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RNA modification, especially N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine methylation, participates in the
occurrence and progression of cancer through multiple pathways. The function and expression of these epigenetic regulators have
gradually become a hot topic in cancer research. Mutation and regulation of noncoding RNA, especially lncRNA, play a major role in
cancer. Generally, lncRNAs exert tumor-suppressive or oncogenic functions and its dysregulation can promote tumor occurrence
and metastasis. In this review, we summarize N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine modifications in
lncRNAs. Furthermore, we discuss the relationship between epigenetic RNA modification and lncRNA interaction and cancer
progression in various cancers. Therefore, this review gives a comprehensive understanding of the mechanisms by which RNA
modification affects the progression of various cancers by regulating lncRNAs, which may shed new light on cancer research and
provide new insights into cancer therapy.
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INTRODUCTION
In recent years, more and more researchers have focused on non-
protein-coding genomes. 70% of the transcribed human genome
corresponds to noncoding RNAs (ncRNA) [1]. Long noncoding
RNAs (lncRNAs) are a group of ncRNAs over 200 nucleotides in
length. The structures of lncRNA are complex and diverse,
including linear, circular, Y-shaped, U-shaped, and other shapes.
In addition, lncRNAs tend to fold into complex secondary and
tertiary structures and interact with proteins, DNA, and other
RNAs, regulating the activity of multi-protein complexes and DNA
targets. These special structures can not only affect the function of
lncRNA, but also affect their stability and interaction [2]. The
functions of lncRNA are highly diversified. For example, lncRNA
can regulate gene transcription by acting as decoys or guiding
chromatin modifiers. They can also function as recruiters and
scaffolds for other regulatory factors involved in epigenetic
modifications. In addition, they are also implicated in mRNA
processing, splicing, stability, or translation. In the cytoplasm,
lncRNAs may act as scaffolds to bring two or more proteins into
spatial proximity to each other [3, 4]. Therefore, lncRNAs can
execute a variety of molecular functions, including epigenetic
regulation, transcriptional regulation, post-transcriptional regula-
tion, miRNA regulation, and regulating the activity of proteins or
altering their cellular localization [5]. LncRNAs can also participate
in multiple signal pathways of cancer (such as p53, AKT, or Notch),
epigenetic control, DNA damage, multiple biological functions
(e.g., tumor proliferation, metabolism, and apoptosis, etc.), aerobic

glycolysis, and microRNA control, etc., suggesting that they are
important players in cancer [6–14]. Aberrant expression of
lncRNAs can affect the occurrence, progress, and drug resistance
of cancer [15]. In recent years, many reviews have summarized the
role of lnRNA in cancer [16, 17]. For example, lncRNA HULC
promotes breast cancer metastasis and cisplatin resistance by
targeting the IGF1R-PI3K-AKT axis in trans [18]. Therefore, the
multifaceted functions of lncRNAs make them potential thera-
peutic targets or biomarkers in various cancers.
Epigenetics refers to the change of gene expression level

without changing gene sequence, which includes DNA methyla-
tion, chromosome remodeling, protein post-translational modifi-
cation, histone modification, and ncRNA regulation [19]. In animal
cells, proteins and RNAs have the greatest variety of modifications,
and researchers have discovered a variety of modifications over
the past 50 years [20]. Modification of proteins has been
extensively characterized. Research on RNA modification has also
increased in recent years. The disorder of RNA epigenetic pathway
is related to the pathogenesis of human diseases, including
cancer. Up to now, more than 170 different types of RNA
modifications have been reported to modify different RNA types,
including messenger RNA (mRNA), transfer RNA (tRNA), ribosomal
RNA (rRNA), and lncRNA [21]. As one of the important epigenetic
modifications, RNA methylation is closely related to the occur-
rence and development of cancer. It is expected to become a new
target for cancer treatment. [22, 23]. Among this RNA methylation,
the most well-studied one in recent years is N6-methyladenosine
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(m6A), the nitrogen 6 of adenosine (A) found in mRNA and ncRNA.
The m6A methylation can be dynamic and reversible, which is
modulated by specific enzymes called “erasers” (demethylases),
“readers” (signal transducers), and “writers” (methyltransferases).
These modulators of the m6A modification process have been
extensively studied and shown to be important players in cancer
progression [24]. Moreover, trans regulators of m6A have also
been identified to play important roles in cancer development
[25, 26]. Additionally, other RNA modifications in mammals
include A-to-I RNA editing, 2′-O-methylation (2′-O-Me), N1
-methyladenosine (m1A), 3-methylcytidine (m3C),
5-methylcytosine (m5C), N7-methylguanosine (m7G), pseudour-
idylation (Ψ), etc, which are all recently discovered epigenetic
modifications [27]. Among them, the mechanism of m6A in cancer
is the most extensively studied, followed by m5C and m7G [28].
In recent years, the inter-relationship between RNA modification

and lncRNA has gradually been discovered. LncRNA can regulate
gene expression through RNA modification and exert its biological
role. At the same time, lncRNAs are also subjected to RNA
modification [29]. Up to date, reported RNA modifications
associated with lncRNAs include m6A, m5C, and m7G. Among
them, m6A is the most well-investigated. The modification of m6A
on lncRNA can increase the stability of lncRNA, thus affecting
various biological functions of cancer cells through ceRNA
(competing endogenous RNA) mechanism [30]. RNA modification
can also affect the lncRNA structure, thereby influencing the
regulation of protein by lncRNA. In addition, RNA modification can
also promote lncRNA-mediated transcriptional silencing [31].
Finally, RNA modification can change the subcellular distribution
of lncRNA and regulate its stability [32–35]. Although some
substantial progress has been recently made in the RNA modifica-
tion mechanisms of ncRNAs, the modification of lncRNAs has not
been well elucidated. In this review, we summarize the interaction
of RNA modification and lncRNAs and its function in cancer, which
may provide new perspectives on lncRNAs in cancer research.

RNA MODIFICATION AND LNCRNA
m6A modification in lncRNA
m6A is adenosine methylated at the sixth N position, which is the
most typical RNA modification (Fig. 1). This modification is found
in mRNA [36], lncRNAs [37], primary miRNA (pri-miRNA) [38] and
rRNA [39]. It is reported to perform important functions affecting
normal life activities and disease. Approximately 25% of mRNAs
contain at least one m6A, and mRNAs can contain up to 0.1–0.4%
of modified sites [40, 41]. m6A sites occur frequently around stop
codons, in the 3′-untranslated region (UTR), and in long exons,
with the most common m6A consensus motif: RRACH (R= A or G,
H= A, U, or C) [27]. Adenosine is methylated by
methyltransferase-like 3/14/16 (METTL3/14/16), Wilm’s tumor-
associated protein (WTAP), RNA-binding motif protein 15
(RBM15) and its paralog RBM15B, Vir-like m6A methyltransferase
associated (VIRMA, also called KIAA1429), zinc finger CCHC-type
containing 4 (ZCCHC4), and zinc finger CCCH-type containing 13
(ZC3H13) [42]. This kind of enzyme is called “m6A writers”. Then
these m6A-modified bases are demethylated by AlkB homolog 5
(ALKBH5) and fat mass and obesity-associated protein (FTO)
[43, 44], which are called “m6A erasers”. Finally, methylated RNA
base sites require specific enzymes to recognize them. These are
called “m6A readers”, including IYT521-B homology (YTH) family
proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) and
eukaryotic translation initiation factor (eIF), etc. The proteins with
YTH domain include YTH domain-containing 1/2 (YTHDC1/2) and
YTH m6A-binding protein 1/2/3 (YTHDF1/2/3) [45]. Binding of
YTHDC1 to m6A regulates splicing, while YTHDF2 targets the
transcript for degradation [46–50]. Recruitment of YTHDF1,
YTHDF3, and YTHDC2 enhances translation [51, 52]. Insulin-like
growth factor 2 mRNA-binding proteins (IGF2BPs) as a new m6A
reader protein, also increases the stability of its targeted RNA [53].
Taken together, m6A affects RNA stability, splicing, localization,
and translation at the post-transcriptional level, as shown in
Table 1.

Fig. 1 The role of RNA modifications in cancer proliferation, apoptosis, migration and invasion, and drug resistance. A m6A in lncRNA.
The m6A modification is modulated by m6A “writers”, “erasers”, and “readers”. m6A “writers” are methylase complexes including METTL3,
METTL14, METTL16, ZC3H13, ZCCHC4, RBM15/15B, VIRMA, CBLL1, and WTAP. “Erasers” are demethylases (FTO, ALKHB5) that remove methyl
groups. The m6A-containing RNAs are recognized by “readers”, including HNRNPA2B1, IGF2BP1/2/3, YTHDC1/2, YTHDF1/2/3, ABCF1, eIF3,
FMR1, HNRNPC/G, ELAVL1, and G3BPs. B m5C in lncRNA. m5C modification in lncRNA regulated by NSUN family proteins (NSUN1, NSUN2,
NSUN3, NSUN4, NSUN5, NSUN6), and DNMT2. And recognized by “readers”, including YTHDF2, ALYREF, and YBX1. “Erasers” include TET1/2/3,
ALKBH1, for m5C demethylation. C m7G in lncRNA. The METTL1/WDR4 complex is the methylase of m7G. “Eraser” and “reader” are unknown.
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Table 1. The functional roles of m6A, m5C, and m7G regulators in RNA metabolism.

Protein Function References

m6A Writers

METTL3 Installs m6A residues in mRNAs and lncRNAs [209]

METTL14 Activates, and escalates the catalytic capability of METTL3 [210]

METTL16 Installs m6A in U6 snRNA and few mRNAs and lncRNAs [211]

WTAP Recruits METTL3 and METTL14 [212]

VIRMA Regulates m6A installation by the METTL3/METTL14 complex [213]

RBM15/15B Recruits METTL3 and METTL14 complex to RNA [214]

CBLL1 Maintain the stability of METTL3/14 [213]

ZC3H13 Recruits m6A complex [214]

ZCCHC4 Recruitment of m6A complex to 28S rRNA [215]

Erasers

FTO Remove m6A and m6Am from mRNA, and m1A from tRNA [43]

ALKBH5 Remove m6A from mRNA [44]

Readers

HNRNPA2B1 Stimulates microRNA processing [216]

IGF2BP1/2/3 Promotes mRNA stability [53]

YTHDC1 Regulates splicing [217]

YTHDC2 Enhances translation [218]

YTHDF1 Promotes translation [219]

YTHDF2 Stimulates mRNA decay [220]

YTHDF3 Enhances translation [51]

ABCF1 Stimulates cap-independent translation [221]

eIF3 Binds to the base of m6A modification on the 5′UTRs of RNA and promotes mRNA translation [222]

FMR1 Inhibits translation [223]

HNRNPC, HNRNPG Regulates splicing [224]

ELAVL1/ HuR Increases RNA stability [225]

G3BPs Increases mRNA stability [223]

m5C Writer

NSUN1(NOP2) Methylate C2870 of the 25S rRNA [226]

NSUN2 Modify the noncoding Vault RNA and mRNAs [66]

NSUN3 Methylate cytosine 34 of mitochondrial tRNA [227]

NSUN4 Modify rRNA [228]

NSUN5 Modify 28S rRNA [229]

NSUN6 Methylate cytosine 72 of cytoplasmic tRNA [230]

NSUN7 Targets eRNAs as a substrate [231]

DNMT2 Modify cytoplasmic tRNA [232]

Erasers

TET1/2/3 Promotes subsequent oxidation to replace modification [233]

ALKBH1 Catalyzes the anticodon modification [234]

Readers

YTHDF2 Binding m5C-modified RNA [235]

ALYREF Enhanced m5C modification and binding ability [67]

YBX1 Recognized and bind m5C-modified mRNA via Trp45 [236]

m7G Writer

METTL1 Promotes m7G modification [93]

WDR4 Strengthening the stability of METTL1 complex [92]

CBLL1 Cbl proto-oncogene like 1, HNRNPA2B1 heterogeneous nuclear ribonucleoprotein A2/B1, ABCF1 ATP binding cassette subfamily F member 1, eIF3
eukaryotic translation initiation factor (eIF) 3, FMR1 fragile X messenger ribonucleoprotein 1, HNRNPC heterogeneous nuclear ribonucleoprotein C, ELAVL1 ELAV
like RNA-binding protein 1, DNMT2 DNA methyltransferase-2.
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Most studies suggest that m6A modifications can affect the
complexity of cancer progression by modulating cancer-related
biological functions [54–56]. m6A modification of mRNA is well
documented [57]. Methylated RNA immunoprecipitation and
sequencing (MeRIP-Seq) data suggested that m6A modification
also exists in lncRNA, albeit in much smaller numbers [58].
Notably, lncRNAs also play important roles in regulating these
m6A modifications. m6A modification of lncRNAs regulates
cleavage, transport, stability, and degradation of lncRNAs them-
selves [59]. It also affects the biological function of cells such as
cell proliferation and apoptosis, invasion and metastasis, cell
stemness, and drug resistance in cancer, thereby enhancing the
malignancy of cells and the difficulty of cancer treatment [60]. To
date, several studies have enriched our understanding of the
interaction between lncRNAs and m6A modifications. m6A can
regulate lncRNA aberrant expression and lncRNA regulation of
m6A modifications can alter normal biological processes. For
example, m6A modification promotes the competitive endogen-
ous RNA (ceRNA) of RHPN1-AS1 to act as a sponge for miR-596 by
increasing the stability of the RHPN1-AS1 transcript or reducing
RNA degradation, thereby increasing leucine zipper/EF hand-
containing transmembrane-1 (LETM1) expression and activating
the FAK/PI3K/Akt signaling pathway [61].
Meanwhile, lncRNA also influence the m6A machinery. The

lncRNA lnc-H2AFV-1 upregulates the expression of intraflagellar
transport (IFT) 80 by regulating METTL3/14 and FTO in head and
neck squamous cell carcinoma (HNSCC), thereby promoting cell
growth [62]. LINC00665 can modulate 11 mRNAs by regulating
m6A enzymes YTHDF1, IGF2BP1, and IGF2BP2 in hepatocellular
carcinoma (HCC) [63]. Furthermore, it is increasingly clear that
m6A and lncRNAs may contribute to the clinical application of
cancer therapy [64].

m5C modification in lncRNA
RNA m5C methylation is methylation of the fifth C-position of RNA
cytosine, which is a major post-transcriptional modification of RNA
(Fig. 1) [65]. m5C modification has been shown to be widespread
in mRNA and ncRNA, including lncRNA, tRNA, rRNA, and enhancer
RNA (eRNA) [66]. Aberrant m5C methylation is associated with the
onset and progression of certain cancers. In different RNAs, this
modification has different functions. m5C regulates the structure
and stability of tRNA. In rRNA, the loss of methylcytosine allows
translation to be read by stop codons. The essential roles of m5C
modification in mRNA are export and post-transcriptional regula-
tion [67]. m5C methylation in eRNAs protects RNA from
degradation [68]. RNA m5C methylation plays a crucial role in
the regulation of RNA translation, stability, nuclear export, and
other biological processes [69]. High-throughput sequencing
analysis showed that m5C methylation sites were widely present
in ncRNA [70, 71]. As the most abundant ncRNA species, a large
number of m5C modifications are detected in lncRNAs [71].
In eukaryotes, C5 methylation of RNA cytosine is catalyzed by

RNA methyltransferases (RNMTs). RNMTs belong to the DNA
methyltransferase family (especially TRDMT1/DNMT2) or to the
NSUN (NOL1/NOP2/sun domain) family (NSUN1/2/3/4/5/6/7) [72].
Most RNA methyltransferases have been shown to methylate rRNA
(NSUN1/4/5), tRNA (NSUN2/3/5/6 and DNMT2), mitochondrial
tRNA (NSUN2/3), and eRNA (NSUN7) [66, 73] as shown in Table
1. Extensive work has now shown that RNMT is aberrantly
expressed and plays an important role in cancer development and
pathogenesis [68, 74]. NSUN2 is involved in the m5C modification
of many RNA, including mRNA, tRNA, lncRNA, rRNA, and miRNAs
[71, 75–77]. NSUN1/2 was found to be a proliferation marker,
highly expressed in various cancers, and associated with poor
prognosis [78–80]. In mouse skin cells, NSUN2 was first identified
as a target of MYC, and its deletion impairs MYC-dependent
proliferation [81]. Afterward, recent studies have investigated its
related potential pathways. For example, NSUN2-mediated

aberrant m5C modification of lncRNA H19 is closely related to
poor differentiation of HCC, and H19 lncRNA can specifically bind
to the oncoprotein ras-GTPase-activating protein binding protein
1 (G3BP1) to further lead to MYC accumulation [32]. Furthermore,
NSUN2-mediated lncRNA NMR promotes tumor progression by
controlling the expression of important oncogenic drivers in
esophageal squamous cell carcinoma, such as matrix metallopro-
teinase 10 (MMP10) and MMP3 [77]. Recently, it has also been
reported that NSUN2 can promote the stability of carcinogenic
mRNA of bladder cancer (BLCA) by depositing m5C [80].
For m5C demethylation, the ten-eleven translocation (TET) gene

was initially thought to be a tumor suppressor gene [82], but it is
subsequently thought to mediate oxidation to 5-hydroxymethyl,
5-formyl, and 5-carboxylcytosine (hm5C, f5C, and ca5C), then excise
either f5C or ca5C. This may be induced by thymidine DNA
glycosidase (TDG) in DNA [83]. TET protein-mediated DNA m5C
demethylation was demonstrated in earlier studies [84]. After RNA
is modified with m5C, proteins bind specifically to the modifica-
tion sites, leading to subsequent modulation of biological
processes. These specific proteins recognize m5C-containing
oligonucleotides, including YTHDF2, Aly/REF export factor
(ALYREF), and Y-box binding protein 1 (YBX1). Their specific
effects in m5C are shown in Table 1. To date, the function of m5C
modification in many types of RNA has been extensively studied.
However, there are few studies on m5C in lncRNA. The study of
m5C methylation in lncRNA is still in its initial stage [85].

m7G modification in lncRNA
In recent years, with the gradual deepening understanding of
m6A and m5C, research on m7G has gradually increased, making
m7G modification the next research hotspot in RNA modification.
m7G is a modification of RNA guanine (G) by adding methyl to its
seventh N under the action of methyltransferase (Fig. 1) [86]. m7G
modification is one of the most common base modifications in
post-transcriptional regulation, which is widely distributed in
tRNA, rRNA, lncRNA, and the 5 ‘cap region of eukaryotic mRNA. It
plays an important role in maintaining RNA processing and
metabolism, including mRNA transcription, mRNA translation,
splicing, tRNA stability, nuclear processing, 18S rRNA maturation,
and miRNA biosynthesis [87–90]. In humans, the METTL1/WD
repeat domain 4 (WDR4) complex catalyzes N7-methylguanosine
[91]. In this complex, METTL1 acts catalytically, while
WDR4 stabilizes the role of METTL1. This complex extensively
affects mRNA translation (Table 1) [92]. The research on m7G has
gradually increased, and recent research has also found that m7G
modifications regulate tumorigenesis and progression [93, 94].
Conceivably, targeting METTL1/WDR4-mediated m7G is a promis-
ing anticancer strategy. For example, METTL1-mediated modifica-
tion of m7G tRNA upregulates epithelial growth factor receptor
(EGFR)/EGF-containing fibulin extracellular matrix protein 1
(EFEMP1) expression, which ultimately promotes BLCA tumorigen-
esis [95]. Furthermore, METTL1 reduced the chemical resistance of
colon cancer cells to cisplatin by upregulating miR-149-3p and
targeting S100A4/p53 axis [96]. However, the specific mechanism
of m7G modification in lncRNAs remains unclear. At the same
time, methods to detect m7G modifications are constantly being
updated, including m7G-Seq, m7G-MeRIP-Seq, and m7G-miCLIP-
Seq technologies [97, 98].

FUNCTIONS OF LNCRNA-RNA MODIFICATION IN DIFFERENT
TYPES OF CANCER
m6A-related lncRNA in cancer
The role of m6A modification associated with lncRNA in
tumorigenesis and tumor suppression is being gradually explored
by scientists. m6A modifications can induce structural changes in
lncRNAs through writer or reader access to m6A sites. lncRNAs
have also been shown to modulate downstream targets by
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modulating m6A. Here, we summarize the role of lncRNAs
associated with m6A modifications in cancer.

Lung cancer
Lung cancer is one of the most common malignancies with the
highest mortality worldwide [99]. Lung cancer is divided into
small-cell lung cancer (SCLC) and non-small-cell lung cancer
(NSCLC) based on histological manifestations. NSCLC accounts for
the vast majority of lung cancer cases [100]. Lung adenocarcinoma
(LUAD) is the most common type of NSCLC. LncRNA and m6A
modification are involved in the occurrence and development of
lung cancer through various mechanisms (Fig. 2). Among the m6A
writers, research on METTL3 and 14 is the most prevalent. Li et al.
showed that LINC01833 m6A methylation triggered by METTL3
promoted NSCLC progression by regulating HNRNPA2B1 [101].
Another study reported that upregulation of LncRNA LCAT3 in
LUAD has been attributed to METTL3-mediated m6A modification.
LCAT3 activated MYC transcription by recruiting far upstream
element binding protein 1 (FUBP1), thus promoting the progres-
sion of LUAD [102]. Moreover, the m6A transferase METTL3-
induced lncRNA ABHD11-AS1 can promote NSCLC proliferation
and Warburg effect [103]. LncRNA AC098934 promotes prolifera-
tion and invasion of LUAD cells by binding to METTL3 and m6A
modification [104]. Besides, METTL3-mediated enhanced expres-
sion of the lncRNA SVIL antisense RNA 1 (SVIL-AS1) inhibited E2
promoter-binding factor 1 (E2F1), thereby inhibiting LUAD cell
proliferation [105]. Zhang et al. demonstrated that METTL3-
mediated lncRNA SNHG17 reduced gefitinib sensitivity in LUAD
through epigenetic inhibition of large tumor suppressor kinase 2
(LATS2) expression [106].
m6A readers responsible for recognition in m6A modification

also plays a role. METTL3-mediated lncRNA DLGAP1-AS2 interacts
with YTHDF1 and enhances the stability of c-Myc mRNA through
DLGAP1-AS2/YTHDF1/m6A/c-Myc mRNA. This promotes aerobic
glycolysis and growth in NSCLC [107]. Work by Mao et al. revealed
that lncRNA Human leukocyte antigen complex group 11 (HCG11)
expression is downregulated in LUAD, which is regulated by
METTL14-mediated m6A modification. The m6A modification of
HCG11 promotes its binding to IGF2BP2. HCG11 acts as a tumor
suppressor and suppresses tumor growth in LUAD by promoting
Large Tumor Suppressor Kinase 1 (LATS1) [108]. IGF2BP2 can also
upregulate the expression of autophagy-related (ATG) 12 by
promoting the stability of MALAT1, which is conducive to the
proliferation of NSCLC [109]. The lncRNA-RNA component of

mitochondrial RNA processing endoribonuclease (RMRP) is highly
upregulated in NSCLC. m6A-modified lncRNA RMRP stability
promotes NSCLC proliferation and progression by regulating the
transforming growth factor beta receptor 1 (TGFBR1)/SMAD2/
SMAD3 pathway [110]. Furthermore, RMRP also promotes the
development of LUAD, which is dependent on demethylation of
ALKBH5 to upregulate RMRP expression. And ALKBH5 knockdown
inhibited tumorigenesis of LUAD in vitro and in vivo [111].

Liver cancer
HCC is a common primary hepatocellular carcinoma with a
relatively high mortality [112]. The main treatment options for
HCC include surgical intervention, targeted therapy, liver trans-
plantation, and immunotherapy. Although significant progress has
made in the treatment of HCC in recent years, the high metastasis
rate and postoperative recurrence rate still result in poor
prognosis of HCC patients. Specifically, epigenetic mechanisms
regulating the occurrence and progression of HCC are one of the
main cause of this phenomenon [112]. LncRNAs modified by m6A
regulators affect HCC proliferation, invasion and migration,
adipogenesis, and drug resistance by regulating downstream
targets (Fig. 3). Epigenetic studies have shown that METTL3-
induced lncRNA MEG3 suppresses the proliferation, migration, and
invasion of HCC cell through miR-544b/ BTG anti-proliferation
factor 2 (BTG2) signaling [113]. Zuo et al. demonstrated that
METTL3-mediated m6A modification leads to LINC00958 upregu-
lation by stabilizing its RNA transcripts. Mechanistically, LINC00958
targets miR-3619-5p to upregulate the expression of hepatoma-
derived growth factor (HDGF), thereby promoting HCC adipogen-
esis and progression [114]. Dai et al. found that METTL16 is
upregulated in HCC and induces m6A modification of RAB11B-
AS1, which reduces the stability of RAB11B-AS1 transcript,
resulting in down-regulation of RAB11B-AS1 [115]. Peng et al.
demonstrated that upregulation of METTL14 by lipopolysacchar-
ide (LPS) promotes m6A methylation of the lncRNA MIR155HG,
which relies on a “reader” protein ELAVL1 (also known as HuR)-
dependent pathway to stabilize MIR155HG. LPS-induced
MIR155HG upregulates PD-L1 expression and promotes immune
escape in HCC [116].
As one of the demethylases, ALKBH5 can remove m6A

modification on lncRNA to regulate the biological function of
tumor. Yeermaike et al. showed that ALKBH5 could upregulate the
expression of lncRNA NEAT1 by inhibiting m6A enrichment.
NEAT1 promotes cell proliferation in HCC through sponge miR-214
[117]. On the other hand, lncRNAs can also target downstream
targets by regulating m6A modification. LncRNA cancer suscept-
ibility candidate 11 (CASC11) is upregulated in HCC and promotes
HCC progression. Additionally, CASC11 regulates m6A modifica-
tion of ubiquitin-conjugating enzyme E2 T (UBE2T) mRNA by
binding to the RNA demethylase ALKBH5 [118]. LncRNA ILF3-AS1
increases the level of ILF3 m6A by recruiting METTL3, thereby
stabilizing interleukin enhancer binding factor 3 (ILF3) mRNA to
promote HCC progression [119].
In addition, lncRNA also regulates drug resistance of liver cancer

cells through m6A modification. Sorafenib is the first-line drug
approved for the treatment of advanced HCC. Nevertheless, the
efficacy of sorafenib is greatly reduced due to the drug resistance
of HCC. [120]. Studies have shown that LINC01273 confers
sorafenib resistance in HCC by regulating METTL3 [121]. Moreover,
Chen et al. found that METTL3 upregulated lncRNA NIFK-AS1 in
HCC to promote disease progression and sorafenib resistance, and
NIFK-AS1 made HCC cells resistant to sorafenib by downregulating
the drug transporters organic anion transporting polypeptide
(OATP)1B1 and OATP1B3 [122].

Gastric cancer
Gastric cancer (GC) is a global health problem with a high
mortality rate and a low survival rate [123, 124]. Most GC patients

Fig. 2 m6A-modified lncRNAs and signaling that participate in lung
cancer.
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are diagnosed at an advanced stage of malignant proliferation
and metastasis, and this late diagnosis often leads to a grim
prognosis. Therefore, it is critical to identify new biomarkers and
therapeutic targets to facilitate early diagnosis and precision
treatment of GC. Many scholars have studied the interaction
between lncRNA and m6A in GC, as well as the regulatory
mechanism involving various genes and signaling pathways (Fig.
3). KIAA1429 accelerates aerobic glycolysis in GC through m6A-
modified LINC00958 [125]. Furthermore, epigenetic studies
showed that METTL14-mediated m6A modification promoted
the expression of LINC01320. Overexpressed LINC01320 contrib-
uted to the aggressive phenotype of gastric cancer cells via
regulating the miR-495-5p/RAB19 axis [126]. Liu et al. showed that
METTL3-mediated m6A modification enhanced the expression of
ThAP7-AS1, depending on the IGF2BP1-dependent pathway of the
“reader” protein. ThAP7-AS1 promoted GC progression by
improving CUL4B entry into the nucleus [127]. Studies have found
that m6A-modified apoptotic protease-activating factor 1 (APAF1)-

binding lncRNA (ABL) promotes tumor proliferation and drug
resistance in GC by blocking apoptotic body assembly. IGF2BP1
combines with ABL and maintains its stability [128]. Yan et al.
showed that LncRNA LINC00470 was upregulated in GC and
promoted GC cell proliferation, migration, and invasion. LncRNA
LINC00470 promotes PTEN mRNA decay via METTL3 in an m6A
reader protein YTHDF2-dependent pathway [129]. Among m6A
demethylases, ALKBH5 affects gastric cancer development by
demethylating lncRNAs. Zhang et al. showed that ALKBH5-
induced demethylation of lncRNA NEAT1 upregulated the
expression of EZH2 (a subunit of the Polycomb repressive
complex), thereby promoting the invasion and metastasis of GC
[130]. The lncRNA NRON promotes GC proliferation by combining
with ALKHB5 and mediating the decay of Nanog mRNA [131].
On the contrary, lncRNAs also regulate the m6A modification to

affect the expression of the target. Hou et al. identified the lncRNA
ARHGAP5-AS1 as an upregulated lncRNA in chemotherapy-
resistant gastric cancer cells, whose knockdown reversed

Fig. 3 m6A and m5C-modified lncRNAs and modified elements that participate in digestive system cancers.
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chemotherapy resistance. Interestingly, ARHGAP5-AS1 stabilizes
ARHGAP5 mRNAs in cytoplasm by recruiting METTL3 [132]. Gao
et al. demonstrated that LINC02253 increases m6A modification of
keratin 18 (KRT18) mRNA by recruiting METTL3. KRT18 promotes
the GC cell growth and metastasis by activating the MAPK/ERK
signaling pathway [133].

Pancreatic cancer
Pancreatic cancer (PC) is a very aggressive disease that is difficult
to diagnose at an early stage. It progresses rapidly at a rate of
about 1% per year [134, 135]. Pancreatic ductal adenocarcinoma
(PDAC) is one of the most aggressive subtypes of PC, and late
diagnosis and high heterogeneity are the greatest obstacles to its
treatment. Despite ongoing efforts to improve the treatment of
PDAC, the five-year survival rate for PC remains as low as 12%
[136]. Therefore, there is an urgent need to discover novel
biomarkers that facilitate early detection and improve treatment
strategies. Abnormal m6A modification of lncRNA is currently
found in PC tissues and cell lines (Fig. 3) [137, 138]. Chen et al.
found that METTL14-modified LncRNA LIFR-AS1 promotes the
progression of PC. LIFR-AS1 can directly interact with miR-150-5p,
thereby indirectly upregulating the expression of vascular
endothelial growth factor A (VEGFA) [139]. Meng et al. determined
that METTL3-induced LINC00857 functions as a ceRNA to sponge
miR-150-5p, leading to upregulation of its target E2F transcription
factor 3 in PC cells and ultimately promoting tumorigenesis in PC
[140]. During m6A methylation, IGF2BP2, which is responsible as
“reader”, is also involved in PDAC progression. Liu et al.
demonstrated that LncRNA-PACERR activates the KLF12/p-AKT/c-
myc pathway by binding to miR-671-3p. Furthermore, LncRNA-
PACERR bound to IGF2BP2 enhanced the stability of KLF
transcription factor 12 (KLF12) and c-myc in the cytoplasm in an
m6A-dependent manner. Both pathways induce pro-tumor
macrophages in PDAC [141]. For m6A demethylases, one study
found that ALKBH5 blocked m6A modification of KCNK15-AS1,
enhancing the expression and stability of KCNK15-AS1 in PC cells.
Furthermore, ALKBH5-mediated KCNK15-AS1 inhibits KCNK15
translation by binding to the KCNK15 5′UTR, and KCNK15-AS1
inhibits REST and inactivates the PTEN/AKT pathway to inhibit PC
progression [142].
Gemcitabine-based chemotherapy remains an important option

for all PC patients [143]. However, gemcitabine resistance can
emerge within weeks of starting chemotherapy [144]. Gemcita-
bine resistance is one of the main reasons for clinical treatment
failure of pancreatic cancer. Wang et al. demonstrated that
upregulation of Serine/arginine-rich splicing factor 3 (SRSF3) is
associated with gemcitabine resistance in PC. SRSF3 regulates
splicing and m6A modification of lncRNA ANRIL in PC cells to
promote gemcitabine resistance [145]. Ye et al. showed that an
increased METTL3-mediated m6A modification of lncRNA DBH-
AS1 can competitively bind to miR-3163 and upregulate ubiquitin-
specific peptidase 44 (USP44), thereby inhibiting PC growth and
gemcitabine resistance [146]. It can be concluded that lncRNA and
m6A methylation are potential targets of chemotherapy resistance
in pancreatic cancer. In addition, studies have shown that
epigenetic inhibitors and gemcitabine have synergistic antitumor
effects in PC cells [147]. Thus, dysregulation of lncRNA and m6A-
modifying regulators in PC suggests their potential value as novel
biomarkers in pancreatic cancer diagnosis and targeted therapy.

Colorectal cancer
Colon cancer (CRC) is one of the most common malignant tumors
in the world, with its incidence rate ranking third and mortality
ranking second, which seriously reduces the quality of human life
[148]. CRC is a malignant tumor that forms when abnormal cells in
the colon or rectum divide uncontrollably. In view of the unclear
symptoms of early CRC, nearly 60% are diagnosed at an advanced
stage. The high mortality rate of CRC is mainly caused by tumor

metastasis and recurrence, which are closely related to migration
[149]. The lncRNAs associated with m6A modification have been
found to play important roles in CRC (Fig. 3). Yang et al. showed
that METTL14 inhibits the proliferation and metastasis of CRC by
downregulating the oncogenic LncRNA XIST, and the m6A
methylated XIST is recognized by the YTHDF2, thereby mediating
the degradation of XIST [34]. Shi et al. showed that METTL3-
mediated LINC01559 suppresses CRC progression by regulating
the miR-106b-5p/PTEN axis [150]. METTL3 increases the expression
of pituitary tumor-transforming 3, pseudogene (PTTG3P) by
affecting its stability, while IGF2BP2 can recognize and bind to
the PTTG3P m6A methylation status. PTTG3P promotes CRC
progression by upregulating YAP1 [151].
In addition, as in other cancer types, the role of m6A reader

proteins is also critical. Lu et al. showed that LncRNA ZFAS1
promotes the proliferation and apoptosis inhibition of CRC cells,
which depends on the binding and recognition of IGF2BP2. ZFAS1
enhances Obg-like ATPase 1 (OLA1) activity and activates glycolysis
in CRC cells by binding to the OBG-type domain of OLA1 [152].
Wang et al. found a highly expressed lncRNA LINRIS in CRC. LINRIS
binds to the ubiquitination site of IGF2BP2, and this binding blocks
the degradation of IGF2BP2 through the ubiquitination-autophagy
pathway. Furthermore, MYC-mediated glycolysis is affected by the
interaction between LINRIS and IGF2BP2 [153]. Interaction of
lncRNA MIR100HG with hnRNPA2B1 promotes m6A-dependent
stabilization of transcription factor 7 like 2 (TCF7L2) mRNA and
colorectal cancer progression, which is also important for main-
taining EMT-related cetuximab resistance [154]. Wu et al. demon-
strated that METTL3-mediated lncRNA RP11 triggers the
dissemination of CRC cell. RP11 binds to hnRNPA2B1 and down-
regulates the mRNA expression of Siah1 and Fbxo45, thus
stimulating the expression of Zeb1 after translation [35]. The decay
of LncRNA GAS5 induced by YTHDF3 promotes CRC progression
through YAP signal [155]. For m6A demethylases in lncRNAs,
ALKBH5 was found to promote CRC progression by upregulating
lncRNA NEAT1 expression through demethylation [156].

Breast cancer
Breast cancer (BC) has been the leading cause of cancer death in
women with a high degree of molecular heterogeneity [157].
Currently, surgical resection combined with radiotherapy and
chemotherapy is still the most effective treatment for advanced
BC, but the recurrence rate is still high [158]. With the
advancement of technology, other novel therapies, such as
molecular targeted therapy or immunotherapy, are increasingly
used in BC. It is very important to study the molecular mechanism
of BC metastasis to find new therapeutic targets, and new
treatment strategies are urgently needed [159]. The interaction
between lncRNA and m6A modification has also been investigated
in BC (Fig. 4). It has been reported that m6A-modified upregulated
LINC00520 as a ceRNA for miR-577 enhances POSTN levels,
thereby activating the ILK/AKT/mTOR signaling pathway and
promoting BC progression [160]. Sun et al. revealed that
LINC00942 (LNC942) directly recruits METTL14 protein and
stabilizes the expression of its target genes C-X-C motif chemokine
receptor 4 (CXCR4) and CYP1B1 in BRCA initiation and progression
through m6A methylation modification [161]. Rong et al. showed
that upregulated LINC00958 promoted tumor progression in BC
cells. Mechanistically, METTL3 caused the upregulation of
LINC00958 by promoting the stability of its RNA transcripts.
Furthermore, LINC00958 promotes YY1 transcription factor (YY1)
as a competing endogenous RNA for miR-378a-3p [162]. However,
METTL3-induced methylation of LINC00675 inhibited BC cell
proliferation, invasion, and migration. Mechanistically, LINC00675
interacts with miR-513b-5p as a ceRNA and inhibits its expression
[163]. The study found that the m6A-modified lncRNA MALAT1
promoted BC proliferation and adriamycin resistance. Zhao et al.
showed that MALAT1 upregulated by METTL3 modification could
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enhance the expression of HMGA2 via sponge miR-26b. This
promotes EMT, migration, and invasion of BC cells [164]. In
addition, Li et al. also demonstrated that METTL3 modifies
MALAT1 protein through m6A, recruits E2F1, and activates
downstream AGR2 expression, thereby promoting adriamycin
resistance in BC [165]. Meanwhile, Huang et al. demonstrated that
WTAP binds to the m6A modification site of lncRNA DLGAP1
antisense RNA 1 (DLGAP1-AS1) and stimulates its stability, and
enhances BC adriamycin resistance [166]. In addition, MYCN
regulates lncRNA MIR210HG via IGF2BP1. The MYCN/IGF2BP1/
MIR210HG axis promotes breast cancer progression [167]. In
addition to this, LncRNA UCA1 can also regulate the m6A
modification of miR-375 by METTL14 to promote the expression
of SRY-box transcription factor 12 (SOX12) in BC [168].

Head and neck cancer
Head and neck cancers include neck tumors, ear, nose, and throat
tumor, and oral and maxillofacial tumors. Head and neck cancers
have many primary sites and pathological types. Thyroid cancer
(TC) is the most common cancer in the neck. More than 90% of
head and neck cancers are squamous cell carcinomas (head and
neck cancers squamous cell carcinomas, HNSCC) [169]. The global
incidence of HNSCC has increased markedly in the last 10 years,
especially in women. HNSCC includes oral squamous cell carcinoma
(OSCC), laryngeal squamous cell carcinoma (LSCC), and esophageal
squamous cell carcinoma (ESCC) [170]. Li et al. showed that
METTL14-mediated m6A modification increases the stability and
expression of the lncRNA MALAT1, and the relative binding of
MALAT1 to miR-224-5p promotes lysine demethylase 2A (KDM2A)
transcription, thereby facilitating OSCC cell proliferation (Fig. 5) [33].
For m6A demethylase, FTO mediates m6A demethylation of

LINC00022 and facilitates LINC00022 upregulation in a YTHDF2-
dependent manner (Fig. 5). LINC00022 promoted the proliferation
and cycle of ESCC cells by degrading p21 [171]. Li et al. showed that
WTAP expression was apparently upregulated in NPC, and WTAP has
enhanced the stability of DIAPH1-AS1 via m6A modification, which is
also dependent on the recognition of IGF2BP2, ultimately facilitating
NPC growth and metastasis [172]. Chen et al. showed that lncRNA
H2AFV-1 increased the m6A modification of its downstream target
IFT80 by upregulating METTL3/14 and downregulating FTO. This plays
an important role in promoting HNSCC cell proliferation [62].
Furthermore, ALKBH5 mediates the hypomethylation and hyperex-
pression of lncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1),
which depends on the recognition of YTHDF2. KCNQ1OT1 upregu-
lates HOXA9 to promote the progression of LSCC cells [173]. In

addition, ALKBH5-mediated m6A-induced lncRNA Cancer Suscept-
ibility Candidate 8 (CASC8) also promoted ESCC proliferation and
chemoresistance through upregulation of heterogeneous nuclear
ribonucleoprotein L (hnRNPL) [174]. In TC, the lncRNA MALAT1
promotes the progression of TC cells by competitively binding to miR-
204, upregulating IGF2BP2, and enhancing MYC expression [175].

Other cancers
In addition to the cancers mentioned above, m6A-related lncRNAs
have been poorly studied in other cancers, such as prostate cancer
(PCa), cervical cancer (CC), nasopharyngeal carcinoma (NPC),
glioblastoma and leukemia (Fig. 6). For PCa, METTL3-mediated
m6A modifies and stabilizes the lncRNA small nucleolar RNA host
gene 7 (SNHG7), which regulates c-Myc by interacting with serine/
arginine-rich splicing factor 1 (SRSF1), thereby accelerating
glycolysis in PCa [176]. In bone metastasis-positive PCa, METTL3-
mediated m6A modification promotes lncRNA PCAT6 upregula-
tion in an IGF2BP2-dependent manner. PCAT6 promotes PCa bone
metastasis by facilitating IGF1R mRNA [177]. In addition, VIRMA
can also promote the expression of lncRNAs CCAT1 and CCAT2 in
PCa dependent on m6A modification [178].
In osteosarcoma, the WTAP/FOXD2-AS1/m6A/FOXM1 axis pro-

motes osteosarcoma progression. WTAP-mediated m6A modifica-
tion of the lncRNA FOXD2-AS1 enhances the stability of FOXD2-
AS1, thereby interacting with FOXM1 through m6A binding to
increase FOXM1 expression [179]. For cervical cancer, METTL3/
FOXD2-AS1 accelerates the cervical cancer progression via an
m6A-dependent modality [180]. Liu et al. found that IGF2BP2-

Fig. 5 m6A and m5C-modified lncRNAs and modified elements that
participate in head and neck cancer.

Fig. 6 m6A-modified lncRNAs and modified elements that partici-
pate in other cancers.

Fig. 4 m6A-modified lncRNAs and modified elements that partici-
pate in breast cancer.
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stabilized lncRNA CASC9 accelerates aerobic glycolysis in glio-
blastoma multiforme (GBM) by enhancing HK2 mRNA stability
[181]. LncRNA UCA1 promotes acute myeloid leukemia (AML)
progression by affecting the stability of METTL14 and upregulating
the expression of CXCR4 and cytochrome P450 family 1 subfamily
B member 1 (CYP1B1) [182]. Meanwhile, METTL3-modified lncRNA
NEAT1 inhibits the progression of chronic myeloid leukemia (CML)
by downregulating miR-766-5p targeting cyclin-dependent kinase
inhibitor 1A (CDKN1A) [183].
These studies demonstrate that m6A is an important epitran-

scriptomic modification active in lncRNA-related cancer develop-
ment and progression. Therefore, the role of lncRNA m6A
modification in various cancers deserves further study to better
understand the relevant mechanisms, which may provide new
insights for early cancer diagnosis, outcome prediction, and
cancer treatment strategies.

m5C-related lncRNA in cancer
Recent studies on RNA methylation have mainly focused on the
m6A modification of RNA, but there was little research on the
modification of RNA m5C. NSUN2, as an RNA methyltransferase,
plays an important role in various biological processes in cancer. In
HCC, NSUN2-mediated aberrant m5C modification of H19 lncRNA
can specifically bind to the oncoprotein G3BP1. This may be a new
mechanism by which lncRNA H19 promotes tumorigenesis and
development [32]. Li et al. discovered a novel NSUN2 methylated
lncRNA NMR that promoted ESCC cell migration and invasion and
increased drug resistance in ESCC cells. NMR binds to BPTF,
potentially promoting the expression of MMP3 and MMP10
through the ERK1/2 pathway [77]. Zhen et al. found that NF-
kappa B interacting lncRNA (NKILA) was upregulated in Cholan-
giocarcinoma (CCA). NKILA was modified by m5C mediated by
NSUN2 and m6A mediated by METTL3. NKILA enhanced the
expression of YAP1 by inhibiting miR-582-3p [184]. Furthermore,
FOXC2-AS1, which is highly expressed in GC, recruits NSUN2 to
FOXC2 mRNA, increases its m5C level and combines with YBX1.
FOXC2-AS1 acts as an oncogenic lncRNA in an m5c-dependent
manner by stabilizing FOXC2 mRNA, which may provide a new
therapeutic target for GC [185]. m5C-related lncRNAs have been
found to play important roles in regulating the tumor-immune
microenvironment in uterine corpus endometrial carcinoma
(UCEC) and BLCA [85, 186]. Figures 3 and 5 also summarizes the
role of m5C modification in the regulation of tumor-associated
lncRNAs.
Recently, High-throughput sequencing data showed that m5C-

related lncRNAs were associated with tumor-immune cell
infiltration and could be used as potential therapeutic targets
for a variety of tumors [187, 188]. He et al. screened and validated
six m5C-related lncRNAs in stomach adenocarcinoma (STAD)
using bioinformatics and statistical analysis. HAGLR and
AC009948.1 are risk genes, while AC005586.1, AL590666.2,
AP001271.1, and IPO5P1 are protected genes. According to gene
set enrichment analysis, these lncRNAs are associated with
multiple immune-related pathways and are involved in immune
cell infiltration [189]. Song et al. comprehensively analyzed the
cross-talk between 141 m6A- and m5C-related lncRNAs in CRC,
indicating that they have potential impacts on tumor immunity,
microenvironment and clinicopathological features, such as
ALMS1-IT1, NNT-AS1, SNHG22, STAM-AS1, NR2F1-AS1, LINC00628
and CASC2, etc [190]. Zhang et al. first explored m5C-associated
lncRNAs in lower-grade gliomas (LGG), resulting in prognostic
biomarkers ZBTB20-AS4, LINC00265, GDNF-AS1, and CIRBP-AS1
[191]. In addition, five lncRNAs related to m5C (AL031985.3,
AL928654.1, ELNF1-AS1, MKLN1-AS and NRAV) have been found
to be upregulated in HCC, and they have potential functions in
tumor prognosis, immune cell infiltration, and drug sensitivity
[192]. However, these studies lack further research on how
lncRNAs interact with m5C.

m7G-related lncRNA in cancer
Epigenetic modifications of lncRNAs such as m6A and m5C have
been proven to be associated with the occurrence and progres-
sion of various cancers [65, 193]. Unfortunately, whether and how
m7G modification participates in cancer progression by regulating
lncRNAs remains unclear. Similar to m6A and m5C, m7G has
recently been shown to play an important role in cancer. For
example, METTL1 is associated with advanced tumor stage,
vascular invasion, and poor prognosis in HCC patients, and
promotes tumor progression by increasing the translation of
target mRNA by promoting m7G modification of tRNA [93, 194]. In
recent years, a large number of bioinformatics studies have
focused on m7G modifications associated with lncRNAs. Many
scholars have evaluated the prognosis and tumor immunity of
many cancers by constructing m7G-related lncRNA risk models,
which prompts further research on m7G modification mechanisms
in lncRNAs. Yang et al. predicted novel m7G-related lncRNAs for
colon cancer prognosis and tumor-immune microenvironment,
including 8 lncRNAs, namely MCM3AP-AS1, ELFN1-AS1, PCAT6,
GABPB1-AS1, GS1-124K5.4, SNHG7, ZEB1-AS1, and C1RL-AS1 [195].
In addition, another study reported 9 m7G-related lncRNAs in LIHC
which were indicative of prognosis. They show potential value in
predicting prognosis, drug sensitivity, and immunotherapy
response in LIHC patients [196]. Seventeen m7G-related lncRNAs
have also been reported in CRC, which can be used to predict
prognosis in the clinical setting and to determine whether the
tumor is cold or hot in CRC to improve the individualization of
treatment [197]. In addition, there are similar studies in ESCC,
UCEC, CM, and LUAD [198–201] as shown in Table 2.

FUTURE PERSPECTIVES AND CONCLUSIONS
RNA modification, especially m6A modification, plays an important
biological role in various types of cancer, and the development of
targeted drugs based on m6A modification has become a
promising treatment strategy. For example, the first m6A inhibitor
(STM-2457) targeting METTL3 has entered phase I clinical trials in
2022. Both in vivo and in vitro experiments showed that the drug
can inhibit the proliferation of AML [202]. Cheng et al. developed
two potent FTO inhibitors, FB23 and FB23-2, which directly bind
FTO and selectively block its m6A demethylase activity, signifi-
cantly inhibiting the proliferation of AML cell lines and primary
maternal AML cells [203]. Later, they discovered that FTO
inhibitors CS1 and CS2 can inhibit the self-renewal of cancer
stem cells and enhance T cell toxicity [204]. In addition, for m5C
methylase, azacitidine, and decitabine are cytidine analogs that
inhibit any m5C methylase and have been approved for clinical
use in hematological malignancies [205]. Abnormally expressed
m6A-related lncRNAs were recently discovered in the peripheral
blood of HCC patients, suggesting that m6A-modified lncRNAs
have good clinical application prospects as biomarkers [206]. Over
the past few years, the development of lncRNA therapeutics have
been witnessed [207], and the field of RNA-modifying proteins as
drug targets is expanding [208]. Unfortunately, the dysregulated
expression of lncRNAs associated with RNA modifications in
cancer has not yet been exploited in clinical settings. Detailed
studies on the distribution and function of lncRNA-related RNA
modifications and their interactions with upstream and/or down-
stream targets will contribute to understanding the regulatory
network of multiple genes and pathways in cancer. Therefore, it is
of great significance and value to elucidate the mechanism of
lncRNA-related RNA modifications in tumor development, screen
and explore potential targets, and validate in preclinical studies to
help establish new diagnosis and treatment strategies.
This review summarizes the role of m6A, m5C, and m7G

modifications of lncRNAs in cancer, but further studies of lncRNA-
related m5C and m7G are needed, as well as studies focusing on
less-studied proteins, such as m6A-related RBM15/ 15B, CBLL1,
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ABCF1, eIF3 and FMR1, etc. Further investigation of the interac-
tions between different RNA modifications on tumorigenesis is
required, such as the interaction between m6A and m5C.
However, due to the complex molecular mechanism of RNA
modification in lncRNAs in cancer, it is still challenging to apply its
findings to clinical practice. But this does not prevent us from
developing small molecule modulators targeting RNA modifica-
tion sites and RNA modification enzymes, which will provide a
targeted approach to cancer treatment. Although the strategies
associated with RNA modification in lncRNAs are promising,
extensive research is needed to depict the regulatory network of
RNA modification in lncRNAs in cancer.
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