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Thyroid cancer is a prevalent endocrine malignancy with increasing incidence in recent years. Although most thyroid cancers grow
slowly, they can become refractory, leading to a high mortality rate once they exhibit recurrence, metastasis, resistance to
radioiodine therapy, or a lack of differentiation. However, the mechanisms underlying these malignant characteristics remain
unclear. Circular RNAs, a type of closed-loop non-coding RNAs, play multiple roles in cancer. Several studies have demonstrated
that circular RNAs significantly influence the development of thyroid cancers. In this review, we summarize the circular RNAs
identified in thyroid cancers over the past decade according to the hallmarks of cancer. We found that eight of the 14 hallmarks of
thyroid cancers are regulated by circular RNAs, whereas the other six have not been reported to be correlated with circular RNAs.
This review is expected to help us better understand the roles of circular RNAs in thyroid cancers and accelerate research on the
mechanisms and cure strategies for thyroid cancers.
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INTRODUCTION
Thyroid cancer (TC) is a prevalent endocrine malignancy affecting
approximately 586,000 individuals, resulting in 44,000 fatalities
globally in 2020 [1]. Radiation is an environmental factor that
elevates the risk of developing TC [2]. TC affects mostly females,
and most thyroid cancers are discovered through ultrasound
without specific clinical symptoms. After surgical treatment also,
thyroid cancers have a recurrence rate as high as 10% [3].
Metastatic, locally advanced, and iodine-refractory thyroid cancers
present formidable clinical challenges [4]. For instance, the
median overall survival of patients with anaplastic TC (ATC) is
only 0.79 years [5]. Therefore, a thorough investigation of the
fundamental mechanisms underlying the pathogenesis of thyroid
cancers is imperative to elucidate the intricate factors contributing
to the varied clinical prognostic outcomes.
“The Hallmarks of Cancer” thoroughly explores the progress

and discoveries in cancer research, spanning nearly a century,
presenting a coherent framework for comprehending the varied
phenotypes of cancers [6]. The third edition in 2022 expanded
the number of cancer hallmarks to 14, from the previous eight
presented in the second edition in 2011 [7], by introducing four
new hallmarks: “unlocking phenotypic plasticity,” “non-mutant
epigenetic reprogramming,” “polymorphic microbiome,c” and
“senescent cells.” [8] Most of these hallmarks have been
validated, inspiring investigations into their underlying
mechanisms.
Non-coding RNAs (ncRNAs), once regarded as “non-functional,”

have now been established as both oncogenic drivers and tumor
suppressors across various major cancer types, providing a novel

direction for understanding the diverse phenotypic manifestations
of cancer [9–12]. Circular RNAs (circRNAs), a distinct subtype of
ncRNAs, are generated by alternative splicing and occurs widely
found in cancers. For instance, the CSCD-2.0 database has
unveiled over a million circRNAs in human cancers [13].
CircRNAs play significant regulatory roles in cancers [13–15],

promoting or inhibiting cancer development. Notable examples
include circRHOBTB3, circCDYL, and circLRFN, which have been
implicated in promoting colorectal cancer [14–16], breast cancer
[17–19], and glioma [17, 18, 20, 21] progression through a range of
molecular mechanisms, including functioning as miRNA sponges,
interacting with RNA-binding proteins (RBPs), and encoding
proteins. CircRNAs exhibit similar roles in TC: for example,
hsa_circ_100721 and has_circ_0001018, have been shown to
promote the proliferation or metastasis of thyroid cancers by
regulating epithelial-mesenchymal transition (EMT) or the cell
cycle [19, 22]. CircRNAs also mediate the molecular regulation of
TC hallmarksat the molecular level, including sustaining prolif-
erative signaling, evading growth suppressors, activating invasion
and metastasis, inducing angiogenesis, resisting cell death,
deregulating cellular energetics, regulating non-mutant epige-
netic modifications, and unlocking phenotypic plasticity. However,
the role of circRNAs in the other six hallmarks of TC remains
largely unexplored.
Our aim was to summarize the emerging roles of circRNAs in

thyroid cancers based on the latest 14 cancer hallmarks, by
reviewing the existing studies, with the intention of encouraging
further experimental research into the biology, genetics, and
pathogenesis of circRNAs.
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OVERVIEW OF FUNCTIONAL CIRCRNAS IN TCS
We retrieved English-language articles from PubMed and EMBASE
databases until June 2023, focusing on TC and circular RNAs,
following MESH list. We excluded reviews, bioinformatics analyses,
and non-experimental researches. By PMID numbers, we synthesized
the characteristics of circRNAs, their molecular mechanisms (target
genes or proteins), involvement in cancer hallmarks, pathology, and
AJCC TMN stage (Supplementary Table 1). Finally, we retrieved and
analyzed 100 research articles, reporting 71 TC circRNAs, visualized
by the Circlize package in R [23] (Table 1 and Fig. 1). CircRNAs has
shown that the majority of pathological types are papillary TC (PTC),
with a small number being poorly differentiated TC (PDTC) or
anaplastic TC (ATC). CircRNAs that promote TC progression also
exhibit higher expression levels in advanced AJCC TMN stage.
Compared with adjacent non-cancerous tissues, we found that most
circRNAs (66 out of 71) were upregulated, while only five were
downregulated. There TC circRNAs could be categorized into three
types: exon circRNAs (eciRNAs), exon-intron circRNAs (elciRNAs), and
intron circRNAs (ciRNAs). EciRNAs derived solely from exons were
the most common, accounting for 66 out of the 71, while only four
and one were ciRNAs and elciRNAs, respectively. The other two
specific subtypes, intergenic circRNAs located outside known gene
loci and antisense circRNAs overlapping with the linear RNA gene
locus but are transcribed from the opposite strand, have not yet
been reported in thyroid cancers.
CircRNAs are linked to important regulatory functions, including

acting as miRNA [24] or protein sponges to regulate gene
expression [25], acting as scaffolds to mediate the formation of
complexes [26], and potentially translating into small functional
peptides [27]. In our collection of functional TC circRNAs, the
majority operated through the miRNA sponge mechanism to
regulate target genes, whereas only one circRNA was identified to
interact directly with proteins. We did not find any circRNAs that
regulate thyroid cancers through peptide translation. Notably, 66
target genes have been identified, associated with the regulation
of TC circRNAs, primarily implicated in the PI3K/AKT, MAPK, Wnt/
β-catenin, mTOR, AMPK, Hippo, and Notch signaling pathway.
The hallmark of cancer is the acquisition of functional abilities in

human cells during the transition from a normal cell state to a
tumor state, that contribute to cancer development. These
hallmark characteristics alone do not fully elucidate the complex-
ity of cancer pathogenesis (such as recurrence, metastasis,
differentiation, and treatment resistance), and requires a multi-
faceted approach from various hallmarks. Among the 14 cancer
hallmarks [8], eight have been investigated in relation to circRNAs.
Among these, “Sustaining proliferative signaling,” “Evading growth
suppressors,” and “Activating invasion and metastasis” are the first
three most regulated. Nevertheless, six other hallmarks have not
yet been linked to circRNAs. We reviewed all functional TC
circRNAs associated with the eight hallmarks and explored
prospects for future research regarding the other six hallmarks.

CIRCRNAS AND THEIR ROLES IN REGULATING TC HALLMARKS
The molecular functions of TC circRNAs include gene regulation in
cancer-related pathways via binding to miRNAs or proteins. Given
the well-established knowledge of cancer biological pathways, this
article will delve into the introduction of circRNAs and their roles in
each cancer hallmark, mainly by focusing on key circRNAs and
their associated pathways/genes to maintain clarity and concise-
ness. Any circRNAs not introduced in detail below are shown in
Fig. 1 and Supplementary Table 1. Although circRNAs reportedly
influence the eight hallmarks, the research depths differ; thus, we
also highlight the directions requiring further exploration.

Sustaining proliferative signaling
The primary and fundamental hallmark of cancer is sustained
proliferative signaling, which stimulates the uncontrolled growth

of cells, finally leading to the development of tumors. Most of the
collected circRNAs were linked to proliferative signaling in thyroid
cancers, demonstrating their important roles in this hallmark.
Cancer cell proliferation predominantly depends on two

signaling pathways: PI3K/AKT/mTOR and MAPK/p38. In thyroid
cancers, circRNAs have been shown to influence cell proliferation
by modulating these two pathways. In the PI3K/AKT/mTOR
signaling pathway, has_circ_0009294 (circSSU72) competitively

Table 1. Characteristics of circRNA researchs in thyroid cancer.

Characteristics Item Number

Research articles 100

Pathology PTC 85

PDTC/ATC 2

Unclear 13

Relative exp by III-IV/I-II
stage

Higher 38

lower 4

Unclear 58

CircRNA 71

Expression

Up-regulated 66

Down-regulated 5

Type

EciRNA 66

CiRNA 4

ElciENA 1

Antisense circRNA 0

Intergenic circRNA 0

Mechanisms

Sponge miRNA 67

RNA-binding proteins 1

Unclear 3

Target gene 66

Signal pathway

PI3K/AKT 9

MAPK 6

Wnt/β-catenin 4

mTOR 2

AMPK 2

Hippo 1

Notch 1

Hallmarks

Sustaining proliferative signaling 70

Evading growth suppressors 46

Avoiding immune destruction 0

Enabling replicative immortality 0

Tumor-promoting inflammation 0

Activating invasion and
metastasis

63

Inducing angiogenesis 7

Genome instability andmutation 0

Resisting cell death 18

Deregulating cellular energetics 9

Unlocking phenotypic plasticity 4

Non-mutational epigenetic
reprogramming

4

Polymorphic microbiomes 0

Senescent cells 0
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binds to miR-451a to upregulate S1PR2, resulting in the AKT
phosphorylation [28], leading to proliferation of TC cells.
Conversely, the knockdown of hsa_circ_0082003 (circPSD3)
downregulates the phosphorylation of PI3K and Akt, thereby
inhibiting TC cell proliferation. This inhibitory effect can be
counteracted by either introducing a miR-637 inhibitor or over-
expressing HEMGN [29]. Furthermore, AMPK, an important tumor
suppressor kinase that inhibits mTOR [30], is regulatied by
has_circ_0008274, that promotes the activation of the mTOR
signaling pathway by inhibiting AMPK, thereby promoting the
sustained proliferation of TC cells [31]. In the MAPK/p38 signaling
pathway, knockdown of hsa_circ_0072088 (circZFR) suppresses TC
cell proliferation, and this suppression is reversed upon MAPK
overexpression [24]. Upregulation of circRNA NRIP1 reverses the
inhibitory effect of miR-195-5p on the MAPK/p38 pathway in a

nude mouse model of TC [32]. Additionally, there exists various
other circRNAs and pathways related to proliferative signaling, as
showed in Fig. 1 and Supplementary Table 1.

Evading growth suppressors
In addition to growth factors, cells can generate growth
suppressors, which function as stop signals for themselves or
nearby cells if uncontrolled expansion threatens homeostasis.
However, cancer cells are able to ignore these “anti-growth
signals” and can continue to proliferate. This is a typical hallmark
of cancer.
Specific signaling pathways related to p53 or E2F can disrupt

the normal inhibition of cell proliferation, ultimately leading to
cellular transformation into cancer cells. As a result, circRNAs that
influence the expression of p53 or E2F may help cancer cells

Fig. 1 CeRNA mechanism of circular RNAs in thyroid cancer research involving miRNA and mRNA interactions, with a focus on hallmarks
of cancer. In this depiction, the concentric circles from outermost to innermost correspond to the following elements: (1) RNA names, (2–9)
hallmarks of cancer, (10) RNA types, and (center) the interaction network.* The angular size of each sector represents the total number of
interactions involving this RNA.
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evade growth suppression. In thyroid cancers, a substantial
number of circRNAs have been identified to play pivotal roles in
enabling cancer cells to evade growth inhibition [33, 34]. For
example, hsa_circ_0107702 (circTP53), formed by the reverse
splicing of exons 5 to 9 of the TP53 gene, reduces p53 protein
levels by targeting the miR-1233-3p/MDM2 axis, thereby promot-
ing cancer cell proliferation [35]. Similarly, hsa_circ_0000644 [36],
hsa_circ_0107702 [37], and hsa_circ_0031250 [38] were found to
upregulate E2F expression, which influences entry into the S
phase and apoptosis [39]. These circRNAs function as microRNA
sponges and inhibit apoptosis, thereby promoting cancer
progression.

Activating invasion and metastasis
Cancer cells invade neighboring tissues and undergo metastasis, a
hallmark of cancer that often leads to death. Cancer progression
and metastasis involve the abnormal reactivation of epithelial-
mesenchymal transition (EMT), a process regulated by Wnt/
β-catenin, NOTCH, NF-κB, and other signaling pathways [40].
circRNAs regulate the expression of genes related to these
pathways, either activating or inhibiting them, thereby influencing
invasion and metastasis.
For example, hsa_circ_0004789 (circRNA_102171) can directly

bind to the CTNNBIP1 protein, blocking its interaction with the
β-catenin/TCF3/TCF4/LEF1 complex. Consequently, the Wnt/
β-catenin pathway is activated, promoting EMT in TC [41].
Similarly, hsa_circ_0088483 (circNEK6) promotes TC metastasis
by upregulating the expression of the key gene FZD8 in the Wnt/
β-catenin pathway [42]. Because NUMB can significantly inhibit
the NOTCH pathway [43], hsa_circ_0058124 upregulates NUMB
expression through a miR-218-5p sponge, thereby inhibiting the
NOTCH pathway and promoting the invasion ability of thyroid
cancers [44]. Moreover, it has been demonstrated that HMGB1 can
bind to its receptor RAGE to promote EMT and invasion of cancer
cells [45]. In thyroid cancers, hsa_circ_0062389 (circ0062389)
competitively binds to miR-1179, resulting in upregulation of
HMGB1 expression, inhibition of E-cadherin protein expression,
and enhancing TC metastasis [46].
In addition, specific transcription factors such as ZEB1 and

TWIST can influence multiple EMT-related signaling pathways [47].
Hence, circRNAs regulating these transcription factors through
molecular interactions that affect EMT in cancers. For example,
hsa_circ_0002623 (circVANGL1) [48] and hsa_circ_0001461 (cir-
cFAT1) [49] regulate ZEB1 expression through ceRNA mechanisms.
Additionally, circ_0001681 competitively binds to miR-942-5p,
resulting in the upregulation of TWIST1 expression [50]. Both
hsa_circ_0002623 and hsa_circ_0001461 promote EMT in TC. Not
only within cells, but has_circ_007293 within exosomes can also
promote EMT in TC, which may help in the development of novel
therapeutic strategies [51]. In summary, a multitude of circRNAs
have been shown to influence thyroid cancers by modulating
various signaling pathways, thereby impacting EMT to activate
invasion and metastasis.

Inducing angiogenesis
Angiogenesis is a fundamental event in tumor growth and
metastasis, where vascular endothelial growth factor (VEGF) plays
a key role in this process. [43]. Therefore, several inhibitors targeting
the VEGF pathway, such as axitinib and sorafenib, have been
utilized in the treatment of advanced thyroid cancers. However,
their efficacies remain unsatisfactory. Although the role of circRNAs
in tumor angiogenesis has been reviewed in other cancers, their
involvement in TC angiogenesis remains largely unexplored [52].
Understanding the mechanism of circRNAs in TC-specific angio-
genesis is crucial for identifying potential treatment strategies.
Among the circRNAs we gathered (Fig. 1), some regulated

VEGF-dependent tumor angiogenesis in thyroid cancers. For
example, hsa_circ_0001821 (circPVT1) enhances TC progression

by targeting miR-195, subsequently increasing its expression [53].
Furthermore, hsa _circ_0011058 [54] and hsa_circ_0082003 [55]
(circ0002111) indirectly promote the translation of angiogenic
proteins (VEGFA and FGF) by upregulating YAP1 and HMGB1 in
thyroid cancers, respectively, thereby promoting angiogenesis
in TCs.
Another potential VEGF-independent regulation of tumor

angiogenesis by circRNAs has been observed. In the tube
formation assay, hsa_circ_0000144 (circ0000144) [56] and hsa_-
circ_005935449 [57] upregulated the expression of YWHAH and
ARFGEF1, respectively, via ceRNA mechanisms. This upregulation
promotes angiogenesis in thyroid cancers. However, additional
validation and in-depth investigation are warranted to elucidate
the precise mechanisms underlying the promotion of angiogen-
esis by circRNAs through the modulation of target genes for
identifying potential treatment strategies in TC.

Resisting cell death
Programmed cell death (PCD) is defined as controlled death of a
cell and is advantageous to the life cucle of an organism;
[58, 58, 59] however, when dysregulated PCD can cause cancer
[58]. Therefore, understanding the mechanisms by which cancer
cells resist PCD could aid in the development of therapies that
effectively eliminate cancer cells [59]. In our collection of circRNAs,
some were reportedly functional in resisting cell death in thyroid
cancers (Fig. 1).
Apoptosis, one of the earliest studied forms of PCD, mainly

involves the Bcl-2 family of proteins (e.g., Bax and Bcl-2). These
proteins regulate the mitochondrial outer membrane permeability
and release apoptotic signaling proteins through multiple
signaling pathways. In thyroid cancers, 10 circRNAs have been
reported to inhibit cancer cell apoptosis via ceRNA mechanisms
[60–68]. For instance, circ_0057209 upregulates STK4 by acting as
a miR-183 sponge to activate the Hippo pathway. This leads to an
increase in Bcl-2 levels and a decrease in Bax protein levels,
thereby promoting apoptosis [69].
Autophagy is another common mechanism of cell death.

Dysregulation of autophagy-related genes, impaired lysosomal
degradation of cytoplasmic proteins, and damaged organelles can
cause cancer development [70]. Currently, only circEIF6 has been
identified in promoting autophagy through the miR-144-3p/TGF-α
axis, ultimately enhancing cisplatin resistance in thyroid cancers
[71].
Ferroptosis is a form of cell death triggered by iron-dependent

phospholipid peroxidation, to which mesenchymal cancer cells
are highly susceptible [72]. The classical inhibitory pathway for
iron-dependent cell death is the GSH-GPX4 signaling axis, in which
GPX4 inhibits iron-induced cell death [73]. CircKIF4A upregulates
GPX4 expression by suppressing miR-1231, inhibiting iron-
dependent cell death in thyroid cancers [74]. Similarly,
circ0067934 upregulates SLC7A11 expression by competing with
miR-543-3p, thereby promoting GPX4 expression and inhibiting
ferroptosis, leading to TC progression [75].
Other novel modes of cell death have recently been reported,

including pyroptosis, necroptosis, and cytoproptosis. Although
certain circRNAs (e.g., hsa_circ_0001836 [76], circNEIL3 [77], and
has_circ_0007312 [78]) have been found to promote pyroptosis in
some cancers, the role of circRNA-mediated pyroptosis in thyroid
cancers remains largely unknown. While necropoptosis has been
reported in TCs [79], studies on the circRNA-mediated progression
of TC through necroptosis are still lacking. Additionally, the
relationship between cuproptosis and ncRNAs in thyroid cancers
has been analyzed [80, 81]; however, the involvement of circRNAs
in thyroid cancers through cuproptosis remains unexplored.

Deregulating cellular energetics
Cancer development involves not only the deregulated control of
cell proliferation but also corresponding adjustments in energy
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metabolism to fuel cell growth and division [7]. Thus, deregulation
of cellular energetics is a prominent cancer hallmark. Energy
metabolism in cancer mainly includes glycolytic metabolism, as
well as lipid and amino acid metabolism, of which only glycolytic
metabolism has been reported to be regulated by circRNAs in
thyroid cancers.
Ten circRNAs were shown to affect TC cell glycolytic metabolism

directly or indirectly by regulating the expression of key aerobic
glycolytic kinases. For example, hsa_circ_0004771 upregulates
PKM2 expression via ceRNA mechanisms [82], and hsa_-
circ_0002111 phosphorylates PKM2 by upregulating FSTL1 [83]
to promote glycolysis [72]. Likewise, hsa _circ_0122683 (cir-
cRAD18) [84] and hsa_circ_0001313 [85] directly upregulate
PDK1 and PDK4, whereas hsa_circ_0122683 [37] and hsa_-
circ_0023990 [86] indirectly regulate PDKs to promote glycolysis
[87, 88]. Additionally, the cell metabolic assays have demonstrated
that hsa_circ_0000043 (circPUM1) [89] and hsa_circ_0058124
(circ0058124) [77] upregulate MAPK to promote glycolysis in
thyroid cancers. However, the specific target molecule of
glycolysis in MAPK remains unclear. No circRNAs were found to
reprogram lipid or amino acid metabolism in thyroid cancers.

Unlocking phenotypic plasticity
Unlocking phenotypic plasticity is restricted in normal cells but
permitted in cancer cells, which enabling the emergence of
diverse disrupted cell differentiation states that facilitate cancer
initiation and progression. By exploring the interactions between
circRNAs and differentiation-related genes, we may gain insights
into the therapeutic challenges arising from the dedifferentiation
of poorly differentiated, undifferentiated, and iodine-refractory
thyroid cancers.
Dedifferentiation is a critical process in anaplastic ATC and

represents the worst prognosis among thyroid cancers. ATC can
undergo mutations independent of TCs at the gene mutation
level, leading to a group of independent cancer cells. Notably,
there are significant differences in the gene mutation profiles of
ATC and papillary TC (PTC) [90], including mutations in BRAF, RAS,
TP53, and TERT. These promote ATC’s ability to dedifferentiate and
become more invasive [91]. CircRNAs may have a potentially
promote TC differentiation or dedifferentiation through mutual
regulation of differentiation-related tumor molecules. For exam-
ple, in dedifferentiated TC cell lines, circ_0023990 regulates
FOXM1 expression by competing with miR-485-5p to promote
tumor growth and glycolysis. It has also been demonstrated that
FOXM1,a transcription factor, plays a key role in cell dedifferentia-
tion and promoting the acquisition of the EMT phenotype by lung
adenocarcinoma stem cells [92].
Another example is circBACH2, which competes with miR-139-

5p for LMO4 to promote the proliferation and invasion of PTC [93].
LMO4 is the only LIM transcription regulator family studied for its
impact on the differentiation of breast [94] and oral cancers [95].
Therefore, circBACH2 may influence ATC cell differentiation.
Following dedifferentiation, radioiodine-refractory thyroid can-

cers lose expression of the Na/I symporter found in normal thyroid
cells, rendering them unable to uptake iodine [96]. The
differentiation level of PTC is associated with the aryl hydrocarbon
receptor and its antagonist promotes PTC differentiation, although
the exact mechanism is not fully understood. Reportedly,
has_circ_0006741 promotes the expression of IGF2BP2 by
regulating the sponge miR-4640-5p, leading to the overexpression
of aryl hydrocarbon receptor protein in the nucleus, thereby
promoting PTC dedifferentiation [97]. IGF2BP2 acts as an m6A
reader, affects mRNA stability through post-transcriptional mod-
ifications, inhibits the proliferation, migration, and invasion of TC,
and induces apoptosis and cell cycle arrest [98]. Further research is
needed to investigate whether circRNA-mediated IGF2BP2 pro-
motion contributes to PTC dedifferentiation and tumor
proliferation.

Non-mutational epigenetic reprogramming
Epigenetic reprogramming is a critical regulator of cancer onset
and progression. This process includes DNA methylation, histone
modification, nucleosome remodeling, and RNA modification
[99–101]. RNA m6A modifications have been found to promote
cancer cell growth, metastasis, metabolism, and drug resistance by
enhancing circRNA expression and miRNA binding
[87, 88, 102, 103]. Only one study of circRNA modifications in
thyroid cancers has been published to date. In this study,
knockout of ALKBH5, a demethylase involved in m6A modifica-
tion, is significant. Its knockout enhances the expression of
circNRIP1 such that miR-541-5p and miR-3064-5p are sponged,
thereby jointly upregulating pyruvate kinase M2 expression and
promoting glycolysis in TCs [82]. However, no correlation has yet
been found between circRNAs and m6A modifications in thyroid
cancers. Additionally, certain circRNAs can indirectly regulate DNA
methylation or nuclear ribonucleoprotein, thereby promoting TC
through non-mutational epigenetic reprogramming. For instance,
hsa_circ_0061406 and hsa_circ_0007144 can respectively regulate
the expression of HNRNPA1 and DNMT3A gene [104, 105]. Further
research is needed to explore the potential roles of circRNA
modifications in thyroid cancers and understand their contribu-
tions to epigenetic reprogramming.

PROSPECTS
Currently, research on the mechanisms of circRNA regulation in
thyroid cancers has mainly focused on molecular interactions, with
limited exploration of the mechanisms underlying circRNA
biogenesis or degradation. Investigating whether circRNAs facil-
itate their production by modulating parental genes or regulating
RnaseL to inhibit degradation remains worthwhile. In addition,
considering the newest hallmarks, there is a significant gap in
circRNA-related research specific tothyroid cancers, thus offering
promising avenues for future exploration. To date, six cancer
hallmarks have not been explored for circRNAs in thyroid cancers,
see Table 1. Next, we briefly reviewed some genes, pathways, and
circRNAs related to these six hallmarks in other cancers or
diseases. This review may thus underscore the circRNAs worthy of
study in thyroid cancers (Fig. 2).

Avoiding immune destruction
Immune evasion is the phenomenon by which cancer cells evade
immune surveillance, thereby promoting cancer progression. In
thyroid cancers, immune escape mechanisms mainly involve the
downregulation of autoantigen MHC molecules [106, 107] or the
upregulation of PD-L1 [108, 109]. Additionally, thyroid cancers can
downregulate the anti-tumor abilities [110] of immune cells and
release cytokines [111] to reduce immune-mediated cell death.
Some studies have shown that circRNAs can regulate tumor
progression by avoiding immune evasion. Reportedly, circIGF2BP3
inhibits CD8+ T cell responses in non-small cell lung cancer [112],
and circ_0020710 has been correlated with cytotoxic lymphocyte
exhaustion and anti-PD-1 therapy resistance in melanoma [113].
However, current research on circRNA-mediated immune evasion
in thyroid cancers is limited. Hence, there are potential applica-
tions for circRNA-mediated immune escape in undifferentiated
and refractory thyroid cancers.

Enabling replicative immortality
The maintenance of telomeric DNA is crucial for enabling the
unlimited replication potential of cancer cells. The telomerase
reverse transcriptase(TERT) gene, which encodes the telomerase
catalytic subunit, can act as a cofactor to regulate various signaling
pathways and is key in TC treatment [114]. Whole-transcriptome
analysis has revealed that TERT and the telomerase RNA
component are independent prognostic markers [115]. TERT
mutations are strongly associated with non-radioiodine affinity
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in distant metastatically differentiated TC [116]. Some circRNAs,
such as hsa_circ_0020397 [117] and hsa_circ_0001387(-
CircWHSC1) [118], promote the progression of rectal and ovarian
cancers by upregulating TERT. However, the circRNAs that regulate
thyroid cancers by targeting TERT remain unclear [119]. Further
research could offer valuable insights into the mechanisms
underlying the circRNA-mediated regulation of TERT in thyroid
cancers. These findings may inform future therapeutic strategies
that target telomerase activity during TC treatment.

Tumor-promoting inflammation
Chronic inflammation is closely associated with a high incidence
of cancer due to remodeling of the tumor microenvironment
[120]. However, research on circRNAs that promote thyroid
cancers via inflammation is lacking. Since circRNAs can influence
the tumor microenvironment by regulating tumor angiogenesis
and immune evasion [121, 122], functional circRNAs related to
tumor-promoting inflammation should be identified. HMGB1, a
late inflammatory factor, promotes TC progression [123]. One of
these circRNAs, circHMGB2, has been found to promote cancer
progression through inflammatory cells such as T cells, dendritic
cells, and NK cells [124] in lung adenocarcinomas and squamous
cell carcinomas. Moreover, circHMGA2, a circRNA derived from
HMGA2, significantly promotes TC proliferation [125]. Conse-
quently, it is important to investigate whether circHMGB2 and
circHMGA2 also play similar roles in promoting TC progression by
regulating the activity of inflammatory cells.

Genome instability and mutation
Genomic instability and mutations in cancer have been extensively
studied. However, the underlying mechanisms are diverse and
complex. In addition to the G2/M DNA damage checkpoint, high
frequencies of DNA damage and loss of repair proteins in the S
phase contribute to genomic instability [96]. Certain circRNAs have
been found to directly influence DNA damage repair and disease
development [126, 127]. For instance, circRNA: DNA hybrids (circR
loops) can trigger RNA polymerase stalling, leading to direct DNA

damage that drives MLL gene recombination and promotes
leukemia progression [128]. Moreover, circCIMT binds to APEX1 to
mediate the DNA base excision repair pathway, thereby reducing
DNA damage caused by cadmium [129]. Nevertheless, the
involvement of circRNAs in genomic instability in thyroid cancers
remains unclear, necessitating further exploration and investigation.

Polymorphic microbiomes
Polymorphic microbiomes are increasingly being recognized as an
enabling characteristic in cancer, potentially facilitating its initiation
and progression. CircRNAs are known to influence diseases by
affecting the gut microbiome. For example, circNF1-419 improves
gut microbiome structure,benefitting an Alzheimer’s disease
mouse model [130]. Studies have shown the presence of a
microbiome in thyroid tissues, which were previously thought to
be sterile [131–133]. The diversity and composition of the
microbiome within and around TC tissues are significantly different
[132] and can influence metabolism [133], progression, and
invasion of thyroid cancers [131]. Thus, further investigations
are warranted to explore whether circRNAs play a role in the
interaction between the gut microbiome and TC. In addition,
the Cancer-mbQTL database links genotypes from the Cancer
Genome Atlas with Kraken-derived microbial data to analyze TC
genetics and the microbiome [134], thus making it worthwhile to
consider combining TC microbiome data with circRNA information.

Senescent cells
Cellular senescence eliminates unwanted cells through tissue
remodeling and has been developed as a pro-aging therapy to
treat cancer and repair tissues [135, 136]. Although NF-κB, p38,
mTOR, and C/EBPβ pathways promote cell senescence, only a
limited number of circRNAs are involved in these pathways.
Interestingly, CircPVT1 serves as a senescence inhibitor [137] in
fibroblasts but promotes proliferation, invasion, resistance to cell
death [61], and angiogenesis [53] in thyroid cancers. Whether
circPVT1 plays an important role as a hallmark of senescent
thyroid cancers remains unknown.

Fig. 2 The review and prospects of circRNAs associated with thyroid cancer hallmarks. The figure provides an overview of circRNAs
influencing thyroid cancer across different hallmarks. Numerical values indicate the quantity of circRNAs investigated for each hallmark. Red
denotes promotion of thyroid cancer progression, blue indicates inhibition, and a question mark signifies no circRNA studies in this hallmark
of thyroid cancer. Descriptions within the boxes outline prospects for further exploration.
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CONCLUSION
TC poses significant challenges as the predominant cancer
affecting the head and neck due to its diverse subtypes and
complex mechanisms. CircRNAs have emerged as a promising
area of cancer research and have excellent potential for both the
diagnosis and treatment of thyroid cancers. In TC, eight hallmarks
of cancer have been examined concerning circRNAs, while the
other six hallmarks have not yet been studied. Most of these
circRNAs are related to tumor proliferation, making them potential
biomarkers for TC. The future holds promise in elucidating the
potential role of circRNAs in the regulation of inflammation in TC
through tumor-promoting inflammation. Additionally, exploring
drugs such as PD-L1 to prevent immune destruction, holds
potential for treating undifferentiated TC by circRNAs [112, 117].
Not only in terms of hallmarks, but limitations also exist in the
pathological types (less PDTC or ATC) and molecular interaction
mechanisms (mostly ceRNA), providing new starting points for
further in-depth research. This review is expected to contribute to
the understanding and application of circRNAs in precise
diagnostic approaches and the development of innovative
therapeutic strategies for thyroid cancers.
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