Article | Published:

Redox-dependent BMI1 activity drives in vivo adult cardiac progenitor cell differentiation

Cell Death & Differentiationvolume 25pages807820 (2018) | Download Citation


Accumulation of reactive oxygen species (ROS) is associated with several cardiovascular pathologies and with cell cycle exit by neonanatal cardiomyocytes, a key limiting factor in the regenerative capacity of the adult mammalian heart. The polycomb complex component BMI1 is linked to adult progenitors and is an important partner in DNA repair and redox regulation. We found that high BMI1 expression is associated with an adult Sca1+ cardiac progenitor sub-population with low ROS levels. In homeostasis, BMI1 repressed cell fate genes, including a cardiogenic differentiation program. Oxidative damage nonetheless modified BMI1 activity in vivo by derepressing canonical target genes in favor of their antioxidant and anticlastogenic functions. This redox-mediated mechanism is not restricted to damage situations, however, and we report ROS-associated differentiation of cardiac progenitors in steady state. These findings demonstrate how redox status influences the cardiac progenitor response, and identify redox-mediated BMI1 regulation with implications in maintenance of cellular identity in vivo.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Edited by D. Aberdam


  1. 1.

    Uygur A, Lee RT. Mechanisms of cardiac regeneration. Dev Cell 2016;36:362–374.

  2. 2.

    Noseda M, Abreu-Paiva M, Schneider MD. The Quest for the Adult Cardiac Stem Cell. Circ J 2015;79:1422–1430.

  3. 3.

    Valente M, Nascimento DS, Cumano A, Pinto-do-Ó P. Sca-1 + cardiac progenitor cells and heart-making: a critical synopsis. Stem Cells Dev 2014;23:2263–2273.

  4. 4.

    Noseda M, Harada M, McSweeney S, Leja T, Belian E, Stuckey DJ, et al PDGFRα demarcates the cardiogenic clonogenic Sca1(+) stem/progenitor cell in adult murine myocardium. Nat Commun 2015;6:6930.

  5. 5.

    Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, et al CD31- but Not CD31+cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 2005;97:52–61.

  6. 6.

    Ushio-Fukai M, Rehman J. Redox and metabolic regulation of stem/progenitor cells and their niche. Antioxid Redox Signal 2014;21:1587–1590.

  7. 7.

    Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, et al Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature 2015;523:226–230.

  8. 8.

    Kocabas F, Mahmoud AI, Sosic D, Porrello ER, Chen R, Garcia JA, et al The hypoxic epicardial and subepicardial microenvironment. J Cardiovasc Transl Res 2012;5:654–665.

  9. 9.

    Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, et al Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 2013;15:533–543.

  10. 10.

    Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, et al Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 2004;304:1338–1340.

  11. 11.

    Zhang CC, Sadek HA. Hypoxia and metabolic properties of hematopoietic stem cells. Antioxid Redox Signal 2014;20:1891–1901.

  12. 12.

    Inomata K, Aoto T, Binh NT, Okamoto N, Tanimura S, Wakayama T, et al Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 2009;137:1088–1099.

  13. 13.

    Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014;24:R453–462.

  14. 14.

    Cao Y, Fang Y, Cai J, Li X, Xu F, Yuan N, et al ROS functions as an upstream trigger for autophagy to drive hematopoietic stem cell differentiation. Hematology 2016;21:613–618.

  15. 15.

    Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, et al The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014;157:565–579.

  16. 16.

    Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 2008;40:915–920.

  17. 17.

    Biehs B, Hu JK, Strauli NB, Sangiorgi E, Jung H, Heber RP, et al BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat Cell Biol 2013;15:846–852.

  18. 18.

    Komai Y, Tanaka T, Tokuyama Y, Yanai H, Ohe S, Omachi T, et al Bmi1 expression in long-term germ stem cells. Sci Rep 2014;4:6175.

  19. 19.

    Valiente-Alandi I, Albo-Castellanos C, Herrero D, Arza E, Garcia-Gomez M, Segovia JC, et al Cardiac Bmi1 (+) cells contribute to myocardial renewal in the murine adult heart. Stem Cell Res Ther 2015;6:205.

  20. 20.

    Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004;431:873–878.

  21. 21.

    Zhou Y, Wang L, Vaseghi HR, Liu Z, Lu R, Alimohamadi S, et al Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming. Cell Stem Cell 2016;18:382–395.

  22. 22.

    Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999;397:164–168.

  23. 23.

    Abdouh M, Hanna R, El Hajjar J, Flamier A, Bernier G. The Polycomb Repressive Complex 1 Protein BMI1 Is Required for Constitutive Heterochromatin Formation and Silencing in Mammalian Somatic Cells. J Biol Chem 2016;291:182–197.

  24. 24.

    Ginjala V, Nacerddine K, Kulkarni A, Oza J, Hill SJ, Yao M, et al BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol 2011;31:1972–1982.

  25. 25.

    Wei F, Ojo D, Lin X, Wong N, He L, Yan J, et al BMI1 attenuates etoposide-induced G2/M checkpoints via reducing ATM activation. Oncogene 2014;34:3063–3075.

  26. 26.

    Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, et al Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 2009;459:387–392.

  27. 27.

    Banerjee Mustafi S, Aznar N, Dwivedi SK, Chakraborty PK, Basak R, Mukherjee P, et al Mitochondrial BMI1 maintains bioenergetic homeostasis in cells. FASEB J 2016;30:4042–4055.

  28. 28.

    Wang K, Zhang T, Dong Q, Nice EC, Huang C, Wei Y. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis 2013;4:e537.

  29. 29.

    Hosen N, Yamane T, Muijtjens M, Pham K, Clarke MF, Weissman IL. Bmi-1-green fluorescent protein-knock-in mice reveal the dynamic regulation of bmi-1 expression in normal and leukemic hematopoietic cells. Stem Cells 2007;25:1635–1644.

  30. 30.

    Di Foggia V, Zhang X, Licastro D, Gerli MF, Phadke R, Muntoni F, et al Bmi1 enhances skeletal muscle regeneration through MT1-mediated oxidative stress protection in a mouse model of dystrophinopathy. J Exp Med 2014;211:2617–2633.

  31. 31.

    Chen Y, Li L, Ni W, Zhang Y, Sun S, Miao D, et al Bmi1 regulates auditory hair cell survival by maintaining redox balance. Cell Death Dis 2015;6:e1605.

  32. 32.

    Cruz FM, Tomé M, Bernal JA, Bernad A. miR-300 mediates Bmi1 function and regulates differentiation in primitive cardiac progenitors. Cell Death Dis 2015;6:e1953.

  33. 33.

    Malliaras K, Ibrahim A, Tseliou E, Liu W, Sun B, Middleton RC, et al Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction. EMBO Mol Med 2014;6:760–777.

  34. 34.

    Maher TJ, Ren Y, Li Q, Braunlin E, Garry MG, Sorrentino BP, et al ATP-binding cassette transporter Abcg2 lineage contributes to the cardiac vasculature after oxidative stress. Am J Physiol Heart Circ Physiol 2014;306:H1610–1618.

  35. 35.

    Lee YJ, Park SJ, Ciccone SL, Kim CR, Lee SH. An in vivo analysis of MMC-induced DNA damage and its repair. Carcinogenesis 2006;27:446–453.

  36. 36.

    Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L, et al Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res 2016;26:119–130.

  37. 37.

    Ohtsubo M, Yasunaga S, Ohno Y, Tsumura M, Okada S, Ishikawa N, et al Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc Natl Acad Sci USA 2008;105:10396–10401.

  38. 38.

    Bednar F, Schofield HK, Collins MA, Yan W, Zhang Y, Shyam N, et al Bmi1 is required for the initiation of pancreatic cancer through an Ink4a-independent mechanism. Carcinogenesis 2015;36:730–738.

  39. 39.

    Ismail IH, Andrin C, McDonald D, Hendzel MJ. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J Cell Biol 2010;191:45–60.

  40. 40.

    Chagraoui J, Hébert J, Girard S, Sauvageau G. An anticlastogenic function for the Polycomb Group gene Bmi1. Proc Natl Acad Sci U S A 2011;108:5284–5289.

  41. 41.

    Pouyet L, Carrier A. Mutant mouse models of oxidative stress. Transgenic Res 2010;19:155–164.

  42. 42.

    Gu M, Shen L, Bai L, Gao J, Marshall C, Wu T, et al Heterozygous knockout of the Bmi-1 gene causes an early onset of phenotypes associated with brain aging. Age (Dordr) 2014;36:129–139.

  43. 43.

    Nóbrega-Pereira S, Fernandez-Marcos PJ, Brioche T, Gomez-Cabrera MC, Salvador-Pascual A, Flores JM, et al G6PD protects from oxidative damage and improves healthspan in mice. Nat Commun 2016;7:10894.

  44. 44.

    Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW, et al In vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell 2013;23:660–676.

  45. 45.

    Kimura W, Muralidhar S, Canseco DC, Puente B, Zhang CC, Xiao F, et al Redox signaling in cardiac renewal. Antioxid Redox Signal 2014;21:1660–1673.

  46. 46.

    Drenckhahn JD, Schwarz QP, Gray S, Laskowski A, Kiriazis H, Ming Z, et al Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell 2008;15:521–533.

  47. 47.

    Crespo FL, Sobrado VR, Gomez L, Cervera AM, McCreath KJ. Mitochondrial reactive oxygen species mediate cardiomyocyte formation from embryonic stem cells in high glucose. Stem Cells 2010;28:1132–1142.

  48. 48.

    Buggisch M, Ateghang B, Ruhe C, Strobel C, Lange S, Wartenberg M, et al Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J Cell Sci 2007;120(Pt 5):885–894.

  49. 49.

    Hämäläinen RH, Ahlqvist KJ, Ellonen P, Lepistö M, Logan A, Otonkoski T, et al mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling. Cell Rep 2015;11:1614–1624.

  50. 50.

    Falluel-Morel A, Lin L, Sokolowski K, McCandlish E, Buckley B, DiCicco-Bloom E. N-acetyl cysteine treatment reduces mercury-induced neurotoxicity in the developing rat hippocampus. J Neurosci Res 2012;90:743–750.

  51. 51.

    García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, et al Autophagy maintains stemness by preventing senescence. Nature 2016;529:37–42.

  52. 52.

    Sato A, Okada M, Shibuya K, Watanabe E, Seino S, Narita Y, et al Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells. Stem Cell Res 2014;12:119–131.

  53. 53.

    Yamaguchi M, Kashiwakura I. Role of reactive oxygen species in the radiation response of human hematopoietic stem/progenitor cells. PLoS One 2013;8:e70503.

  54. 54.

    Le HQ, Ghatak S, Yeung CY, Tellkamp F, Günschmann C, Dieterich C, et al Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat Cell Biol 2016;18:864–875.

  55. 55.

    Kloet SL, Makowski MM, Baymaz HI, van Voorthuijsen L, Karemaker ID, Santanach A, et al The dynamic interactome and genomic targets of Polycomb complexes during stem-cell differentiation. Nat Struct Mol Biol 2016;23:682–690.

  56. 56.

    Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003;425:962–967.

  57. 57.

    Landais S, D’Alterio C, Jones DL. Persistent replicative stress alters polycomb phenotypes and tissue homeostasis in Drosophila melanogaster. Cell Rep 2014;7:859–870.

  58. 58.

    Gu BW, Fan JM, Bessler M, Mason PJ. Accelerated hematopoietic stem cell aging in a mouse model of dyskeratosis congenita responds to antioxidant treatment. Aging Cell 2011;10:338–348.

  59. 59.

    Lotito SB, Fraga CG. Catechins delay lipid oxidation and alpha-tocopherol and beta-carotene depletion following ascorbate depletion in human plasma. Proc Soc Exp Biol Med 2000;225:32–38.

  60. 60.

    Levine RL, Williams JA, Stadtman ER, Shacter E, Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:346–357

Download references


We thank S. Gutiérrez for assistance with confocal microscopy, J.C. Oliveros and M. Franch for bioinformatics, M.C. Moreno and S. Escudero for the sorting strategy, M Serrano for G6PDtg mouse line, N. Fonseca-Balvis for her valuable input, and C. Mark for editorial support. D.H., M.T., and F.M.C. were predoctoral fellows from the Spanish Ministry of Economy and Competitiveness. This study was supported by grants to A.B. from the Spanish Ministry of Science and Innovation (PLE2009-0147), the Ministry of Economy and Competitiveness (SAF2015-70882-R), Comunidad Autónoma de Madrid (S2011/BMD-2420), Instituto de Salud Carlos III (RETICS-RD12/0018) and the European Commission (HEALTH-2009_242038), and by a grant from the Generalitat Valenciana (PROMOTEO/2016/006) to E.R. The CNB-CSIC and CNIC are supported by the Spanish Ministry of Economy and Competitiveness.

Author contributions

D.H. conceived, performed, and designed experiments, developed the project, contributed ideas, and wrote the manuscript. M.T., S.C., and F.M.C. performed and designed experiments. R.M.C., E.F., and E.R. performed experiments. A.B. conceived and developed the project, designed experiments, interpreted results, and wrote the manuscript. All authors read and approved the final manuscript.

Author information


  1. Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain

    • Diego Herrero
    • , Susana Cañón
    • , Rosa María Carmona
    •  & Antonio Bernad
  2. Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain

    • María Tomé
    • , Susana Cañón
    • , Francisco M. Cruz
    •  & Antonio Bernad
  3. CIBERobn (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Research Institute (ISCIII), Madrid, Spain

    • Enrique Roche
  4. Department of Applied Biology-Nutrition and Institute of Bioengineering, University Miguel Hernández, Institute for Health and Biomedical Research (ISABIAL-FISABIO Fundation), Alicante, Spain

    • Encarna Fuster
    •  & Enrique Roche


  1. Search for Diego Herrero in:

  2. Search for María Tomé in:

  3. Search for Susana Cañón in:

  4. Search for Francisco M. Cruz in:

  5. Search for Rosa María Carmona in:

  6. Search for Encarna Fuster in:

  7. Search for Enrique Roche in:

  8. Search for Antonio Bernad in:

Competing interests

The authors declare that they have no competing financial interests.

Corresponding author

Correspondence to Antonio Bernad.

Electronic supplementary material

About this article

Publication history