Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Manipulating the tumour immune microenvironment by N6-methyladenosine RNA modification

Abstract

N6-methyladenosine (m6A), a posttranscriptional regulatory mechanism, is the most common epigenetic modification in mammalian mRNA. M6A modifications play a crucial role in the developmental network of immune cells. The expression of m6A-related regulators often affects carcinogenesis and tumour suppression networks. In the tumour microenvironment, m6A-modified enzymes can affect the occurrence and progression of tumours by regulating the activation and invasion of tumour-associated immune cells. Immunotherapy, which utilises immune cells, has been demonstrated to be a powerful weapon in tumour treatment and is increasingly being used in the clinic. Here, we provide an updated and comprehensive overview of how m6A modifications affect invasive immune cells and their potential role in immune regulation. In addition, we summarise the regulation of epigenetic regulators associated with m6A modifications in tumour cells on the antitumour response of immune cells in the tumour immune microenvironment. These findings provide new insights into the role of m6A modifications in the immune response and tumour development, leading to the development of novel immunotherapies for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiple regulatory factors modified by m6A participate in the regulatory network of immune cells.

Similar content being viewed by others

Data availability

The studies included were retrieved from PubMed, Google Scholar, Cochrane Library, Embase, Web of Science database.

References

  1. Guo L, Yang H, Zhou C, Shi Y, Huang L, Zhang J. N6-Methyladenosine RNA modification in the tumor immune microenvironment: novel implications for immunotherapy. Front Immunol. 2021;12:773570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li X, Ma S, Deng Y, Yi P, Yu J. Targeting the RNA m(6)A modification for cancer immunotherapy. Mol Cancer. 2022;21:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 2019;12:121.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Z, Liu F, Chen W, Liao Z, Zhang W, Zhang B, et al. The importance of N6-methyladenosine modification in tumor immunity and immunotherapy. Exp Hematol Oncol. 2022;11:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun X, Fu S, Yuan X, Pu X, Wang R, Wang X, et al. RNA N6-methyladenosine (m6A) modification in HNSCC: molecular mechanism and therapeutic potential. Cancer Gene Ther. 2023;30:1209–14.

    Article  CAS  PubMed  Google Scholar 

  7. An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022;21:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng S, Han H, Lin S. N(6)-methyladenosine (m(6)A) RNA modification in tumor immunity. Cancer Biol Med. 2022;19:385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Du Y, Ma Y, Zhu Q, Liu T, Jiao Y, Yuan P, et al. An m6A-related prognostic biomarker associated with the hepatocellular carcinoma immune microenvironment. Front Pharm. 2021;12:707930.

    Article  CAS  Google Scholar 

  10. Hu C, Liu J, Li Y, Jiang W, Ji D, Liu W, et al. Multifaceted roles of the N(6)-methyladenosine RNA methyltransferase METTL3 in cancer and immune microenvironment. Biomolecules. 2022;12:1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang W, Xiao P, Tang J, Wang R, Wang X, Wang F, et al. m6A regulator-mediated tumour infiltration and methylation modification in cervical cancer microenvironment. Front Immunol. 2022;13:888650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen M, Wong CM. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol Cancer. 2020;19:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhuang H, Yu B, Tao D, Xu X, Xu Y, Wang J, et al. The role of m6A methylation in therapy resistance in cancer. Mol Cancer. 2023;22:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019;18:103.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Quan C, Belaydi O, Hu J, Li H, Yu A, Liu P, et al. N(6)-Methyladenosine in cancer immunotherapy: an undervalued therapeutic target. Front Immunol. 2021;12:697026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 2022;21:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:176.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu Y, Song M, Hong Z, Chen W, Zhang Q, Zhou J, et al. The N6-methyladenosine METTL3 regulates tumorigenesis and glycolysis by mediating m6A methylation of the tumor suppressor LATS1 in breast cancer. J Exp Clin Cancer Res. 2023;42:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, et al. Mettl3-mediated mRNA m(6)A methylation promotes dendritic cell activation. Nat Commun. 2019;10:1898.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oerum S, Meynier V, Catala M, Tisne C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021;49:7239–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su R, Dong L, Li Y, Gao M, Han L, Wunderlich M, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020;38:79–96.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Liang G, Xu H, Dong W, Dong Z, Qiu Z, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021;33:1221–33.e11.

    Article  CAS  PubMed  Google Scholar 

  24. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin X, Chai G, Wu Y, Li J, Chen F, Liu J, et al. RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun. 2019;10:2065.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48:3816–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang C, Liu J, Guo H, Hong D, Ji J, Zhang Q, et al. m6A RNA methylation regulators were associated with the malignancy and prognosis of ovarian cancer. Bioengineered. 2021;12:3159–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu L, Li H, Hu D, Wang Y, Shao W, Zhong J, et al. Insights into N6-methyladenosine and programmed cell death in cancer. Mol Cancer. 2022;21:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu C, Yang Z, Li R, Wu Y, Chi M, Gao S, et al. Potential roles of N6-methyladenosine (m6A) in immune cells. J Transl Med. 2021;19:251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma S, Yan J, Barr T, Zhang J, Chen Z, Wang LS, et al. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J Exp Med. 2021;218:e20210279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, et al. N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 2019;76:96–109.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu Y, Zhao Y, Zou L, Zhang D, Aki D, Liu Y-C. The E3 ligase VHL promotes follicular helper T cell differentiation via glycolytic-epigenetic control. J Exp Med. 2019;216:1664–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lou X, Wang J-J, Wei Y-Q, Sun J-J. Emerging role of RNA modification N6-methyladenosine in immune evasion. Cell Death Dis. 2021;12:300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen H, Zhang X, Su H, Zeng J, Chan H, Li Q, et al. Immune dysregulation and RNA N6-methyladenosine modification in sepsis. Wiley Interdiscip Rev RNA. 2023;14:e1764.

    Article  CAS  PubMed  Google Scholar 

  35. Furlan M, Galeota E, de Pretis S, Caselle M, Pelizzola M. m6A-Dependent RNA dynamics in T cell differentiation. Genes. 2019;10:28.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Elsabbagh RA, Rady M, Watzl C, Abou-Aisha K, Gad MZ. Impact of N6-methyladenosine (m(6)A) modification on immunity. Cell Commun Signal. 2022;20:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 2020;117:20159–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dong L, Chen C, Zhang Y, Guo P, Wang Z, Li J, et al. The loss of RNA N(6)-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8(+) T cell dysfunction and tumor growth. Cancer Cell. 2021;39:945–57.e10.

    Article  CAS  PubMed  Google Scholar 

  39. Anderson NR, Minutolo NG, Gill S, Klichinsky M. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 2021;81:1201–8.

    Article  CAS  PubMed  Google Scholar 

  40. Li W, Hao Y, Zhang X, Xu S, Pang D. Targeting RNA N(6)-methyladenosine modification: a precise weapon in overcoming tumor immune escape. Mol Cancer. 2022;21:176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gu X, Zhang Y, Li D, Cai H, Cai L, Xu Q. N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation. Cell Signal. 2020;69:109553.

    Article  CAS  PubMed  Google Scholar 

  42. Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol. 2020;13:117.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol. 2021;14:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Terren I, Orrantia A, Vitalle J, Zenarruzabeitia O, Borrego F. NK cell metabolism and tumor microenvironment. Front Immunol. 2019;10:2278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad spectrum of human natural killer cell diversity. Immunity. 2017;47:820–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo Y, Sun Y, Li L, Mao Y. METTL3 may regulate testicular germ cell tumors through EMT and immune pathways. Cell Transpl. 2020;29:963689720946653.

    Article  Google Scholar 

  47. Xu Q, Xu H, Deng R, Li N, Mu R, Qi Z, et al. Landscape of prognostic m6A RNA methylation regulators in hepatocellular carcinoma to aid immunotherapy. Front Cell Dev Biol. 2021;9:669145.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lin W, Chen L, Zhang H, Qiu X, Huang Q, Wan F, et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat Commun. 2023;14:265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu M, Cui Y, Mo Q, Zhang J, Zhao T, Xu Y, et al. Characterization of m(6)A RNA methylation regulators predicts survival and immunotherapy in lung adenocarcinoma. Front Immunol. 2021;12:782551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, et al. N(6)-methyladenosine-modified circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsuchiya K, Yoshimura K, Inoue Y, Iwashita Y, Yamada H, Kawase A, et al. YTHDF1 and YTHDF2 are associated with better patient survival and an inflamed tumor-immune microenvironment in non-small-cell lung cancer. Oncoimmunology. 2021;10:1962656.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gu Z, Yang Y, Ma Q, Wang H, Zhao S, Qi Y, et al. HNRNPC, a predictor of prognosis and immunotherapy response based on bioinformatics analysis, is related to proliferation and invasion of NSCLC cells. Respir Res. 2022;23:362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Watermann C, Pasternack H, Idel C, Ribbat-Idel J, Brägelmann J, Kuppler P, et al. Recurrent HNSCC harbor an immunosuppressive tumor immune microenvironment suggesting successful tumor immune evasion. Clin Cancer Res. 2021;27:632–44.

    Article  CAS  PubMed  Google Scholar 

  54. Xie H, Shi M, Liu Y, Cheng C, Song L, Ding Z, et al. Identification of m6A- and ferroptosis-related lncRNA signature for predicting immune efficacy in hepatocellular carcinoma. Front Immunol. 2022;13:914977.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu Y, Guo Q, Yang H, Zhang XW, Feng N, Wang JK, et al. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment. ACS Cent Sci. 2022;8:1102–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li J, Wang W, Zhou Y, Liu L, Zhang G, Guan K, et al. m6A Regulator-associated modification patterns and immune infiltration of the tumor microenvironment in hepatocarcinoma. Front Cell Dev Biol. 2021;9:687756.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu C, Zhang W, Zhou X, Liu L. IMPDH1, a prognostic biomarker and immunotherapy target that correlates with tumor immune microenvironment in pan-cancer and hepatocellular carcinoma. Front Immunol. 2022;13:983490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang T, Xu C, Zhang Z, Wu H, Li X, Zhang Y, et al. Cellular heterogeneity and transcriptomic profiles during intrahepatic cholangiocarcinoma initiation and progression. Hepatology. 2022;76:1302–17.

    Article  CAS  PubMed  Google Scholar 

  59. Guo W, Tan F, Huai Q, Wang Z, Shao F, Zhang G, et al. Comprehensive analysis of PD-L1 expression, immune infiltrates, and m6A RNA methylation regulators in esophageal squamous cell carcinoma. Front Immunol. 2021;12:669750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Zhu GQ, Tian D, Zhou CW, Li N, Feng Y, et al. Comprehensive analysis of tumor immune microenvironment and prognosis of m6A-related lncRNAs in gastric cancer. BMC Cancer. 2022;22:316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bai X, Wong CC, Pan Y, Chen H, Liu W, Zhai J, et al. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells. J Immunother Cancer. 2022;10:e003663.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu Z, Zhong J, Zeng J, Duan X, Lu J, Sun X, et al. Characterization of the m6A-associated tumor immune microenvironment in prostate cancer to aid immunotherapy. Front Immunol. 2021;12:735170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cheng Y, Li L, Wei X, Xu F, Huang X, Qi F, et al. HNRNPC suppresses tumor immune microenvironment by activating Treg cells promoting the progression of prostate cancer. Cancer Sci. 2023;114:1830–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang W, Shen C, Zhao Y, Sun B, Qiu X, Yin S, et al. The role of m6A RNA methylation-related lncRNAs in the prognosis and tumor immune microenvironment of papillary thyroid carcinoma. Front Cell Dev Biol. 2021;9:719820.

    Article  PubMed  Google Scholar 

  65. Shen C, Liu J, Yang X, Jiao W, Wang Y. Development and validation of an m6A RNA methylation regulators-based signature for predicting the prognosis of adrenocortical carcinoma. Front Endocrinol. 2021;12:568397.

    Article  Google Scholar 

  66. Jin Y, Wang Z, He D, Zhu Y, Hu X, Gong L, et al. Analysis of m6A-related signatures in the tumor immune microenvironment and identification of clinical prognostic regulators in adrenocortical carcinoma. Front Immunol. 2021;12:637933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhong J, Liu Z, Cai C, Duan X, Deng T, Zeng G. m(6)A modification patterns and tumor immune landscape in clear cell renal carcinoma. J Immunother Cancer. 2021;9:e001646.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med. 2014;6:1359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dong F, Qin X, Wang B, Li Q, Hu J, Cheng X, et al. ALKBH5 facilitates hypoxia-induced paraspeckle assembly and IL8 secretion to generate an immunosuppressive tumor microenvironment. Cancer Res. 2021;81:5876–88.

    Article  CAS  PubMed  Google Scholar 

  70. Tang W, Xu N, Zhou J, He Z, Lenahan C, Wang C, et al. ALKBH5 promotes PD-L1-mediated immune escape through m6A modification of ZDHHC3 in glioma. Cell Death Discov. 2022;8:497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022;21:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shen X, Zhong J, He J, Han J, Chen N. Identification of m6A modification patterns and development of m6A-hypoxia prognostic signature to characterize tumor microenvironment in triple-negative breast cancer. Front Immunol. 2022;13:978092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (32170910), Natural Science Foundation of Jiangsu Province (BK20211124), Zhenjiang Key Research and Development Program (SH2021037) and Medical Research of Health and Health Commission, Jiangsu Province (Z2020056).

Author information

Authors and Affiliations

Authors

Contributions

XYS, YTW and XY conceived the idea and wrote the manuscript. XP and HRW collated the data. XW and HQL (corresponding author) revised and edited the manuscript. The author(s) read and approved the final manuscript. The work reported in the paper has been performed by the authors, unless clearly specified in the text.

Corresponding author

Correspondence to Hanqiang Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Wang, H., Pu, X. et al. Manipulating the tumour immune microenvironment by N6-methyladenosine RNA modification. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00791-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00791-7

Search

Quick links