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Abstract
The present study investigated whether TLR3 is required for neonatal heart repair and regeneration following myocardial
infarction (MI). TLR3 deficient neonatal mice exhibited impaired cardiac functional recovery and a larger infarct size, while wild
type neonatal mice showed cardiac functional recovery and small infarct size after MI. The data suggest that TLR3 is essential for
the regeneration and repair of damaged neonatal myocardium. In vitro treatment of neonatal cardiomyocytes with a TLR3 ligand,
Poly (I:C), significantly enhances glycolytic metabolism, YAP1 activation and proliferation of cardiomyocytes which were
prevented by a glycolysis inhibitor, 2-deoxyglucose (2-DG). Administration of 2-DG to neonatal mice abolished cardiac
functional recovery and YAP activation after MI, suggesting that TLR3-mediated regeneration and repair of the damaged neonatal
myocardium is through glycolytic-dependent YAP1 activation. Inhibition of YAP1 activation abolished Poly (I:C) induced
proliferation of neonatal cardiomyocytes. Interestingly, activation of YAP1 increases the expression of miR-152 which represses
the expression of cell cycle inhibitory proteins, P27kip1 and DNMT1, leading to cardiomyocyte proliferation. We conclude that
TLR3 is required for neonatal heart regeneration and repair after MI. The mechanisms involve glycolytic-dependent YAP1
activation, resulting in miR-152 expression which targets DNMT1/p27kip1.

Introduction

Ischemic heart disease remains the major cause of death in the
United States [1]. The adult heart has limited capacity to

regenerate and repair damaged myocardium induced by
ischemia/reperfusion (I/R) injury. Interestingly, the hearts of
zebrafish and the neonatal mouse have the ability to repair and
regenerate damaged myocardium [2–4]. However, neonatal
mouse hearts lose the capacity for proliferation and regen-
eration 7 days after birth [2], which positively correlates with
the changes in cardiomyocyte metabolism from glycolysis to
oxidative phosphorylation. It is well known that >90% of the
energy in adult cardiomyocytes is generated by mitochondrial
oxidative phosphorylation [5], suggesting that glycolysis could
play an important role in the proliferation of cardiomyocytes.
Indeed, glycolytic metabolism is predominant in zebrafish and
neonatal cardiomyocytes [6, 7] and is essential for somatic cell
reprogramming and differentiation [8–10]. Therefore,
enhanced glycolytic metabolism could be an important
approach for induction of cardiomyocyte proliferation.

Toll-like receptors (TLRs) are the pattern-recognition
receptors that play a critical role in the induction of innate
immune and inflammatory responses [11, 12]. TLR ligands
can promote metabolic reprogramming from oxidative
phosphorylation to glycolysis which is necessary for acti-
vation of immune cells and for trained innate immunity
[13–15]. However, the mechanisms remain elusive.
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YAP and TAZ are major downstream effectors of the
Hippo signaling pathway which play critical roles in con-
trolling organ size [16]. The Hippo pathway is comprised of
core kinase complexes including mammalian STE20-like
protein kinase 1 and 2 (MST1/2), large tumor suppressor 1
and 2 (LATS1/2), and the adaptor proteins SAV1 and
MOB1. Activation of MST1/2 phosphorylates LATS1/2
which suppresses YAP/TAZ transcriptional activity by
phosphorylation [16, 17]. YAP1 and TAZ have been
demonstrated to regulate cardiomyocyte proliferation and
regeneration [17–22].

In the present study, we demonstrated that TLR3 is
required for neonatal damaged heart regeneration. TLR3
activation induces glycolysis dependent YAP1 activation
which regulates the expression of microRNA-152 to target
cell cycle inhibitory proteins DNMT1/p27kip1, leading to
regulation of neonatal cardiomyocyte proliferation.

Results

TLR3 Deficiency Impairs Neonatal Heart
Regeneration After MI

To investigate whether TLR3 could be involved in neonatal
heart regeneration and repair, 1 day old wild type (WT) or
TLR3 deficient (TLR3-/-) mice were subjected to myocardial
infarction (MI). Cardiac function was examined by echo-
cardiography and cardiomyocyte proliferation was evaluated
by 5-ethynyl-2′-deoxyuridine (EdU) incorporation 21 days
after MI. As shown in Fig. 1a, WT neonatal mice show a
smaller infarct size and smaller fibrotic area, while TLR3-/-

neonatal hearts exhibit larger scarring and increased fibrotic
deposition, when compared with WT MI mice. Fig. 1b shows
that EdU positive staining of cardiomyocytes in WT neonatal
MI heart tissues is significantly greater (52.9%) than that in
TLR3-/- neonatal MI heart tissues. In addition, the values of
cardiac function in WT neonatal MI mice are compatible with
WT sham control (Fig. 1c). In contrast, the values of cardiac
function in TLR3-/- neonatal MI mice are significantly lower
than that in TLR3-/- sham control and WT MI mice (Fig. 1c).
The data suggest that TLR3 is necessary for neonatal heart
regeneration and repair after MI.

TLR3 Ligand, Poly (I:C) Enhances Glycolysis And
Promotes Cardiomyocyte Proliferation

To investigate whether the TLR3 ligand, Poly (I:C) would
enhance glycolysis in cardiomyocytes, we isolated neonatal
cardiomyocytes from 1 day old WT mice, treated them with
Poly (I:C) for 12 h, and analyzed glycolytic metabolism. As
shown in Fig. 1d, Poly (I:C) treatment markedly enhances
glycolysis and glycolytic capacity and significantly

increases the proliferation rate of neonatal cardiomyocytes
as evidenced by increased EdU staining of neonatal cardi-
omyocytes (Fig. 1e), when compared with untreated con-
trols. Interestingly, treatment of neonatal cardiomyocytes
with 2-deoxy-D-glucose (2-DG), an inhibitor for hexokinase
2 which is an initial step in glycolysis, prevents Poly (I:C)
induced neonatal cardiomyocyte proliferation (Fig. 1e).
Importantly, in vivo administration of 2-DG to 1 day old
(P1) WT neonatal mice immediately after induction of MI
significantly impairs cardiac functional recovery (Fig. 1f).
The data suggest that glycolytic metabolism plays a critical
role in TLR3-mediated neonatal cardiomyocyte prolifera-
tion and neonatal heart regeneration and repair after MI.

TLR3 Mediates YAP1 Activation via a Glycolytic-
Dependent Mechanism

To address how enhanced glycolysis by Poly (I:C) promotes
neonatal cardiomyocyte proliferation, we investigated
whether YAP1/TAZ activation involves TLR3-mediated
neonatal heart regeneration and repair following MI.
Fig. 2a, b show that the levels of YAP1/TAZ in cytosol and
nuclei were markedly increased in WT MI hearts compared
with WT sham control. In TLR3-/- MI mice, however, the
levels of YAP1/TAZ in the cytosol and nuclei did not
significantly change compared with TLR3-/- sham control
and were markedly lower than that in WT MI mice. The
data suggest that TLR3 is essential for YAP1/TAZ activa-
tion after MI.

We then examined whether Poly (I:C) induced activation
of YAP1 is mediated by glycolysis. As shown in Fig. 2c, d,
Poly (I:C) treatment significantly increases the levels of
YAP1 in both cytosol and nuclei in WT cardiomyocytes,
but not in TLR3-/- cardiomyocytes. However, inhibition of
glycolysis by 2-DG prevented Poly I:C-induced activation
of YAP1 (Fig. 2e, f), suggesting that TLR3-mediated YAP1
activation is through glycolytic-dependent mechanism.

YAP1 activation is required for TLR3-mediated
cardiomyocyte proliferation

To determine the role of YAP/TAZ in TLR3-mediated
cardiomyocyte proliferation, we analyzed the expression
pattern of YAP/TAZ in the myocardium at the different
stages of neonatal heart maturation. As shown in Fig. 3a,
the levels of YAP1/TAZ expression are the highest in P1
and P3 neonatal hearts, gradually reduced on P7, and
remained low on P14, and p21 which positively correlated
with a loss of regenerative capacity in damaged neonatal
hearts. To confirm that YAP1 plays an important role in
cardiomyocyte proliferation, we transfected neonatal cardi-
omyocytes with activated YAP1 (AAV-YAPS127A) to
induce overexpression of YAP1. AAV-Luci served as a
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vector control. Fig. 3b, c show that activated YAP1 trans-
fection significantly promotes neonatal cardiomyocyte
proliferation. Inhibition of YAP1 with specific siRNA for

YAP1 (Fig. 3e) or YAP1 inhibitor, verteporfin (Fig. 3f)
markedly suppresses Poly (I:C)-induced YAP1 expression,
YAP1 nuclear translocation (Fig. 3g) and proliferation of
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neonatal cardiomyocytes (Fig. 3d). The data show that
activation of YAP1 is necessary for Poly (I:C)-induced
proliferation of neonatal cardiomyocytes.

TLR3 Ligand, Poly (I:C) Suppresses YAP1
Phosphorylation, Leading to YAP1 Activation

To investigate whether the TLR3 ligand, Poly (I:C) induces
YAP1 expression at transcriptional or post-transcriptional
levels, we analyzed mRNA levels of YAP/TAZ in neonatal
cardiomyocytes treated with Poly (I:C). Figure 4a shows
that Poly (I:C) treatment did not alter the levels of YAP/
TAZ mRNAs, indicating that TLR3-medicated YAP1
activation is through post-translational modification.

YAP1 contains two main sites for the phosphorylation at
S127 and S397 [16]. Phosphorylation of S127 promotes
YAP1 binding with protein 14-3-3, thus preventing its trans-
location into the nucleus [16]. Phosphorylation of S397
facilitates YAP1 degradation [16, 23]. Therefore, depho-
sphorylation of YAP1 will lead to activation and nuclear
translocation. As shown in Fig. 4b, Poly (I:C) treatment sig-
nificantly decreases the levels of phosphorylated YAP1 at both
S127 and S397 in a time dependent manner, and markedly
increases total YAP1 levels. However, Poly (I:C) stimulation
did not alter the levels of phosphorylated and total YAP1 in
cardiomyocytes isolated from TLR3-/- neonatal mice (Sup-
plemental Figure 1A). The data suggest that Poly (I:C) induces
YAP1 activation by suppressing YAP1 phosphorylation.

Suppression of YAP1 Phosphorylation by Poly (I:C) is
Mediated Through Dephosphorylation of LATS1 and
MOB1

LATS1/2 phosphorylates YAP1 at both the S127 and
S397 sites, resulting in inactivation or degradation of YAP1
[16, 23]. MOB1 is an adaptor protein of Hippo signaling and

interacts with LATS1/2 to promote YAP1 phosphorylation
[24]. In contrast, decreased LATS1 and MOB1 phosphoryla-
tion will release their inhibitory effect on YAP/TAZ activation
[16, 24]. We examined the effect of Poly (I:C) treatment on
LATS1 and MOB1 phosphorylation in neonatal cardiomyo-
cytes. Fig. 4c shows that Poly (I:C) treatment markedly
reduced the levels of LATS1 and MOB1 (Fig. 4b) phos-
phorylation in a time dependent manner. However, Poly (I:C)
treatment did not alter the levels of phosphorylated LATS1
and MOB1 in cardiomyocytes isolated from TLR3-/- neonatal
mice (Supplemental Fig. 1B and C). The data suggest that
Poly (I:C) induced YAP1 activation is mediated through
induction of LATS1 and MOB1 dephosphorylation.

TLR3 Ligand, Poly (I:C) Induces an Interaction
Between PP1a with LATS1 and MOB1

Protein phosphorylase 1 (PP1) plays an important role in the
induction of protein dephosphorylation [25, 26]. We investi-
gated whether Poly (I:C) could induce an interaction between
PP1a and LATS1, resulting in LATS1 and the downstream
effector YAP1 dephosphorylation in the neonatal cardiomyo-
cytes. As shown in Fig. 5a, Poly (I:C) treatment significantly
promotes the interaction between PP1a and LATS1 as evi-
denced by showing high levels of LATS1 in the PP1a
immunoprecipitates. Poly (I:C) treatment also markedly pro-
motes the interaction of PP1a with MOB1 (Fig. 5a). In con-
trast, Poly (I:C) stimulation did not induce an interaction
between PP1a and LATS1 or MOB1 in cardiomyocytes iso-
lated from TLR3-/- neonatal mice (Supplemental Fig. 1D). The
data indicates that PP1a is involved in Poly (I:C) induced
decreases in the levels of LATS1 and MOB1 phosphorylation.

To confirm our observation, we treated neonatal cardio-
myocytes with a PP1a inhibitor, Okadaic acid and observed
that PP1a inhibition abolished Poly (I:C) induced decreases in
the levels of phosphorylated LATS1 and MOB1 (Fig. 5b).
PP1a inhibition also increased YAP1 phosphorylation, result-
ing in decreases in the levels of YAP1 (Fig. 5b). In addition,
PP1a inhibition markedly attenuated Poly (I:C) induced YAP1
nuclear translocation (Fig. 5c) and neonatal cardiomyocyte
proliferation (Fig. 5d). The data suggest that Poly (I:C)
induced YAP1 activation and nuclear translocation are medi-
ated by promoting the interaction of PP1a with LATS1 and
MOB1, resulting in inactivation of both LATS1 and MOB1
through their dephosphorylation.

TLR3 Ligand, Poly (I:C) Induces Glycolysis Mediated
PP1a Dependent LATS1 and YAP1
Dephosphorylation

To investigate whether glycolysis plays a role in Poly (I:C)
induced the interaction of PP1a with LATS1 and decreased
levels of phosphorylated LATS1 and YAP1, we treated

Fig. 1 TLR3 deficiency impaired regeneration and repair of damaged
hearts following myocardial infarction1 day old (P1) neonatal wild
type (WT) and TLR3 deficient (TLR3-/-) mice were subjected to
myocardial infarction (MI). Hearts were harvested 21 days after MI. a
Heart tissue sections were stained with hematoxylin and eosin (H&E)
or Masson-trichrome dye after MI. Fibrous area was quantified by
image analysis in Masson-trichrome staining. b TLR3 deficiency
reduced neonatal cardiomyocyte proliferation. EdU incorporation into
the nuclei of cardiomyocytes from TLR3-/- neonatal mice was sig-
nificantly reduced after MI. c TLR3-/- impaired cardiac functional
recovery. 1 day old (P1) neonatal wild type (WT) and TLR3 deficient
mice were subjected to myocardial infarction (MI) and cardiac func-
tion was measured by echocardiography. d The TLR3 ligand, Poly (I:
C) increased glycolysis and glycolytic capacity in isolated neonatal
cardiomyocytes. e Inhibition of glycolysis by 2-Deoxy-D-glucose (2-
DG) attenuated Poly (I:C) induced increases in EdU incorporation into
the nuclei of neonatal cardiomyocytes e and cardiac functional
recovery of P1 WT neonatal mice after MI f. n= 4–8/group. *p< 0.05
compared with indicated groups
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Fig. 2 Myocardial infarction induced increases in YAP1/TAZ
expression and nuclear translocation in WT neonatal hearts, but not in
TLR3 deficient neonatal mice. 1 day old (P1) neonatal wild type (WT)
and TLR3 deficient (TLR3-/-) mice were subjected to (MI). a, b
Cytosolic and nuclear proteins were isolated from the neonatal hearts
for analysis of YAP and TAZ levels in the cytosol a and the nuclei b.

c, d The TLR3 ligand, Poly I:C increased the level of YAP1 in the
cytosol c and promotes YAP1 nuclear translocation d in WT neonatal
cardiomyocytes, but not in TLR3-/- neonatal cardiomyocytes. e, f
Inhibition of glycolysis by 2-DG prevents Poly I:C-induced increases
in YAP1 expression in cytosol e and nuclear translocation f. n= 3–6/
group. *p< 0.05 compared with indicated groups
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Fig. 3 YAP1 activation is required for TLR3-mediated neonatal car-
diomyocyte proliferation. a The levels of YAP/TAZ in the myo-
cardium are greater in P1 and P3 neonatal mice and are gradually
decreased in P7, P14 and P21 neonatal mice. b, c Increased YAP
levels in neonatal cardiomyocytes by transfection of AAV virus
expressing activated YAP1 increased YAP1 levels (B) and promoted

neonatal cardiomyocyte proliferation c. d-f Inhibition of YAP1
expression by specific siRNA for YAP1 or YAP inhibitor, verteporfin
(VP) markedly suppressed Poly I:C (PIC)-induced neonatal cardio-
myocyte proliferation d, YAP1 expression in cytosol e, f and nuclear
translocation g. n= 3–8/group. *p< 0.05 compared with indicated
groups. #p< 0.05 compared with the control group
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Fig. 4 The TLR3 ligand, Poly (I:C) reduced LATS1, MOB1, and
YAP1 phosphorylation in neonatal cardiomyocytesNeonatal cardio-
myocytes were treated with Poly (I:C) for different time points. Total
RNA and cytosolic proteins were isolated for PCR assay of mRNA

and Western blot analysis of LATS, MOB1 and YAP. a Poly (I:C)
treatment had no effect on YAP1 or TAZ mRNA expression. b, c Poly
(I:C) treatment significantly reduced the phosphorylation of LATS1 b,
MOB1 and YAP1 c. n= 3–5/group
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neonatal cardiomyocytes with 2-DG in the presence or
absence of Poly (I:C) and examined the interaction of PP1a
with LATS1 and the levels of LATS1 and YAP1

phosphorylation. As shown in Fig. 6a, Poly (I:C) treatment
significantly strengthened the interaction between PP1a and
LATS1. However, inhibition of glycolysis by 2-DG

Fig. 5 PP1a is involved in Poly (I:C) induced LATS1 and MOB1
dephosphorylation, YAP1 activation, and neonatal cardiomyocyte
proliferationa Poly (I:C) treatment induced an interaction of PP1 with
LATS1 and MOB1 in neonatal cardiomyocytes. Neonatal cardio-
myocytes were treated with Poly (I:C) and cellular proteins were
isolated for the immunoprecipitation with specific anti-PP1 antibody.
The immunoprecipitates were subjected to immunoblot with anti-
LATS1 and anti-MOB1, respectively. b PP1 inhibitor Okadaic acid

(OA) treatment increased phosphorylation of LATS, MBO1, and
YAP1 and attenuated Poly (I:C) induced decreases in the phosphor-
ylation levels of LATS1, MOB1 and YAP1 in the neonatal cardio-
myocytes. c, d PP1 inhibitor OA treatment prevented Poly (I:C)
induced YAP1 nuclear translocation c and neonatal cardiomyocyte
proliferation d. n= 3–8/group. *p< 0.05 compared with indicated
groups. #p< 0.05 compared with the control group
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Fig. 6 Glycolysis induced by Poly (I:C) mediates PP1a dependent
LATS1 and YAP1 dephosphorylation. a Treatment of neonatal car-
diomyocytes with the glycolysis inhibitor, 2-DG, attenuated Poly I:C-
induced interaction of PP1 with LATS1. b, c Inhibition of glycolysis
with 2-DG increased the levels of phosphorylated LATS b and YAP1

c in neonatal cardiomyocytes. c 2-DG treatment did not alter Poly (I:C)
decreased MOB1 phosphorylation. n= 3–5/group. *p< 0.05 com-
pared with indicated groups. #p< 0.05 compared with the control
group
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prevented Poly I:C-induced interaction of PP1a with
LATS1, suggesting that Poly I:C-induced interaction of
PP1a with LATS1 is mediated through glycolytic

metabolism. To further confirm the role of glycolysis in
Poly I:C-induced dephosphorylatoin of LATS1 and YAP1,
we treated neonatal cardiomyocytes with 2-DG and

Fig. 7 AMPK is involved in
TLR3 ligand, Poly (I:C)-induced
YAP1 activation and neonatal
cardiomyocyte proliferation. a
Treatment of neonatal
cardiomyocytes with Poly (I:C)
significantly decreased the levels
of phosphorylated AMPK in
neonatal cardiomyocytes. b
Inhibition of glycolysis by 2-DG
increased AMPK
phosphorylation and abolished
Poly (I:C) induced decreases in
the levels of dephosphorylated
AMPK. c, d Treatment of
neonatal cardiomyocytes with
an AMPK activator, metformin,
prevents Poly (I:C) induced
dephosphorylation of AMPK c
and YAP1 d. e, f Treatment of
neonatal cardiomyocytes with
the AMPK activator metformin
prevented Poly (I:C) induced
YAP1 nuclear translocation e
and neonatal cardiomyocyte
proliferation f. n= 3–6/group.
*p< 0.05 compared with
indicated groups. #p< 0.05
compared with the control group
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Fig. 8 MicroRNA-152 (miR-152) is involved in TLR3-mediated
YAP1 activation and neonatal cardiomyocyte proliferation. a The
levels of miR-152 expression are greater in the myocardium of P1
neonatal mice and gradually decrease in P3 and P7 neonatal hearts. b,
c YAP1 is required for miR-152 expression in neonatal cardiomyo-
cytes. b Treatment of neonatal cardiomyocytes with YAP inhibitor, VP
abolished Poly (I:C) induced increases in miR-152 expression. c
Transfection of neonatal cardiomyocytes with AAV virus carrying

activated YAP1 increased miR-152 expression. d, e Transfection of
neonatal cardiomyocytes with miR-152 mimics promotes neonatal
cardiomyocyte proliferation d and represses p27kip1 and DNMT1
expression e. f Treatment of neonatal cardiomyocytes with anti-miR-
152 mimics attenuates Poly (I:C) induced neonatal cardiomyocyte
proliferation. n= 3–6/group. *p< 0.05 compared with indicated
groups. #p< 0.05 compared with the control group

976 X. Wang et al.



examined the levels of LATS1, MOB1 and YAP1 phos-
phorylation. As shown in Fig. 6b, c, 2-DG treatment alone
markedly increased the levels of LATS1 and YAP1
phosphorylation. Importantly, 2-DG administration also
abolished Poly (I:C) suppressed phosphorylation of
LATS1, thereby increasing YAP1 phosphorylation. The
data suggest that glycolysis is involved in Poly (I:C)
induced decreases in the levels of LATS1 phosphorylation
by promoting the interaction between PP1a and LATS1,
leading to YAP1 activation. We observed that 2-DG
treatment did not alter Poly (I:C) induced decreases in the
levels of MOB1 phosphorylation (Fig. 6c), indicating that
in addition to glycolysis, other mechanisms may be
involved in Poly (I:C) induced MOB1 dephosphorylation.

TLR3 Ligand, Poly (I:C) Modulates AMPK
Phosphorylation and YAP1 Activation via a
Glycolytic-Dependent Mechanism

AMPK is abundantly expressed in the heart and plays an
important role in the regulation of cellular metabolism [27].
AMPK activity is regulated by glycolysis and involves
energy stress-induced inactivation of YAP1 [28]. We
examined whether Poly (I:C) would regulate
AMPK activation via glycolysis. As shown in Fig. 7a, fol-
lowing Poly (I:C) treatment, the levels of phosphorylated
AMPK are gradually reduced in a time dependent manner.
Administration of 2-DG abolished Poly (I:C)-suppressed
AMPK phosphorylation and significantly increase the levels
of phosphorylated AMPK (Fig. 7b). However, Poly (I:C)
treatment did not alter the levels of phosphorylated AMPK in
neonatal cardiomyocytes isolated from TLR3-/- mice (Sup-
plemental Fig. 1E). The data indicate that Poly (I:C)
decreases AMPK phosphorylation via glycolysis.

To examine whether AMPK would play a role in the reg-
ulation of YAP1 activation, we treated neonatal cardiomyocytes
with an AMPK specific activator, metformin and examined
YAP1 activation as well as the proliferation of neonatal cardi-
omyocytes in the presence and absence of Poly (I:C). As shown
in Fig. 7c, treatment of the cells with metformin abolished Poly
(I:C) induced decreases in AMPK phosphorylation. Impor-
tantly, metformin treatment also abolished Poly (I:C) induced
dephosphorylation of YAP1 (Fig. 7d), YAP1 nuclear translo-
cation (Fig. 7e), and neonatal cardiomyocyte proliferation
(Fig. 7f). The data suggest that activation of AMPK negatively
regulates YAP1 activation and nuclear translocation as well as
neonatal cardiomyocyte proliferation.

Activation of YAP1 Regulates miR-152 Expression in
Neonatal Cardiomyocytes

To investigate the mechanisms by which activated YAP1
induces neonatal cardiomyocyte proliferation, we examined

the role of microRNA-152 (miR-152) in TLR3-mediated
YAP1 dependent neonatal cardiomyocyte proliferation. It is
well known that miR-152 targets cell cycle entry proteins
p27kip1 and DNA methyltransferase1 (DNMT1) which are
important proteins in the regulation of cell proliferation [29,
30]. As shown in Fig. 8a, miR-152 levels are the highest in P1
neonatal hearts but are gradually reduced in P3 and P7 neo-
natal hearts. In vitro treatment of TLR3-/- neonatal cardio-
myocytes with Poly (I:C) did not alter the levels of miR-152
(Supplemental Fig. 2A), but significantly increased expression
of miR-152 in WT neonatal cardiomyocytes (Fig. 8b). How-
ever, inhibition of YAP1 with a YAP1 inhibitor (VP) pre-
vented Poly (I:C) induced increases in miR-152 expression
(Fig. 8b). In contrast, increased YAP1 activation by transfec-
tion of neonatal cardiomyocytes with AAV-YAP1 markedly
increases the levels of miR-152 expression (Fig. 8c). The data
suggest that activation of YAP1 regulates the expression of
miR-152 in neonatal cardiomyocytes.

MiR-152 Contributes to TLR3-Mediated
Cardiomyocyte Proliferation

To investigate the role of miR-152 in TLR3-mediated neo-
natal cardiomyocyte proliferation, we transfected
neonatal cardiomyocytes with miR-152 mimics or anti-miR-
152 mimics, respectively (Supplemental Fig. 2B) and
examined the proliferation of neonatal cardiomyocytes. As
shown in Fig. 8d, transfection of miR-152 mimics sig-
nificantly promotes the proliferation of neonatal cardiomyo-
cytes as evidenced by incorporation of EdU into the neonatal
cardiomyocytes. MiR-152 mimic transfection markedly
suppresses the expression of p27kip and DNMT1 in the
neonatal cardiomyocytes (Fig. 8e). P27kip1 is a cyclin-
dependent kinase inhibitor while DNMT1 plays a critical role
in regulation of the cell cycle [31, 32]. Suppression of
p27kip1 and DNMT1 will promote cell cycle entry, leading
to proliferation. However, suppression of miR-152 expres-
sion by transfection of cells with anti-miR-152 significantly
attenuates Poly (I:C) induced cell proliferation (Fig. 8f). The
data suggest that an increased level of miR-152 promotes
neonatal cardiomyocyte proliferation via suppression of
p27kip and DNMT1 expression (Fig. 9).

Discussion

TLRs are conserved pattern-recognition receptors that are
involved in the pathophysiology of myocardial ischemia/
reperfusion (I/R) injury [33]. We have previously reported
that TLR3 contributes to acute and early I/R-induced adult
myocardial injury [33]. Interestingly, TLR3-mediated
signaling is involved in cell reprogramming and tissue
regeneration [34–36]. indicating that TLR3 may be
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involved in damaged heart repair and regeneration in the
late stage of myocardial ischemic injury. Adult heart has
extremely limited capability for regeneration and repair of
damaged myocardium [37–39]. Therefore, neonatal heart
is an optional model for investigating the role of TLR3 in
damaged heart repair and regeneration. The contribution of
macrophages to neonatal heart regeneration has been well
demonstrated [40]. Therefore, the present study focused on
the role of TLR3 in cardiac myocyte proliferation in
damaged heart repair and regeneration. TLR3 deficiency
impairs neonatal heart repair and regeneration after MI. At
present, we do not understand what endogenous ligands
might activate TLR3 for repair and regeneration in the
damaged neonatal heart. However, the TLR3 ligand, Poly
(I:C) markedly enhanced glycolysis in neonatal cardio-
myocytes, demonstrating, for the first time to our knowl-
edge, that glycolysis increased by Poly (I:C) plays a
critical role in the proliferation of neonatal cardiomyocytes
in vitro and heart repair and regeneration in vivo. It is well
known that zebrafish display a distinct ability to regenerate
their heart following injury. However, another teleost,
such as medaka does not have this ability. Lai et al. [41]
recently observed delayed and reduced macrophage
recruitment in medaka, along with delayed neutrophil
clearance. Interestingly, treatment of medaka with the
TLR3 ligand, Poly (I:C) significantly enhanced immune
cell dynamics and promoted neovascularization, neu-
trophil clearance, cardiomyocyte proliferation and scar
resolution [41]. The data suggest that in addition to
increases in glycolysis, Poly (I:C) administration could
significantly regulate immune function to promote repair
of the damaged heart.

YAP1 activation plays an important role in mediating
cell proliferation and differentiation [16, 17]. We observed
that the P1 and P3 neonatal hearts have greater levels of
YAP1 than that in P7, P14 and P21 neonatal mice, indi-
cating that higher levels of YAP1 in the neonatal heart may
be associated with the regenerative capacity within the first
week after birth. Interestingly, Bassat et al has recently
reported that changes in the composition of the extracellular
matrix (ECM) during the first week after birth can affect
cardiomyocyte growth and differentiation in mice [42].
These authors have identified a component of neonatal
ECM called agrin, which is required for the full regen-
erative capacity of neonatal mouse hearts. A single in vivo
administration of agrin promotes cardiac regeneration in
adult mice after myocardial infarction. The mechanisms
involve the disassembly of the dystrophin-glycoprotein
complex (DGC), and YAP- and ERK-mediated signaling
[42]. DGC is a multicomponent transmembrane complex
that links the actinin cytoskeleton to ECM. Morikawa et al
have found that the DGC component dystroglycan 1 (Dag1)
directly binds to the Hippo pathway effector YAP to inhibit
cardiomyocyte proliferation in mice [43]. These authors
revealed that DGC sequesters pYAP as a mechanism to
regulate cardiomyocyte proliferation in postnatal and adult
heart [43]. We observed that neonatal hearts have high
levels of YAP1 that are associated with aerobic glycolysis
in the neonatal hearts. Suppression of glycolysis by 2-DG in
neonatal cardiomyocytes prevented Poly (I:C) induced
increases in YAP1 expression, suggesting that Poly (I:C)
increases glycolysis that regulates YAP1 expression in
neonatal cardiomyocytes.

We observed that Poly (I:C) does not alter YAP/TAZ
mRNA levels in neonatal cardiomyocytes, indicating that
Poly (I:C) may regulate YAP1 activation at the post-
transcriptional level. Increased phosphorylation of LATS1
and its adaptor protein MOB1 will result in YAP1 phos-
phorylation and degradation [16, 24]. We observed that
Poly (I:C) treatment significantly decreased the levels of
LATS1 and MOB1 phosphorylation. Importantly, inhibition
of glycolysis by 2-DG abolished Poly (I:C) induced de-
phosphorylation of LATS1 but not MOB1. These data
suggest that Poly (I:C) induced decreases in the levels of
phosphorylated MOB1 may be mediated through a glyco-
lytic independent mechanism. Indeed, we have found that
there is an interaction between MOB1 and PP1 following
Poly (I:C) treatment of neonatal cardiomyocytes. PP1 is a
protein phosphatase that has been reported to interact with
LATS1, resulting in inactivation of LATS1/2 by depho-
sphorylation of LATS1 or direct dephosphorylation of
YAP1/TAZ, leading to their activation [25, 26, 28]. Our
findings suggest that Poly (I:C) induced YAP1 activation is
mediated, in part by promoting a co-association of PP1a
with MOB1 and LATS1, resulting in inactivation of both

Fig. 9 Illustration of TLR3-mediated YAP1 activation and miR-152
expression in cardiomyocyte proliferationActivation of TLR3
increased glycolysis, resulting in inactivation of LATS and AMPK by
reduced phosphorylation. Inactivated LATS and AMPK lead to acti-
vation of YAP1 which, as a co-transcriptional factor regulated miR-
152 expression. miR-152 suppressed p27kip1 and DNMT1 expres-
sion, promoting cell proliferation

978 X. Wang et al.



MOB1 and LATS1. Indeed, PP1a inhibition by okadaic
acid abolished Poly (I:C) induced neonatal cardiomyocyte
proliferation.

AMPK has been reported to regulate glycolytic meta-
bolism [27] and suppress YAP1 activation through phos-
phorylation of LATS1 [28, 44]. We observed that AMPK is
involved in Poly (I:C) induced proliferation of neonatal
cardiomyocytes. To the best of our knowledge, this is the
first report that TLR3 activation decreases AMPK phos-
phorylation via a glycolytic-dependent mechanism. In
contrast, administration of metformin, an AMPK activator,
significantly increased AMPK phosphorylation and abol-
ished Poly (I:C) induced YAP1 activation and nuclear
translocation as well as proliferation of neonatal cardio-
myocytes. Our findings suggest that, in addition to inacti-
vation of LATS1 leading to activation of YAP1 through
glycolysis, Poly (I:C) also induces dephosphorylation of
AMPK via glycolysis, resulting in YAP1 activation and
nuclear translocation in neonatal cardiomyocyte
proliferation.

It is well known that activation of YAP1 promotes cell
proliferation and differentiation [16, 17]. However, the
mechanisms remain elusive. YAP1 is a co-transcriptional
factor which can regulate microRNA biogenesis and
expression with its DNA binding partner TEAD [45]. To
address this issue, we investigated whether activated YAP1/
TAZ could regulate the expression of proteins, such as
P27kip1 and DNMT1 (DNA methyltransferase 1), con-
trolling cell cycle entry [31, 32]. P27kip1 is a cyclin-
dependent kinase inhibitor by binding and inhibiting cyclin/
CDKs [32]. DNA methylation in the promoter region of cell
cycle related genes is associated with gene repression and
prevents cell proliferation. DNMT1 is gradually upregulated
during post-neonatal heart development and inhibition of
DNMT1 markedly increases cardiomyocyte proliferation
[31]. Therefore, it is possible that targeting both P27kip1
and DNMT1 could promote cell proliferation. We demon-
strated that activation of YAP1 by Poly (I:C) significantly
increases the expression of miR-152 which represses the
expression of P27kip1 and DNMT1, resulting in prolifera-
tion of neonatal cardiomyocytes.

In summary, we demonstrated that TLR3 is necessary
for the proliferation of neonatal cardiomyocytes and repair
and regeneration of ischemic injured hearts. The
mechanisms involve glycolysis dependent YAP1 activa-
tion via PP1a mediated suppression of MOB1 and LATS1
and through AMPK inactivation. Activated YAP1 increa-
ses the expression of miR-152 which targets DNMT1/
p27kip1, leading to cell proliferation (Fig. 9). Activation
of TLR3 could be a novel strategy for the treatment of
ischemic heart injury.

Materials and Methods

Animals

TLR3 deficient (TLR3−/−) and wild type C57BL/6 mice
were obtained from Jackson Laboratory (Indianapolis, IN).
The mice were maintained in the Division of Laboratory
Animal Resources at East Tennessee State University. The
experiments outlined in this manuscript conform to the
Guide for the Care and Use of Laboratory Animals pub-
lished by the National Institutes of Health (NIH Publication,
8th Edition, 2011). The animal care and experimental pro-
tocols were approved by the ETSU Committee on Animal
Care.

Induction of Myocardial MI Injury

1 day old (P1) mice were subjected to myocardial infarction
(MI) as described previously [40]. Briefly, the neonatal
mice were anesthetized by hypothermia on ice for 3–5 min.
The chest was swabbed with betadine and opened at the
fourth intercostal space. 8-0 silk ligature was used for LAD
permanent ligation. The ribs were sutured together and the
chest wall incision closed. The pups were warmed imme-
diately after surgery by hand. Once all the surgeries were
completed, the blood and skin of the pups were cleaned
with mixed stuff from mother’s cage before the pups were
sent back to mother’s cage. Cardiac function was assessed
by echocardiography for up to 21 days after induction of MI
as described previously [46, 47]. Ejection fraction (EF%)
and percent fractional shortening (FS%) were calculated
[46, 47].

Isolation of Neonatal Cardiomyocytes

Neonatal cardiomyocytes were isolated from 1 day old
(P1) WT mouse hearts as described previously [48].
Briefly, hearts were harvested from P1 neonatal mice and
cut into small pieces followed by digestion in dissocia-
tion buffer (116 mM NaCl, 20 mM Hepes, 0.8 mM
Na2HPO4, 5.6 mM glucose, 5.4 mM KCl, and 0.8 mM
MgSO4, pH 7.35) containing 0.6 mg/mL of pancreatin
and 0.4 mg/mL Collagenase Type II for 10 min. The
supernatant was removed and digestion buffer was added.
After several repeated digestions with 10 min for each
step, the cell suspension was added with fetal bovine
serum followed by centrifugation for 5 min at 100× g.
The cells were seeded onto uncoated dishes for 2–4 h.
The supernatant was recollected and plated into gelatin
pre-coated plates.
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Cardiomycoyte Proliferation

The proliferation of neonatal cardiomyocytes was measured
by EdU incorporation and anti-Ph3 staining [18, 19, 48].
EdU incorporation was examined by Click-iT EdU imaging
kit (Life Technologies) according to the manufacture’s
protocol. Nuclei were stained with DAPI and cardiomyo-
cytes were stained with a monoclonal anti-actin (Abcam,
Cambridge, MA). The proliferation rate was calculated by
dividing EdU+ cardiomyocytes by the total number of
cardiomyocytes [18, 19, 48] in a blinded fashion. The
experiments were performed at least three times (experi-
mental replicates) and each experimental replicate contained
one-two biological replicates.

qPCR Assay

mRNAs and microRNAs were isolated from heart tissues or
cultured cells using the miRNAs isolation kit (RNA-
zol®RT, MRC) in accordance with the manufacture’s pro-
tocol. Quantitative real-time (qPCR) was conducted using a
4800 Real-time PCR machine (Bio-Rad). mRNAs and
microRNAs levels were quantified by qPCR using specific
Taqman assays (Applied Biosystems, USA) and Taqman
Universal Master Mix (Applied Biosystems). The levels of
miR-152 and mRNA levels of YAP1 or TAZ were quan-
tified with the 2 (-ΔΔct) relative quantification method that
was normalized to the snRU6 or β-Actin (Applied
Biosystems).

In Vitro Experiments

The isolated neonatal cardiomyocytes were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum under 5% CO2 at 37 °
C. To determine the role of TLR3 in the metabolism and
proliferation of neonatal cardiomyocytes, the cells were
treated with TLR3 specific ligand, Poly (I:C) (1 µg/ml).
Cell proliferation was assessed by EdU incorporation (10
µmol/L) [48]. The glycolytic capacity (ECAR) was
examined with a Seahorse system. To examine the role of
glycolysis and protein phosphotase 1 (PP1a) in TLR3-
mediated YAP1 activation and cardiomyocyte prolifera-
tion, the isolated cardiomyocytes were treated with the
glycolytic inhibitor, 2-DG (5 mmol/L) or PP1a inhibitor,
okadaic acid, (0.5 mmol/L) respectively, before the cells
were treated with Poly (I:C) at 1 µg/mL. To determine
whether YAP1 or miR-152 is necessary for TLR3-
mediated cardiomyocyte proliferation, the isolated cardi-
omyocytes were treated with YAP1 inhibitor verteporfin
(VP, 1 mmol/L) or transfected with siRNA-Con (80 nmol/
L), siRNA-YAP1 (80 nmol/L), microRNA-Con mimics
(40 nmol/L), miR-152 mimics (40 nmol/L), anti-miR-Con

mimics (60 nmol/L), anti-miR-152 mimics (60 nmol/L),
respectively prior to Poly (I:C) treatment. To determine
whether AMPK was involved in TLR3-mediated YAP1
activation and cardiomyocyte proliferation, the AMPK
activator Metformin (1 mmol/L) was used prior to Poly (I:
C) treatment. The experiments were performed at least
three times (experimental replicates) and each experi-
mental replicate contained one-two biological replicates.

AAV Virus Packaging

pAAV.cTnT::3Flag-hYAP and pAAV.cTnT::Luciferase
vectors were kindly provided by Dr. William T. Pu (Har-
vard Stem Cell Institute). AAV virus was packaged
in293T cells using AAV-DJ Helper Free Packaging System
(Cell Biolabs, Inc). The hYAP vector contains an S-127-A
mutation resulting in a constitutive active form. The AAV
virus was purified and concentrated by CsCl gradient cen-
trifugation. The AAV virus titer was determined by AAV-
pro Titration Kit (Takara).

Immunoprecipitation

Approximately 200 µg of cellular proteins were subjected to
immunoprecipitation with 2 µg of antibody to PP1a (Santa
Cruz Biotechnology, CA) followed by the addition of 15 µL
of protein A-agarose beads (Santa Cruz Biotechnology) as
previously described [49]. The precipitates were washed
four times with lysis buffer and subjected to immunoblot-
ting with the appropriate antibodies.

Immunoblotting

Immunoblotting was performed as described previously
[46, 47]. The primary antibodies (p-LATS1, LATS1, p-
YAP1 (S127), p-YAP1 (S397), YAP1, p-MOB1, MOB1,
p-AMPK, AMPK, p27kip1, DNMT1) and peroxidase-
conjugated secondary antibody were purchased from Cell
Signaling Technology, Inc. The PP1a antibody was pur-
chased from Santa Cruz Biotechnology. The signals were
quantified using the G:Box gel imaging system by Syngene
(Syngene, Fredric, MD).

Statistical Analysis

Data were expressed as mean± SD. Comparisons of data
between groups were made using one-way analysis of
variance (ANOVA), and Tukey’s procedure for multiple-
range tests was performed. P< 0.05 was considered to be
significant.
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