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Dual-inhibition of NAMPT and PAK4 induces anti-tumor effects
in 3D-spheroids model of platinum-resistant ovarian cancer
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Ovarian cancer follows a characteristic progression pattern, forming multiple tumor masses enriched with cancer stem cells (CSCs)
within the abdomen. Most patients develop resistance to standard platinum-based drugs, necessitating better treatment
approaches. Targeting CSCs by inhibiting NAD+ synthesis has been previously explored. Nicotinamide phosphoribosyltransferase
(NAMPT), which is the rate limiting enzyme in the salvage pathway for NAD+ synthesis is an attractive drug target in this pathway.
KPT-9274 is an innovative drug targeting both NAMPT and p21 activated kinase 4 (PAK4). However, its effectiveness against ovarian
cancer has not been validated. Here, we show the efficacy and mechanisms of KPT-9274 in treating 3D-cultured spheroids that are
resistant to platinum-based drugs. In these spheroids, KPT-9274 not only inhibited NAD+ production in NAMPT-dependent cell
lines, but also suppressed NADPH and ATP production, indicating reduced mitochondrial function. It also downregulated of
inflammation and DNA repair-related genes. Moreover, the compound reduced PAK4 activity by altering its mostly cytoplasmic
localization, leading to NAD+-dependent decreases in phosphorylation of S6 Ribosomal protein, AKT, and β-Catenin in the
cytoplasm. These findings suggest that KPT-9274 could be a promising treatment for ovarian cancer patients who are resistant to
platinum drugs, emphasizing the need for precision medicine to identify the specific NAD+ producing pathway that a tumor relies
upon before treatment.
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INTRODUCTION
Ovarian cancer, which is the most lethal gynecological malig-
nancy, is often diagnosed at late stages [1, 2]. Due to the difficulty
of complete removal of the tumor in advanced stage, multi-
disciplinary treatment combining debulking surgery and che-
motherapy with a platinum-based drug regimen is recommended
[3, 4]. The platinum-based chemotherapy is efficacious in the
majority of ovarian cancer patients, however, over 80% of

advanced-stage cases relapse due to chemo-resistance, mandat-
ing treatment changes [5]. While vascular endothelial growth
factor (VEGF) inhibitors, poly (ADP-ribose) polymerase (PARP)
inhibitors, and immune checkpoint inhibitors have shown promise
in some cases, the majority of patients eventually relapse, and
thereby new treatment strategies are needed [3, 4, 6].
Ovarian cancer follows a unique metastatic pattern with floating

tumor spheroid masses forming in the ascites and abdomen
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which lead to the metastasis and recurrence. These spheroid
masses are enriched with cancer stem cells (CSCs) that are
undifferentiated, self-renewal, highly tumorigenic, and drug-
resistant [7]. The CSCs are enriched in 3D-cultured cells (spheroids)
grown in non-adherent or ultra-low attachment cell-culture plates
compared with conventional 2D-cultured cells, and the spheroids
morphologically mimic the tumor mass in the ascites fluid [8].
Spheroids, which strongly reflect the characteristics of recurrent
cancer are an effective preclinical model for predicting therapeutic
efficacy against CSCs. Their use as models could lead to effective,
novel therapeutic strategies for ovarian cancer patients.
Nicotinamide adenine dinucleotide (NAD+) is an essential co-

enzyme involved with metabolic processes required for survival
and growth of all living cells. NAD+ is synthesized from three
different pathways, including the Preiss–Handler pathway,

generating NAD+ from nicotinic acid (NA) via nicotinic acid
phosphoribosyltransferase (NAPRT); the de novo synthesis path-
way, generating NAD+ from tryptophan (Trp) via quinolinate
phosphoribosyl transferase (QPRT); and the salvage pathway,
generating NAD+ from nicotinamide (NAM) via Nicotinamide
phosphoribosyltransferase (NAMPT). Cells rely on the salvage
pathway as the main sources of NAD+ [9–12] (Fig. 1A). NAMPT has
been implicated in the pluripotency and dedifferentiation of CSCs,
and several NAMPT inhibitors such as FK-866, GNE-617, GNE-618,
CHS-828 have shown antitumor effects in a variety of cancers
including colon cancer [13], gastrointestinal cancer [14], prostate
cancer [15], breast cancer [16], and thyroid cancer [17].
KPT-9274 is a first-in-class, orally bioavailable NAMPT inhibitor

designed to provide energy depletion, DNA repair inhibition, cell
cycle arrest and growth inhibition [18] (Supplementary Fig. 1A).
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Fig. 1 KPT-9274 is a potent and selective NAMPT inhibitor. A Schematic of the pathway for producing NAD+. B Schematic of the pathway
related to PAK4, mTORC1, mTORC2, and Wnt/β-Catenin. C TCGA analysis revealed high expression of NAMPT in human ovarian cancer
significantly correlates with worse prognosis. In PAK4, the correlation with worse prognosis is non-significant. D Ovarian cancer, endometrial
cancer and breast cancer cell lines treated with KPT-9274 for 48 h at indicated doses. NMN or NA were added into media at indicated doses for
confirming NMN rescue or NA rescue. (n= 3 or 4 independent experiments). E Cell viability with KPT-9274 or Cisplatin treatment in 3D-
cultured A2780, 1A9CP80, and CP80 at indicated doses. Cell viability with KPT-9274 treatment was set to 1. 1A9P80 and CP80 are acquired
resistance to Cisplatin treatment. (n= 4 independent experiments). Graph data were presented as mean ± SEM with n= 3 or 4 per group.
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KPT-9274 targets two enzymes, NAMPT and p21 activated kinase 4
(PAK4). The expression level of PAK4 is often elevated in various
types of cancers at DNA, RNA, or protein level, and is proposed as
a diagnostic biomarker for cancer [18]. PAK4 phosphorylates
β-Catenin, at serine 675, preventing its degradation and promot-
ing cell proliferation [19] (Fig. 1B). PAK4 also boosts mTOR
Complex 2 (mTORC2) kinase activity towards AKT at Ser473 [20,
21], which subsequently triggers mTORC1 activation [22]. The
active mTORC1, composed of mTOR and RAPTOR, spurs cell
proliferation through S6 ribosomal protein phosphorylation at
Ser235/236 [23]. At present, KPT-9274 has been tested in clinical
trial for refractory/relapsed hematologic tumors (NCT04914845).
While its therapeutic efficacy has been demonstrated preclinically
in various cancer types including hematologic malignancies
[24, 25], breast cancer [26], and sarcoma [27], primarily in 2D-
cultured cells, the potential of KPT-9274 on ovarian cancer cell
lines remains unexplored. Moreover, the impact of KPT-9274 on
ovarian cancer cell lines remains unverified. In this study, we
addressed these issues with platinum-resistant 3D-cultured
spheroids as a preclinical model. The findings indicate that KPT-
9274 curbs mitochondrial function and triggers cell apoptosis via
PAK4 kinase inhibition in an NAD+-dependent manner, suggest-
ing a new potential therapy for ovarian cancer patients.

MATERIALS AND METHODS
Antibodies and chemicals
The following primary antibodies were purchased from Cell Signaling
Technology (MA, USA) and used at the indicated dilution for Western blot
analysis: IFNGR1 (#34808 S, 1:1000), IFIT1 (#14769 S, 1:1000), IFITM1
(#13126 S, 1:1000), IFITM2/3 (#96156 S, 1:1000), PBEF/NAMPT (#86634 S,
1:1000), RAPTOR (#2280 S, 1:1000), S6 Ribosomal protein (#2217 S, 1:1000),
phospho-S6 Ribosomal protein (S235/236) (#4858 S, 1:1000), AKT (#9272 S,
1:1000), phospho-AKT (S473) (#9271 S, 1:1000), phospho-β-Catenin (S675)
(#9567 S, 1:1000), Lamin B1 (#12586 S, 1:1000). HSP90α/β (#sc-13119,
1:1000) antibody was obtained from Santa Cruz Biotechnology (TX, USA).
PAK4 (#14685-1-AP, 1:1000) and GAPDH (#60004-1-Ig, 1:1000) antibodies
were purchased from Proteintech (IL, USA). β-catenin (#c19220, 1:1000)
antibody was obtained from BD Biosciences (CA, USA). Poly (ADP-ribose)
(#10407, 1:2000) antibody was obtained from Immuno-Biological Labora-
tories (Gunma, Japan). The following secondary antibodies were purchased
from LI-COR Biosciences (NE, USA): IRDyeTM 800CW (#926-32210 anti-
mouse or #926-32211 anti-rabbit, 1:5000), IRDyeTM 680RD (#926-68070
anti-mouse or #926-68071 anti-rabbit,1:5000). The following compounds
were purchased from the indicated suppliers for in vitro studies: Cisplatin
(#S1166, Selleck, TX, USA), FK-866 (#HY-50876, MedChemExpress, NJ, USA),
GNE-617 (#HY-15766, MedChemExpress), β-Nicotinamide mononucleitide
(NMN) (#N3501-25MG, Millipore Sigma, MO, USA), and Nicotinic acid (NA)
(#N4126-100G, Millipore Sigma). PAK4-NAMPT dual inhibitor (KPT-9274),
the anti-tumor drug of focus used in this study, was kindly provided from
Karyopharm Therapeutics (Newton, MA, USA).

Cell lines and tissue culture
Ovarian cancer cell lines (A2780, IGROV1, OVCAR8, and SKOV3),
endometrioid cancer cell lines (EFE-184 and KLE) were purchased from
the American Type Culture Collection (ATCC, VA, USA) and ACI-98 was
kindly provided by Carrie D. House (San Diego State University). Breast
cancer cell lines (T47D and MCF-7) were kindly provided by Stanley
Lipkowitz. Ovarian cancer cell lines (1A9CP80 and CP80) were kindly
provided by Antonio Tito Fojo (Columbia University). Cells were cultured at
37 °C in a 5% CO2 environment. For 2D-cultured cells, RPMI 1640
(#11875093, Thermo Fisher Scientific, USA)　medium supplemented with
10% fetal calf serum (FCS) (#100-106, GeminiBio, CA, USA), penicillin (100
units/mL) and streptomycin (100 units/mL) (#15140-122, Thermo Fisher
Scientific) was used. For 3D-spheroids, ultra-low attachment plates
(Corning, NY, USA) were used with Stem Cell culture Media, consisting of
1% KnockOut serum replacement (#10828-010, Thermo Fisher Scientific),
1% penicillin/streptomycin, 0.1% Insulin-Transferrin-Selenium (#41400-045,
Thermo Fisher Scientific) and 0.4% Bovine Serum Albumin (#A9418,
Millipore Sigma). Cultures were grown for 3 days prior to drug
experiments. Mycoplasma infection was addressed using PlasmocinTM

prophylactic (#ant-mpp, InvivoGen, CA, USA) treatment, with confirmation
of its absence.

Western blotting
Cells were rinsed with PBS and lysed using the 0.5% NP-40 (#13021,
Millipore Sigma) with HaltTM protease and phosphatase inhibitor cocktail
(#78442, Thermo Fisher Scientific). Cytoplasmic and nuclear lysate were
prepared using a Rapid, Efficient And Practical (REAP) method [28]. Briefly,
cell pellets were resuspended in ice-cold 0.5% NP-40 in PBS and
centrifuged at 4 °C for 10 s (10,000 rpm). The supernatant was removed
as cytoplasmic lysate. After the remaining supernatant was removed, the
pellet was resuspended in 1ml of ice-cold 0.5% NP-40 in PBS and
centrifuged as above for 10 s and the supernatant was discarded. The
pellet was resuspended in 0.5% NP-40 in PBS and designated as nuclear
lysate. The BCA method (#23227, Thermo Fisher Scientific) was used for
protein quantification. Lysates were boiled for 5 min, resolved using
NuPAGE 4–12% SDS–PAGE gels (#NP0335BOX, Thermo Fisher Scientific)
and transferred to NC membranes (#IB23002, Thermo Fisher Scientific)
using iBlot2TM Blotting System (#IB21001, Thermo Fisher Scientific).
Membranes were blocked using InterceptTM Blocking Buffer (#927-60001,
LI-COR Biosciences), probed with primary antibodies overnight at 4 °C, and
secondary antibodies at room temperature (RT) for 1 h. The immune
complexes were visualized using the OdysseyTM Fc Imager (LI-COR
Biosciences).

Cell viability assay
Cells were seeded at varying densities in 96-well plates. After 72 h, cell
viability was measured with XTT assay (#11465015001, Millipore Sigma).
Readings were normalized to the median of vehicle treated control wells
and analyzed using microplate spectrophotometer SpectraMax i3 (Mole-
cular Devices, CA, USA).

NAD+, NADPH, and ATP concentration measurement
NAD+ levels were assessed using NAD+/NADH Quantification Colorimetric
Kit (#K337-100, Biovision), NADPH levels were assessed using NADPH
Quantitation Fluorometric Assay Kit (#K349-100, Biovision), and ATP levels
were assessed using ATP Colorimetric/Fluorometric Assay Kit (#K354-100,
Biovision) following the protocols provided by the supplier. Results were
normalized with protein concentration and measured using SpectraMax i3.

Seahorse XF assays
Cells were cultured in 96-well ULA plates (#7007, Corning, NY, USA) with
Stem Cell culture Media containing 0.2 mM MatrigelTM (#354230, Corning).
Slow-growing cells (SKOV3, EFE-184, KLE, MCF-7, 1A9CP80 and CP80) were
plated at 2000 cells/well, while fast-growing cells (A2780, IGROV1, OVCAR8,
ACI-98, and T47D) were plated at 1000 cells/well. After 72 h, cells were
treated with reagents for 48 h. Spheroids were then moved to XFe96
Spheroid Microplates (#102978-100, Agilent) in 10 replicates and incubated
with 175 μL of serum-free unbuffered Seahorse XF RPMI Medium pH 7.4
with 1 mM HEPES (#103576-100, Agilent) pre-warmed at 37 °C and
supplemented with 10mM glucose, 2 mM glutamine and 1mM Pyruvate
(for analysis of mitochondrial oxidative metabolism) in a CO2-free
incubator at 37 °C for 1 h. Cartridges equipped with oxygen- and pH-
sensitive probes were preincubated with calibration solution (#100840-000,
Agilent) overnight at 37 °C in a CO2-free incubator. The XFe96 Analyzer
(Agilent) automatically mixed the assay media in each well for 15 min to
allow the oxygen partial pressure to achieve oxygen equilibrium. Oxygen
consumption rate (OCR) and extracellular acidification rate (ECAR) were
assessed over time, before and after injecting compounds from Seahorse
XF Cell Mito Stress Test Kit: Oligomycin (1 μM), FCCP (2 μM), and Rotenone
+Antimycin (0.5 μM each). 25 μL of each compound was added to
injection ports. OCR and ECAR values were adjusted based on spheroid
size. Data points for OCR and ECAR represented average rates during
measurement cycles and were reported as absolute rates (pmol/min for
OCR, mpH/min for ECAR).

GAPDH-mediated reaction quantification
GAPDH-mediated reaction was determined using a Glyceraldehyde 3
Phosphate Dehydrogenase Activity Assay Kit (#ab204732, Abcam, Cam-
bridge, UK) according to the manufacturer’s instructions. Briefly, Reaction
mix was added to the extracted samples and incubated at 37 °C for 30min.
NADH levels reflecting GAPDH-mediated responses were quantified by
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measuring absorbance (OD= 450). Results were normalized with protein
concentration and measured using SpectraMax i3.

Tetramethylrhodamine, Methyl Ester, Perchlorate (TMRM)
intensity measurement
TMRM (#T668, Thermo Fisher Scientific) intensity (excitation/emission,
548/574 nm) was measured according to the manufacturer’s instructions
Briefly, cells were added with staining solution at a final concentration of
100 nM and incubated for 30min at 37 °C. After washing with PBS, the
fluorescence was measured using SpectraMax i3. Results were normalized
to the number of cells.

MitoSOXTM Red intensity measurement
MitoSOX™ Mitochondrial Superoxide Indicators (#M36008, Thermo Fisher
Scientific) intensity (excitation/emission, 510/580 nm) was measured accord-
ing to the manufacturer’s instructions. Briefly, cells were added with staining
solution at a final concentration of 1 µM and incubated for 30min at 37 °C.
After washing with PBS, the fluorescence was measured using SpectraMax
i3. The values were normalized with the cell viability by using CellTiter-GloTM

Luminescent Cell Viability Assay (#G7570, Promega, WI, USA) in the same
wells following the protocol provided with the assay kit.

Cleaved caspase-3/7 quantification with IncuCyteTM S3
Cells were seeded in 96-well ULA plates (#7007, Corning) with Stem Cell
culture Media including 0.2 mM MatrigelTM (#354230, Corning) (CP80:
2000 cells/well; ACI-98: 1000 cells/well), and after 72 h, the cells were
treated with reagents at indicated doses adding IncuCyteTM Caspase-3/7
Green Dye (#4440, Sartorius, Göttingen, Germany). The green mean
intensity of spheroids was monitored quantitatively by IncuCyteTM S3
(Sartorius).

Cleaved caspase-3/7 luminescence measurement
Cell viability, cytotoxicity and apoptosis events in the same well were
measured using ApoTox-Glo™ Triplex Assay Kit (#G6320, Promega) with or
without Z-VAD-FMK (#S7023, Selleckchem, TX, USA). GF-AFC substrate was
used to detect live-cells and bis-AAF-R110 substrate was used simultaneously
to measure dead-cell protease activity. Luciferin, a substrate of luciferase, was
measured to quantify cleaved caspase-3/7, an important indicator of
apoptosis. In the experiment with Z-VAD-FMK, cells were pre-treated for 1 h
at its final concentration of 20μM, prior to KPT-9274 treatment.

The Cancer Genome Atlas (TCGA) data preparation and
integration
Ovarian cancer genomic and clinical data were obtained from TCGA
portal. The results shown here are based upon data generated by the
TCGA Research Network: https://www.cancer.gov/tcga. Patients with high
and low expression groups were identified for NAMPT and PAK4 (Lower
percentile= 25% (n= 73), Upper percentile= 25% (n= 73)). Transcripts
Per Million (TPM) were acquired using patient TCGA barcode IDs.

RNA isolation and RNA-seq in ovarian cancer cell line
mRNA was extracted from 3D-cultured CP80 using the RNeasyTM Plus Mini Kit
(#74134, Qiagen, Venlo, Netherlands). Total RNA samples were sequenced at
the Frederick National Laboratory for Cancer Research sequencing facility,
National Cancer Institute. Four control and four KPT-9274 treated mRNA-seq
samples were sequenced on NextSeq 2000 P2 with Illumina Stranded mRNA
Ligation Kit and paired-end sequencing. Samples yielded 118 to 137 million
pass filter reads, over 95% with Q30 quality score. After trimming using
Cutadapt (version 1.18) [29], reads were aligned to hg38 reference genome
and transcripts with STAR (version 2.7.0 f) [30]. STAR/RSEM tools quantified
gene expression, calculating normalized TPM count. Data were stored in NCI
Data Vault for long-term security.

Data analysis in RNA-seq
To identify Differentially Expressed Genes (DEGs), heatmap and volcano
plot were created with Qlucore omics explorer (ver. 3.8). For identification
of the functions and relevant pathways of DEGs, enrichment analysis and
IngenuityTM Pathway Analysis (IPATM, QIAGEN) were conducted. Enrich-
ment analysis used Hallmark gene sets and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways from Gene Set Enrichment Analysis
(GSEA) software.Ta
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Immunofluorescent staining in spheroids
Spheroids were fixed using 3.7% formaldehyde at 4 °C for 48 h, then
permeabilized with 100% methanol at RT for 30 min. After washing
with 0.1% TBST, blocking was performed for 30 min at RT. Primary
antibody (phospho-S6 Ribosomal protein (S235/236) (#4858 S, 1:1000)
and phospho-AKT (S473) (#9271 S, 1:1000)) diluted using 5% BSA in PBS
with 10% Goat serum (#G9023-10ML, Millipore Sigma) was added, and
spheroids incubated on a rotator at 4 °C for 24 h. Following repeating
wash step, spheroids were exposed to secondary antibody (Alexa
FluorTM 568 goat anti-rabbit IgG (H+ L) (#A11036, 1:1000, Thermo
Fisher Scientific) is for phospho-S6 Ribosomal protein and Alexa
FluorTM 488 goat anti-rabbit IgG (H+ L) (#A11034, 1:1000, Thermo

Fisher Scientific) is for phospho-AKT (S473)) diluted using 5% BSA in
PBS with 10% Goat serum with NucBlueTM Fixed Cell Stain Ready-
ProbesTM reagent (#R37606, 2 drops/ml, Thermo Fisher Scientific) on a
rotator at 4 °C for 24 h.

Confocal fluorescence microscopy
Spheroids were observed with a Nikon Eclipse Ti2 microscope with CSU-
W1 SoRa confocal unit (Nikon, Tokyo, Japan). Spheroids were imaged with
20× or 40×WI objective with excitation wavelengths of 405, 488, and
561 nm used with 0.9 μm Z-slices. NIS-Elements AR (version 5.21.03) was
used for image acquisition.
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Fig. 2 KPT-9274 suppressed the production of NAD+, NADPH, and ATP. A Change in total NAD levels in 3D-cultured CP80, ACI-98, and
IGROV1 after treatment with KPT-9274 for 48 h at indicated doses relative to Control. (n= 4 independent experiments). B Change in total
NADP levels in 3D-cultured CP80, ACI-98, and IGROV1 after treatment with KPT-9274 for 48 h at indicated doses relative to Control. (n= 4
independent experiments). C Change in total ATP levels in 3D-cultured CP80, ACI-98, and IGROV1 after treatment with KPT-9274 for 48 h at
indicated doses relative to Control. (n= 4 independent experiments). Graph data were presented as mean ± SEM with n= 4 per group.
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AKT kinase activity measurement
IncucyteTM Kinase AKT Green/Red Lentivirus (#BA-04868, Sartorius) was
used to quantify AKT kinase activity by expressing a green fluorescent
protein (GFP)-tagged AKT substrate sensitive to phosphorylation-
dependent subcellular localization, alongside a red fluorescent protein
(RFP)-tagged nuclear marker for boundary indication. Cells were seeded in

growth medium at a density to achieve 15–35% confluence at the time of
infection.at time of infection. IncucyteTM Kinase Akt Lentivirus was added
at MOI= 3 diluted in Opti-MEMTM I Reduced Serum Medium. After
incubation for 24 h, the medium was removed and replaced with fresh
growth medium. To efficiently eliminate non-transduced cells, Blasticidin S
HCl (#A11139-03, Thermo Fisher Scientific) was used at a final
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concentration of 0.5 μM for 3 days. IncucyteTM Kinase AKT response was
assessed using Nuclear Translocation Ratio (NTR), measuring green
fluorescence in cytoplasm and nucleus with IncuCyteTM S3. NTR is
calculated as 1 - (Green Intensity in Red+Green Overlap / Green Intensity
in Green). Quantitative analysis of Akt activity was performed in CP80 in
2D-culture due to technical difficulties in quantifying NTR in 3D-spheroids.

RNA interference
For the short interfering RNA (siRNA) experiment, adherent cells to achieve
50–70% confluency on the following day were transfected at a final
concentration of 30 nM with ON-TARGETplusTM Human non-targeting siRNA
(#D-001810-01-20, Dharmacon) or ON-TARGETplusTM SMARTpool Human
NAMPT-targeting siRNA (#L-004581-00-0005, Dharmacon) using Lipofetami-
neTM RNAiMAX Regent (#13778-150, Thermo Fisher Scientific) and Opti-
MEMTM I Reduced Serum Medium (#11058-021, Thermo Fisher Scientific). On
the following day, cells were trypsinized and seeded onto ultra-low
attachment plates. 72 h following transfection, spheroids were harvested.

Statistical analyses
Data shown are mean ± SEM. Statistical analyses were performed in
GraphPad Prism 8 software.
Significance of differences was determined using Student’s t-test or

One-way ANOVA for Tukey’s multiple comparisons test or Logrank test.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

RESULTS
KPT-9274 is a potent and selective NAMPT inhibitor
To investigate the relevance of NAMPT and PAK4 in ovarian
cancers, we first examined TCGA datasets. High expression of
NAMPT was correlated with a significant reduction in overall
survival in human ovarian cancer, suggesting that high NAMPT
expression may be a prognostic factor in ovarian cancer. Similar
results were observed in cervical and endometrial cancers, but
there was no significant difference in breast cancer. High PAK4
expression lacked significant negative prognosis in these cancers,
although a trend towards worse outcomes existed in endometrial
cancer. (Fig. 1C and Supplementary Fig. 1B).
To assess preclinical effectiveness of KPT-9274 in gynecological

cancers, we tested the effect on cell viability of 3D-spheroids from
11 cell lines of different histologic subtypes. The cell lines we used
in this study had varying degrees of sensitivity to KPT-9274, and
differed in their ability to be rescued by NMN or NA addition
(Table 1). Based on manufacturer’s recommended concentrations
and previous reports, KPT-9274 was tested up to 1000 nM as the
highest concentration [24–27, 31]. The efficacy of KPT-9274 was
demonstrated against A2780, 1A9CP80, CP80, IGROV1 and
OVCAR8 in ovarian cancer, ACI-98 in endometrial cancer and

T47D in breast cancer with IC50 25–83 nM. In contrast, KPT-9274
did not inhibit the viability of SKOV3, EFE-184, KLE and MCF-7 at
the highest dose, indicating NAD+ synthesis independent from
NAMPT in these cells (Supplementary Fig. 1C). As expected,
addition of NMN (downstream of NAMPT) rescued KPT-9274
impact across all cell lines (NMN rescue). To further test whether
the cell lines produced NAD+ from NA by other pathways, rescue
experiments were performed. We observed that NA, but not NMN,
rescued the cytotoxic effect of KPT-9274 in OVCAR8 (NA rescue)
(Fig. 1D and Supplementary Fig. 1D). Notably, the NAD+

production pathway differed across cell lines, suggesting biomar-
ker analysis might be necessary to clarify the pathway involved
before clinical application of KPT-9274 (Supplementary Fig. 1E).
Next, to examine KPT-9274’s potential in platinum-resistant

ovarian cancers, we tested using different cell lines, including
platinum-sensitive (A2780) and platinum-resistant sub-lines
(1A9CP80 and CP80). Based on clinical studies that reported the
blood concentration of cisplatin [32, 33], the maximum concen-
tration of cisplatin in this experiment was set at 20 μM. KPT-9274
demonstrated similar anti-tumor effects to cisplatin on A2780
(Fig. 1E). Notably, we observed KPT-9274 was significantly more
effective than cisplatin in 1A9CP80 and CP80. Therefore, KPT-9274
could be a promising treatment for ovarian cancer that has
developed resistance to platinum-based therapies.

KPT-9274 suppresses the production of NAD+, NADPH,
and ATP
To assess KPT-9274 impact on NAMPT-dependent cell lines, we
first measured NAD+ and NADPH production at various concen-
trations. Using 3D-cultured CP80, ACI-98, and IGROV1, KPT-9274
inhibited NAD+ and NADPH production in a dose-dependent
manner (Fig. 2A, B).
To further investigate the mechanism, we next tested the effect

of KTP-9274 on ATP production, as NAD+ is essential for ATP
generation through glycolysis and the TCA cycle [34]. Consistent
with the effect on NAD+ and NADPH production, KPT-9274
treatment significantly reduced ATP levels (Fig. 2C). Together, KPT-
9274 is a selective NAMPT inhibitor that causes a multifaceted
anti-tumor effect against NAMPT-dependent cell lines. It inhibits
NAD+, NADPH, and ATP production, suggesting a comprehensive
disruption of vital cellular processes.

KPT-9274 causes the suppression of mitochondrial function
Based on the inhibitory effect on NAD+, NADPH and ATP, we next
hypothesized that KPT-9274 affects mitochondrial functions. Using
the Mito Stress Test with XFe96, we assessed KPT-9274 impact on
mitochondria function in 3D-cultured CP80 and ACI-98. As

Fig. 3 KPT-9274 causes the suppression of mitochondrial function. A Representative OCR pattern in 3D-cultured CP80 and ACI-98 as a
function of time (min), normalized with spheroid size. The spheroids were treated with KPT-9274 for 48 h at indicated doses. Oligomycin
(Oligo), carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), rotenone and antimycin A (R/A) were added to measure Basal OCR,
ATP content, maximal OCR, and Non-mitochondrial OCR. (n= 8 independent experiments) Basal: Basal respiration, ATP-Linked: ATP-Linked
Production, Maximal: Maximal respiration, Non Mt: Nonmitochondrial respiration. B Maximal respiratory capacity in OCR (n= 8 independent
experiments). C Maximal glycolytic capacity in ECAR (n= 8 independent experiments). D Change in GAPDH-mediated reaction normalized by
protein concentration in 3D-cultured CP80 and ACI-98 after treatment with KPT-9274 for 48 h at indicated doses relative to Control. NMN were
added into media at indicated doses for confirming NMN rescue. (n= 3 independent experiments). E Change in TMRM intensity normalized
with cell number in 3D-cultured CP80 and ACI-98 after treatment with KPT-9274 for 48 h at indicated doses relative to Control. (n= 6
independent experiments). F Change in MitoSOXTM Red intensity normalized with cell viability in 3D-cultured CP80 and ACI-98 after treatment
with KPT-9274 for 48 h at indicated doses relative to Control. (n= 6 independent experiments). G Left: Fluorescence analysis of CP80 spheroids
after treatment with KPT-9274 at indicated doses. The spheroids were treated 3days after seeding cells. Time-dependent bright field and
fluorescent overlay images of Cleaved caspase-3/7 for the spheroids. Right: Quantification of Green Mean Intensity as a function of time (days)
using IncuCyteTM S3. (n= 4 independent experiments). H Change in GF-AFC substrate intensity (left), bis-AAF-R110 substrate intensity
normalized with viability (middle), and cleaved caspase-3/7 normalized with viability (right) in 3D-cultured CP80 after treatment with KPT-9274
for 96 h at indicated doses relative to Control. (n= 5 independent experiments). I Changes in treatment with Z-VAD-FMK 20 μM for 1 h before
the same treatment as (H). (n= 5 independent experiments). J Comparison in cleaved caspase-3/7 normalized with viability in the absence
and presence of prior Z-VAD-FMK. (n= 5 independent experiments). Graph data were presented as mean ± SEM with n= 3 or 4 or 5 or 6 or 8
per group.
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anticipated, KPT-9274 reduced oxygen consumption rate (OCR), an
established measure of mitochondrial function [35], in CP80 and
ACI-98 cells in 3D-spheroids, affecting both basal and maximal
respiration (Fig. 3A, B). Interestingly, KPT-9274 significantly
suppressed not only OCR, but also maximal extracellular

acidification rate (ECAR), reflecting glycolysis (Fig. 3C). NAD+ is a
co-enzyme in the reaction catalyzed by Glyceraldehyde
3-phosphate dehydrogenase (GAPDH), which is an enzyme
essential for the conversion of glyceraldehyde-3-phosphate to
1,3-bisphosphoglyceric acid in glycolysis [36]. Hence, we
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hypothesized KPT-9274 inhibits GAPDH. As anticipated, KPT-9274
inhibited the GAPDH-mediated reaction, and adding NMN to the
medium reversed the inhibition (Fig. 3D). These findings suggest
KPT-9274 suppresses not only mitochondrial ATP production, but
also glycolysis.
Furthermore, we investigated the impact of KPT-9274 on

mitochondrial membrane potential, using TMRM, a fluorescent
dye dye which accumulates in active mitochondria with intact
potentials, whch emits a bright signal in healthy cells. KPT-9274
significantly suppressed TMRM in CP80 and ACI-98 cells in 3D-
spheroids (Fig. 3E). Conversely, we observed up-regulated
MitoSOXTM Red which reflects reactive oxygen species (ROS)
generated in mitochondria of live cells (Fig. 3F). Moreover, cleaved
caspase-3/7 signal was monitored over time using IncuCyteTM

Caspase-3/7 Green Dye. KPT-9274 treatment significantly up-
regulated green fluorescence intensity per area of spheroid,
indicating caspase 3/7 activity was induced by KPT-9274 (Fig. 3G
and Supplementary Fig. 2A). To evaluate whether KPT-9274
induces cell death, we quantified viability, cytotoxicity, and
apoptosis induction using ApoTox-Glo™ Triplex Assay Kit, with or
without a pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-
fluoromethyl ketone (Z-VAD-FMK) [37], after 96 h of KPT-9274
treatment at varying doses. As anticipated, KPT-9274 suppressed
cell viability and induced cytotoxicity as well as cleaved
caspase-3/7 activity (Fig. 3H, J). Pre-treatment with Z-VAD-FMK
inhibited only cleaved caspase-3/7 secretion, while having no
considerable effect on cytotoxicity (Fig. 3I, J). These results suggest
that caspase-3/7 activity is a part of anti-tumor effects of KPT-9274,
but not entirely attributed to the cytotoxicity.

NAMPT correlates with inflammatory gene expression and
PAK4 is associated with DNA repair genes in ovarian cancer
patients
To further characterize the impact of NAMPT and PAK4 in ovarian
cancer, we evaluated the ovarian cancer RNA sequencing data
from TCGA. We first compared patients with high and low NAMPT
expression (Lower percentile= 25% (n= 73), Upper percentile=
25% (n= 73)) and developed a heatmap and volcano plot to
detect DEGs (Fig. 4A, B). Top 20 DEGs between NAMPT high and
low expression patients included NAMPT, NAMPTP1, ARMC10,
CAPZA2, CXCL8, CCDC71L, NCOA7, PMAIP1, SYPL1, PNPLA8,
CXCL2, CEBPD, CCL20, ZBED6, FAM66A, PNMA8B, PYCR2, PSMC2,
SOD2, and STEAP1 (Supplementary Fig. 3A and Supplementary
Table. 1). GSEA revealed that patients with high NAMPT expression
exhibited enriched gene sets related to inflammation in hallmark
gene sets and KEGG pathway database. The top five up-regulated
gene sets in NAMPT-high patients were TNF-α signaling via NFκB,
Interferon-γ response, Interferon-α response, and Apoptosis.
Moreover, using KEGG pathway, the top five up-regulated gene
sets were Cytokine-cytokine-receptor interaction, Chemokine
signaling pathway, JAK-STAT signaling pathway, Nicotinate and
nicotinamide metabolism, and Apoptosis (Fig. 4C and Supple-
mentary Fig. 3B). Notably, the findings highlight a connection
between high NAMPT expression and increased inflammation,
suggesting the increased inflammation may contribute to a poorer
prognosis in ovarian cancer patients.

Similarly, we next identified DEGs in patients with high and low
PAK4 expression (n= 73, respectively). Results were visualized
with a heatmap and volcano plot, highlighting 20 significant DEGs
between PAK4 high and low expression patients including PAK4,
POLR2I, ECH1, CAPNS1, PTOV1, RBPJ, ZNF628, YIF1B, KPNA5,
RPL26P6, NDUFS7, ZNF865, ZC3H3, FRA10AC1, ZNF574, LY96,
FRG1, MRPL2, C19orf47, and PPDPF (Supplementary Fig. 3C and
Supplementary Table. 2). All 23 DEGs were highly expressed in
high PAK4 patients (p < 1e-11) (Fig. 4D, E). GSEA revealed that the
top five up-regulated gene sets were G2M checkpoint, DNA repair,
mTORC1 signaling, Wnt/β-Catenin signaling, and PI3K-AKT-MTOR
signaling in Hallmark gene sets. Moreover, top five up-regulated
gene sets were Cell cycle, DNA replication, Mismatch repair, Base
excision repair, and Homologous recombination in the KEGG
pathway (Fig. 4F and Supplementary Fig. 3D). Collectively, these
findings suggest elevated gene repair and cell proliferation
functions in high PAK4 patients, potentially contributing to tumor
cell survival and replication.

KPT-9274 triggers suppression of inflammatory signaling
We hypothesized that the anti-tumor effects of KPT-9274 arose
from inhibition of gene expression related to inflammation, gene
repair, and cell proliferation signaling. To validate this hypothesis,
we performed RNA-seq analysis on 3D-cultured CP80 cells treated
with DMSO (Control) or KPT-9274 for 24 h. First, principal
component analysis (PCA) demonstrated that technical replicates
in each group clustered together, indicating low variation
between the replicate samples (Fig. 5A). Next, we conducted
hierarchical clustering analysis to detect the DEGs based on RNA-
seq data and constructed a heatmap and volcano plot to visualize
the impact of KPT-9274 treatment. The top 20 DEGs between
Control and KPT-9274 treatment were CA14, NLGN3, SCARA5,
HDGF, NQO1, HMGA2, ERP27, HSD17B7, PPP2R5B, MYOF, PYM1,
CDC42EP4, ACTA2, NQO2, YIPF6, ATXN2, PTMA, SLC30A8, SCN9A,
and ZBTB2 (Supplementary Table 3). Interestingly, SNHG25, known
for promoting ovarian cancer progression [38], and TMEM52B,
associated with EGFR and E-cadherin modulation and tumor/
metastasis suppression [39], significantly decreased with KPT-9274
treatment (Fig. 5B, C). Next, GSEA revealed the top five up-
regulated gene sets in the Control compared to KPT-9274
treatment: Myc-targets-V1, Hedgehog signaling, Epithelial
mesenchymal transition, Allograft rejection, and Interferon-γ in
Hallmark gene sets. The up-regulated gene sets in KEGG pathway
included DNA replication, Proteasome, Mismatch repair, O-glycan
biosynthesis, and Pentose phosphate pathway (Fig. 5D). Our
findings suggest that KPT-9274 regulates cell proliferation by
suppressing the expression of these tumor growth-associated
genes and pathways.
IPA revealed that KPT-9274 treatment suppressed the Interferon

signaling pathway, Remodeling of epithelial adherens junctions,
and ILK signaling. The genes linked to Interferon signaling, namely
IFNGR1, IFIT1, IFITM1, IFITM2, and IFITM3, showed varying
expression patterns upon treatment (Supplementary Fig. 4A, B).
Specifically, IFNGR1, which encodes the IFN-γ receptor-1, was
upregulated, while the others were downregulated (Fig. 5E). IFIT1
affects cancer cell behavior through Wnt/β-Catenin signaling [40],

Fig. 4 NAMPT correlates with inflammatory gene expression and PAK4 is associated with DNA repair genes in ovarian cancer patients.
A Heat map shows the comparison of transcripts from the ovarian cancer tumors of NAMPT high patients and NAMPT low patients in different
samples from TCGA. (Cutoff used: p < 1e-6). B Volcano plot showing distinct transcriptomic signatures in the NAMPT high and NAMPT low
tumors. Volcano plot was generated to identify genes that were differentially enriched. (Cutoff used: |Difference (Log2 Fold Change) of group
means | > 1, and -Log10 (p-value) > 1). C Normalized enrichment score of various gene sets in NAMPT high group using Hallmark gene sets in
MSigDB and KEGG pathway DB are shown in bar plots. D Heat map shows the comparison with transcripts with the ovarian cancer tumors of
PAK4 high patients and NAMPT low patients in different samples from TCGA. (Cutoff used: p < 1e-11). E Volcano plot showing distinct
transcriptomic signatures in the PAK4 high and PAK4 low tumors. Volcano plot was generated to identify genes that were differentially
enriched. (Cutoff used: |Difference (Log2 Fold Change) of group means | > 1, and -Log10 (p-value) > 1). F Normalized enrichment score of
various gene sets in PAK4 high group using Hallmark gene sets in MSigDB and KEGG pathway DB are shown in bar plots.
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and IFITM1, IFITM2, and IFITM3 are related to antiviral functions
[41]. To validate how these changes in transcriptomes affect
protein expression, we tested expression of IFNGR1, IFIT1, IFITM1,
IFITM2, and IFITM3 using Western blotting. IFITM1 was not
detected (data not shown), and IFITM2/3 showed no significant

differences between Control and KPT-9274 treatment. Interest-
ingly, contrary to RNA-seq data, KPT-9274 significantly suppressed
IFNGR1 expression, a membrane surface protein. Given that the
protein is the functional component of IFNGR1, not the transcript,
we concluded that the inhibition of IFNGR1 protein expression by
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KPT-9274 treatment observed in this experiment contributes to
the suppression of cell proliferation. Moreover, IFIT1 cytoplasmic
expression was significantly down-regulated by KPT-9274 (Fig. 5F),
suggesting that KPT-9274 downregulates Wnt/β-Catenin pathway
via a suppression of IFNGR1 and IFIT1, contributing to the anti-
tumor effects (Fig. 5G).

KPT-9274 down-regulates multiple kinase activities in the
cytoplasm through a localization change of PAK4
It has been shown that PAK4 regulates β-Catenin phosphorylation
and mTOR complex function [19–23]. Hence, suppressing PAK4
leads to reduced kinase activity of various proteins, such as AKT,
that are controlled by mTOR complexes. To validate the effect of
KPT-9274 on kinase activity, we evaluated the expression of PAK4-
affected proteins with Western blotting using cytoplasm and
nuclear lysate. We also evaluated Poly (ADP-ribose) (PAR), which
reflects the function of DNA repair [42], because RNA-seq results
suggested KPT-9274 inhibited DNA repair. As expected, PAR
expression was suppressed in both cytoplasm and nucleus
following KPT-9274 treatment, suggesting impaired DNA repair
by KPT-9274. Notably, PAK4, which was mostly localized in the
cytoplasm before treatment, migrated into the nucleus after KPT-
9274 treatment. In parallel to the shift of the localization of PAK4,
cytoplasmic expression level of RAPTOR, Phospho-S6 Ribosomal
Protein (Ser235/236), Phospho-AKT (Ser473), and Phospho-
β-Catenin (Ser675) was decreased (Fig. 6A). RAPTOR and
Phospho-S6 Ribosomal Protein (Ser235/236) reflect mTORC1
function [23]. Similar protein suppression was observed in whole
cell lysates of 3D-cultured A2780, ACI-98, and CP80 cells
(Supplementary Fig. 5A, B). Next, using FK-866, the first-in-class
NAMPT inhibitor, and GNE-617, a specific NAMPT inhibitor [43], we
conducted a similar validation. Despite successfully inhibiting
NAD+ production, the subcellular distribution of PAK4 remained
unaltered with specific inhibition of NAMPT alone, while and the
impact on key proteins like RAPTOR, S6 Ribosomal Protein, AKT,
and β-Catenin was inconsistent, displaying distinct patterns
between NAMPT inhibitors (Supplementary Fig. 6A, B). These
findings highlight that the alteration of PAK4 localization seems to
be specific to KPT-9274.
In support of these Western blotting findings, immunofluores-

cence confocal imaging of the spheroids also revealed the
fluorescence intensity of Phospho-S6 Ribosomal Protein (Ser235/
236) and Phospho-AKT (Ser473) in the 3D-spheroids was
suppressed with KPT-9274 treatment (Fig. 6B). Phospho-β-Catenin
(Ser675) was difficult to detect (data not shown). To assess kinase
activity from different perspectives, IncuCyteTM Kinase AKT Assay
was performed. AKT phosphorylation moves the green sensor
from nucleus to cytoplasm. Conversely, AKT inhibition retains the
sensor in the nucleus [44]. Interestingly, KPT-9274 treatment
maintained the green sensor in the nucleus, indicating suppressed
AKT kinase activity (Fig. 6C). Nuclear Translocation Ratio, reflecting
sensor movement [44], was reduced by KPT-9274 in a
concentration-dependent manner, linked to inhibited cell prolif-
eration (Fig. 6D). Overall, these findings suggested that KPT-9274

hindered cell proliferation by lowering cytoplasmic kinase activity
through altering PAK4 localization (Fig. 6E).

Suppression of PAK4-mediated kinase activity by KPT-9274 is
NAD+ dependent
To uncover whether the ability of KPT-9274 to suppress multiple
kinase activities is a NAD+-dependent mechanism, we silenced
NAMPT expression using siRNA. NAMPT-silenced cells showed
approximately 60% less NAD+ content and about 75% less GAPDH
corrected NAMPT expression than control siRNA-treated cells
(Fig. 7A, B). Adding NMN to the medium had no effect on NAMPT
expression, while rescued total NAD to 80% of the control.
Consistent with the NAD+ production, PAR was suppressed in
NAMPT-silenced cells and was rescued by NMN addition.
However, NAMPT silencing did not impact PAK4, Phospho-S6
Ribosomal Protein (Ser235/236), Phospho-AKT (Ser473), and
Phospho-β-Catenin (Ser675) (Fig. 7A, B). These findings suggest
that reducing NAD+ through NAMPT silencing alone does not
strongly suppress kinase activity.
Next, we tested whether supplemental NMN could rescue the

kinase activity reduction caused by KPT-9274 treatment. As expected,
KPT-9274 decreased NAD+ production by approximately 90%
(Fig. 7C), while GAPDH corrected NAMPT expression increased
(Fig. 7D), suggesting NAMPT upregulation due to NAD+ reduction.
Importantly, NMN addition largely restored the suppressed PAK4,
Phospho-S6 Ribosomal Protein (Ser235/236), Phospho-AKT (Ser473),
and Phospho-β-Catenin (Ser675), indicating that suppressed PAK4-
mediated kinase activity by KPT-9274 is NAD+-dependent (Fig. 7C, D).
In conclusion, KPT-9274 demonstrated a promising activity against
NAMPT or PAK4-driven cancer growth, suggesting it is a potential
novel treatment for platinum-resistant ovarian cancer.

DISCUSSION
The majority of ovarian cancers recur due to resistance to
platinum therapy, which is currently the first-line treatment in
clinical practice [5]. While clinical biomarkers such as CA125,
CA19-9, and CEA assist in monitoring disease status, their lack of
specificity makes them unsuitable as therapeutic targets [1, 2]. This
underscores the need to develop effective therapeutic strategies,
including the identification of novel biomarkers [3, 4]. Given that
NAD+ levels are elevated in cancer cells compared with non-
malignant cells due to upregulated NAD+ biosynthesis [45], we
report high NAMPT expression is associated with poor outcomes
in ovarian cancers in TCGA data. Here, we used 3D-spheroids of
ovarian cancer cell lines as model systems to mimic a CSC
enriched tumor mass floating intraperitoneally, and found that
KPT-9274 is a potential treatment option for platinum-resistant
ovarian cancer, and NAMPT may serve as a prognostic and
predictive biomarker and therapeutic target.
Our study also identified several novel mechanisms associated with

the therapeutic effect of the dual inhibitor. We found that KPT-9274
inhibits mitochondrial function, depletes ATP, and induces caspase-3/
7 activity (Figs. 2 and 3). Bioinformatic analysis of TCGA data indicated

Fig. 5 KPT-9274 triggers suppression of inflammatory signaling. A PCA showing gene profiles of 3D-cultured CP80 after treatment with
KPT-9274 1000 nM for 24 h relative to Control. (Results shown are from four independent experiments). B Heatmap representing DEGs in
treated 3D-cultured CP80 as described above. (Cutoff used: p < 1e-5). C Volcano plot generated to identify DEGs in 3D-cultured CP80 after KPT-
9274 treatment relative to Control. (Cutoff used: |Difference (Log2 Fold Change) of group means | >1, and -Log10 (p-value) >1). D Left:
Normalized enrichment score of various gene sets in Control group relative to KPT-9274 treatment are shown in bar plots. Right: GSEA in
Control group relative to KPT-9274 treatment. (Top: Hallmark gene sets in MsigDB, bottom: KEGG pathway DB). E Top: Pathways affected by
KPT-9274 treatment as identified by Ingenuity pathway analysis (IPA). Bottom: Normalized gene expression levels associated with Interferon
Signaling in Control and KPT-9274 treatment. (n= 4 independent experiments). F Top: Immunoblotting for assessing the expression of
IFNGR1, IFIT1, and IFITM2/3 in 3D-cultured CP80 cell lysates with KPT-9274 treatment at indicated doses. GAPDH and LaminB1 were shown as
controls. (Left: cytoplasm lysate, Right: nuclear lysate) Bottom: Cytoplasmic protein levels normalized by GAPDH in Control and KPT-9274
treatment. (n= 4 independent experiments). G Schematic showing that KPT-9274 inhibits Wnt/β-Catenin signaling by reducing the expression
of inflammatory-related proteins, including IFNGR1 and IFIT1. Graph data were presented as mean ± SEM with n= 4 per group.
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Fig. 6 KPT-9274 inhibited cell proliferation by down-regulating kinase activity in the cytoplasm through a localization change of PAK4.
A Immunoblotting for assessing the activity of DNA repair, Serine/threonine protein kinase, mTORC1, mTORC2, and Wnt/β-Catenin signaling in
3D-cultured CP80 cell lysates with KPT-9274 treatment at indicated doses. PAR for NAD+-mediated DNA repair, PAK4 for Serine/threonine
protein kinase, RAPTOR and the phosphorylation of S6 (p-S6) at S235/236 for mTORC1, the phosphorylation of AKT (p-AKT) at S473 for
mTORC2, and the phosphorylation of β-Catenin (p-β-Catenin) at S675 for Wnt/β-Catenin signaling. Total S6, AKT, β-Catenin, GAPDH, and
LaminB1 were shown as controls. (Left: cytoplasm lysate, Right: nuclear lysate). B Representative images of CP80 spheroids after treatment
with KPT-9274 1000 nM for 48 h relative to Control. (Results shown are from three independent experiments.) The spheroids were stained with
phosphorylated S6 at S235/236 (orange), phosphorylated AKT at S473 (green), and NucBlueTM (blue). Scale bars, 100 μm (low magnification).
C 3D-cultured CP80 stably expressing the IncucyteTM Kinase Akt Green/Red Indicator were treated with KPT-9274 1000 nM for 48 h. The image
panel shows green fluorescence channel on the left, red fluorescence channels in the middle, and overlap channel on the right. Scale bars,
10 μm (high magnification). D Left: The kinetic graph shows cell proliferation in 2D-cultured CP80 with KPT-9274 treatment at indicated doses
as a function of time (hours) using IncuCyteTM S3. (Results shown are from six independent experiments.) Right: The kinetic graph shows 2D-
cultured CP80 change in the Nuclear Translocation Ratio, which reflects translocation of the green fluorescent sensor from the cytoplasm to
the nucleus, with KPT-9274 treatment at indicated doses as a function of time (hours) using IncuCyteTM S3. (n= 6 independent experiments).
E Schematic showing that PAK4 reduction in the cytoplasm by KPT-9274 treatment regulates phosphorylation of AKT, S6, and β-Catenin.
Graph data were presented as mean ± SEM with n= 6 per group.
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that NAMPT-high ovarian cancer patients had several elevated
genesets involved with inflammatory response (Fig. 4A–C and
Supplementary Fig. 3A, B), while PAK4-high ovarian patients had
increased expression of genesets related to DNA replication/repair,
mTORC1-signaling, Wnt-β-Catenin signaling, and PI3K-AKT signaling
(Fig. 4D–F and Supplementary Fig. 3C, D). These findings were
corroborated with the RNA-seq data comparing control 3D-spheroid

and KPT-9274-treated spheroids. KPT-9274 inhibited multiple cellular
mechanisms, including DNA replication/repair-related genes,
interferon-gamma signaling (Fig. 5 and Supplementary Fig. 4). KPT-
9274 also inhibited phospho-S6 ribosomal protein, phosphor-Akt,
phosphor-β-catenin (Fig. 6A). We also found that KPT-9274 altered
PAK4 localization to inhibit its kinase activity, distinct from conven-
tional NAMPT inhibitors (FK-866, GNE-617) (Fig. 6 and Supplementary
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at S675 for Wnt/β-Catenin signaling. Total S6, AKT, β-Catenin, GAPDH, and LaminB1 were shown as controls. (Left: cytoplasm lysate, Right:
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Fig. 6). However, the mechanism in which KPT-9274 alters intracellular
localization of PAK4 from the cytoplasm to the nucleus remains to be
determined. Nuclear PAK4 is shown to be correlated with poor
prognosis in estrogen receptor α-positive breast cancer, and proposed
as a novel predictive biomarker for bone metastasis [46]. Additional
studies are required to delineate specific NAD+ biosynthesis pathway
and PAK4 localization to provide more mechanistic insights into the
anti-tumor effects of KPT-9274. Given the drug’s progression to clinical
trials, we also need to keep in mind that the compound has potential
off-target effects other than those of NAMPT and PAK4, which could
affect other proteins and pathways. Interestingly, RNA-seq analysis
revealed that KPT-9274 activated multiple pathways such as HEME
metabolism, cholesterol homeostasis, regulation of autophagy, and
glycerophospholipid metabolism (Fig. 5D). The implications of these
pathway activations remain unknown at this time, and it is beyond
our scope of the current study. Further investigation will be required
to address the mechanisms of these potential off-target effects.
Interest in NAMPT as an anti-cancer target has led to the

development of several NAMPT-specific inhibitors, including FK-866/
APO-866, GNE-617, GNE-618, and CHS-828 [43, 47]. Studies has shown
that NAMPT inhibition induces cytotoxicity in cancer cell lines, but not
in non-cancer cells in vitro [48, 49]. In addition, the anti-tumor effect of
NAMPT inhibitors in ovarian cancer has been demonstrated in vivo
[12, 50]. Despite these successes, previous phase I or II clinical trials in
various cancer types did not show an objective tumor remission and
were halted due to substantial side effects [43]. As one of the reasons
of the failure, it’s been indicated that some cancers are not NAMPT-
dependent [51]. Given that the anti-tumor effect of NAMPT inhibitors
can be reversed by NA supplemented in cell culture medium in
NAPRT-dependent cancers. Therefore, NAMPT inhibitors may be
ineffective for NAMPT-independent cancers in the clinic. Previous
clinical trials tested KPT-9274 (NCT04914845 and NCT0272492) did
not include verification of which NAD+ biosynthesis pathway the
patient’s tumor relies on. In this study, we demonstrated the
importance of determining which pathway the tumor depends on
for producing NAD+ by testing whether NMN or NA can reverse the
drug effect, suggesting the importance of precision medicine in
estimating KPT-9274 efficacy. However, it is currently challenging to
rapidly and accurately determine which pathway is activated in a
patient’s cancer cells, including methodology. Therefore, further
validation is warranted to assess whether distinguishing NAMPT-
dependency in patients prior to treatment for ovarian cancer can help
improve the prognosis.
This study focuses primarily on cell line-based approaches using

3D-spheroids that mimic CSC enriched tumor masses floating
intraperitoneally. While this model provides a variety of insights,
in vivo studies are crucial for translating these findings into the
clinical setting, particularly concerning drug efficacy and safety.
Our findings in vitro studies suggest that further investigation of
KPT-9274 in vivo is warranted. Overall, our preclinical data suggest
that inhibiting NAMPT and PAK4 by KPT-9274 is an effective
approach to overcome platinum resistance in ovarian cancers.
These findings warrant further investigation to develop biomar-
kers to determine treatment efficacy of KPT-9274.
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