cells transduced with control shRNA (CL) or
CREB1 shRNA (C1) were probed in immunoblotting with the indi-
cated antibodies or in Q-RT-PCR. CREB1/Actb, Foxq1/Actb, and Mitf/
Actb signal ratios are shown. c Melanin content and representative cell
pellet images of cells described in a, b. d Schematic representation of
human and mouse FOXQ1 promoter. Diamonds represent potential
CREB1 consensus binding sites. e NHM, Melan-a, and B16 cells

treated with vehicle (DMSO) or 10 μM Forskolin were probed in ChIP
assay. Shown are ratios of Q-PCR signals in reactions with DNA
precipitated with CREB1 or IgG antibodies using primers corre-
sponding to potential CREB1-binding sites in FOXQ1 promoter. NS
corresponds to CREB1-nonspecific primer targeting a distal genomic
region. All data represent mean± SEM. Statistical significance was
assessed using two-tailed Student’s t-tests. A p< 0.05 (*) was con-
sidered significant
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Antibodies and other reagents

The following antibodis were used: FoxQ1 (K-12) sc-
47597, (C-16), MITF (Clone 5, ThermoFisher, MA5-
14146), TYR (C-19) sc-7833, GAPDH (ThermoFisher,
PA1-987), β-Catenin (CST, D10A8-8480), and CREB1
(CST, 48H2-9197). FSK (LC Labs) was prepared fresh in
DMSO, 5-Aza-2′-deoxycytidine (A3656 Sigma).

Plasmid constructs

FOXQ1 open reading frame was PCR amplified from NHM
cDNA and cloned into a lentiviral expression vector pLV-
puro in frame with an N-terminus flag-tag. CREB1 cDNA
was purchased from DNASU repository (DNASU,
HsCD00441528). shRNA targeting CREB1 was purchased
from OriGene (RC210577). shRNAs targeting human and
mouse FOXQ1, MITF, pLV-puro, and pLKO-1.puro lenti-
viral control vectors were purchased from Sigma-Aldrich
(St. Louis, MO). pLKO.1 puro shRNA β-catenin was
a gift from Bob Weinberg (Addgene plasmid #18803).

pLenti-CMV-Puro-LUC was purchased from Addgene
(w168-1-7477).

Cell proliferation analysis

Cells (5× 103 cells) were seeded onto 96-well pates and
grown for 24–72 h followed by fixation and staining in
0.5% Methylene blue in water/methanol (50 : 50) for ~ 1 h.
The plates were rinsed using ddH20 and placed in an
inverted position overnight to dry. The stain was eluted in
200 μl of 1% SDS in PBS and the optical density was
determined at 650 nm using a fluorimeter (SpectraMax).

Chromatin immunoprecipitation

Cultured cells (~ 5× 107) were fixed with 1% formaldehyde
at room temperature for 15 min, followed by addition of
glycine (0.125 M) for 5 min. Next, cells were washed with
ice-cold phosphate buffered saline, pelleted, and re-
suspended in ice-cold cell lysis buffer (1% SDS, 10 mM
EDTA, 50 mM Tris-HCl at pH 8.1, containing protease
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Fig. 4 BRAF-β-catenin-FOXQ1 axis controls MITF-dependent phe-
notypes. a NHM and Melan-a cells were transduced with indicated
constructs (V= empty vector, B= BRAFV600E, F= FOXQ1) followed
by immunoblotting with the indicated antibodies. b Cells were trans-
duced with the indicated constructs and probed in Q-RT-PCR. (MITF/
ACTB (Mitf/Actb) and FOXQ1/ACTB (Foxq1/Actb) signal ratios are
shown. c Total melanin content in cells described in a. d NHMs
transduced with the indicated constructs were probed in

immunoblotting with the indicated antibodies (left panel) and in Q-RT-
PCR (right panel). FOXQ1/ACTB signal ratios are shown. e Melan-a
cells were transduced with the indicated constructs and assayed for the
ability to form colonies in soft agar. Shown are average numbers of
colonies per view field (n= 5). All data represent mean± SEM. Sta-
tistical significance was assessed using two-tailed Student’s t-tests. A
p< 0.05 (*) was considered significant
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inhibitors) (EZ-ChIP kit, Millipore, CA, USA). The samples
were then incubated on ice for ~ 20min, followed by soni-
cation (12× for 30 s each at 30 s intervals) with a Microson
(Misonix Inc., USA). Next, the samples were centrifuged at
15,000 r.p.m. at 4 °C for 10min. A control aliquot (whole-
cell extract) was saved and supernatants were diluted 10-fold
in ChIP dilution buffer (16.7 mM Tris-HCl (pH 8.1), 167
mM NaCl, 1.1% Triton X-100, 0.01% SDS, 1.2 mM EDTA
protease inhibitor) (EZ-ChIP kit, Millipore). A 2 h incubation
on a rotating platform at 4 °C with protein A/G beads was
used to remove nonspecific background.

The pre-cleared chromatin material was incubated with
anti-FLAG-conjugated beads (~ 25 μl slurry per 1× 106

cells) on a rotating platform overnight at 4 °C, followed by
magnetic separation. The beads were sequentially washed
and the precipitated material was de-crosslinked and treated
according to the EZ-ChIP kit instructions (Millipore). The
DNA was recovered by column purification and quantified
using QUBIT DNA HS assay kit (Invitrogen).

Colony formation assay

A 0.5% agarose gel was prepared, autoclaved, and poured
onto six-well plates to form a semi-solid feeder layer. Cells
(~ 5× 105) were embedded into 0.3% agarose gel, poured
on top of the feeder layer. The top layer was then covered
with ~ 2 ml of complete media and replenished every 2 days
for 4–6 weeks. Colonies were observed using standard light
microscopy and counted in five random fields per well at ×
200 magnification.

Reverse-transcription PCR analysis

Total RNA was isolated from cells using the RNeasy Mini
Kit (Qiagen, Valencia, CA, USA). cDNA was prepared using
cDNA reverse transcription kit (Invitrogen). Quantitative
reverse-transcription PCR was performed using 7900HT Fast
Real-Time PCR System (Applied Biosystems, Carlsbad, CA,
USA) using SYBr GreenMaster Mix (Invitrogen).

Immunoblotting

Polyvinylidene difluoride membranes were developed using
alkaline phosphatase-conjugated secondary antibodies and
signals were detected and visualized using the Alpha-
Innotech FluorChem HD2 imaging system (Alpha Inno-
tech) and quantified using ImageQuant software (GE
Healthcare Life Sciences).

Generation of Foxq1 knockout mice

Two Foxq1tm1(KOMP)Vlcg mouse embryonic stem cell
clones were obtained from the Velocigene (Regeneron)

branch of the Knockout Mouse Project (KOMP). Prior
genotyping and chromosome analysis was done by KOMP.
Both clones were thawed and expanded as per KOMP
protocols in VGB6 media, genotyped, and subsequently
injected into B6(Cg)-Tyrc-2J/J (Jackson Lab catalog
#000058) embryos to create chimeras by the transgenic core
facility at Roswell Park Cancer Institute. Embryos were
transferred into CD-1 pseudo-pregnant foster mice and one
male chimeric mouse was born. Quantitative PCR analysis
of his sperm performed by UC Davis showed that 50%
of the sperm contained lacZ. Subsequently, a large
scale in vitro fertilization (IVF) was performed to generate
Foxq1 knockout mice.

Measurement of melanin content in mice skin

The optical measurement of the skin were conducted with a
quantitative optical diffuse reflectance spectroscopy system
Zenascope PC1 (Zenalux Biomedical, Durham, NC, www.
zenalux.com). The system was validated in a number of
in vitro, pre-clinical, and clinical applications to date,
including quantification of chemotherapy drug content in
tissue in vivo. The principle of operation has been described
in a number of publications [43–46]. Briefly, a broadband
halogen light source, an optical fiber probe, and a spectro-
meter are used to collect diffuse reflectance signals from the
tissue. The resulting spectra are used as target spectra in an
inverse Monte Carlo algorithm, which converts the relative,
measured diffuse reflectance spectra into quantitative optical
properties (reduced scattering and absorption coefficients).
The depth of penetration is about 2–3mm. Thus, the data are
collected primarily from the skin and underlying dermis. Total
melanin content in the ear skin was measured as a function of
the coefficient of absorption (mua) at 475 nm. Mice were
anesthetized and the probe was pressed against the tested area.
Multiple readings were taken at three distinct spots and then
averaged to yield the mean± SEM. Data are reported as fold
change in the coefficient of absorption (mua).

Statistical analysis

Each experiment was performed at least two times with
consistent results. Statistical significance was determined
using Student’s t-test. A two-tailed p-value was considered
significant for all analyses. Normal distribution was con-
firmed using normal probability plot (GraphPad Prism 6.0,
Graphpad Software, Inc., San Diego, CA, USA), variance
was also assessed using GraphPad Prism 6.0 both within
and between groups and were approximately the same.
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