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In glioblastoma, a mesenchymal phenotype is associated with especially poor patient outcomes. Various glioblastoma
microenvironmental factors and therapeutic interventions are purported drivers of the mesenchymal transition, but the degree to
which these cues promote the same mesenchymal transitions and the uniformity of those transitions, as defined by molecular
subtyping systems, is unknown. Here, we investigate this question by analyzing publicly available patient data, surveying
commonly measured transcripts for mesenchymal transitions in glioma-initiating cells (GIC), and performing next-generation RNA
sequencing of GICs. Analysis of patient tumor data reveals that TGFβ, TNFα, and hypoxia signaling correlate with the mesenchymal
subtype more than the proneural subtype. In cultured GICs, the microenvironment-relevant growth factors TGFβ and TNFα and the
chemotherapeutic temozolomide promote expression of commonly measured mesenchymal transcripts. However, next-generation
RNA sequencing reveals that growth factors and temozolomide broadly promote expression of both mesenchymal and proneural
transcripts, in some cases with equal frequency. These results suggest that glioblastoma mesenchymal transitions do not occur as
distinctly as in epithelial-derived cancers, at least as determined using common subtyping ontologies and measuring response to
growth factors or chemotherapeutics. Further understanding of these issues may identify improved methods for pharmacologically
targeting the mesenchymal phenotype in glioblastoma.
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INTRODUCTION
The ability of glioblastoma cells to adapt to different conditions
allows them to survive in the inflammatory and hypoxic tumor
microenvironment and to resist therapy, contributing to the
universal lethality of these tumors. The bounds of adaptability in
glioblastoma have been characterized independently in multiple
studies using techniques to capture transcriptomic, proteomic,
genomic, and patient survival data. Three predominant subtypes
have emerged: mesenchymal, proneural, and classical [1–4]. The
mesenchymal subtype is defined based on expression of genes
including CHI3L1, CD44, VEGF, and MERTK, as well as genes
associated with mesenchymal transitions in epithelial-derived
cancers such as FN1 and VIM [2, 5, 6]. Compared to other
subtypes, mesenchymal tumors are more resistant to radiation
and chemotherapy, angiogenic, invasive, and enriched in
recurrent disease [1, 7–9]. Proneural, isocitrate dehydrogenase-
mutant glioblastomas, which are associated with longer patient
survival times, are characterized by expression of the neuronal
genes OLIG2 and BCAN and Notch pathway-related genes DLL3,
HEY2, and ASCL1 [1]. Classical glioblastoma tumors are also
associated with longer survival than mesenchymal tumors,
expression of transcripts including PCNA and TOP2A, and the
EGFR variant III mutant [2]. In addition to gene expression
differences, genetic and epigenetic factors may predispose a
tumor to a particular subtype, further complicating the
phenotypic landscape of glioblastoma [10–13]. While specific

mutations can predispose a tumor to a particular subtype, such
as predominantly mesenchymal tumors with NF1 mutations, a
hallmark of glioblastoma subtypes is their ability to change in
response to external perturbations [2, 3].
Conversion among glioblastoma subtypes may occur in

response to cues in the tumor microenvironment. Growth factors
including TGFβ [12] and TNFα [13], which can be produced by
transformed neoplastic cells or by tumor-associated microglia and
macrophages [14], are reported to drive proneural-to-
mesenchymal transition (PMT) via transcription factors including
SMADs, ZEB1, NF-κB, STAT3, C/EBPβ, and TAZ [12, 13, 15, 16].
Similarly, the low oxygen tension (hypoxia) characteristic of poorly
perfused glioblastoma tumors [17, 18] is reported to drive PMT
through activation of C/EBPβ [18]. Glioblastoma cells utilize similar
pathways when exposed to ionizing radiation or temozolomide,
becoming resistant to therapy through the activation of C/EBPβ
[11], PI3K/Akt [19], or NF-κB [20]. The studies that identified these
PMT-promoting factors were largely performed by measuring a
relatively small number of mesenchymal and proneural genes
from cell lines in vitro or orthotopic tumor xenograft experiments.
Given that glioma subtypes were defined using transcriptomic
data from human tumors, these small-scale measurements may be
subject to significant bias depending on the selection of particular
subtype-specific genes. Understanding PMT regulation more
broadly may aid in identifying treatments that preferentially
target specific subtypes, as demonstrated for CDK4/6 [21] or EZH2
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[22] inhibition for proneural glioblastomas and DGKα [23] or BMI-1
[22] inhibition for mesenchymal glioblastomas.
Here, we assessed glioblastoma cell responses to purported

inducers of the mesenchymal transition using data primarily at the
gene expression level. A small set of conditions was selected for
study as PMT drivers, based on a literature survey and examination
of publicly available human tumor data sets. Our analysis suggests
that tumor microenvironment cues such as the growth factors
TGFβ and TNFα may be involved in glioblastoma mesenchymal
transitions but do not drive a uniform PMT. Instead, they appear to
broadly promote the expression of both proneural and mesench-
ymal transcripts. The DNA alkylating agent temozolomide displays
similar characteristics. Thus, interconversion among glioblastoma
molecular subtypes is unlikely to occur in a distinct manner
without the complex activation of multiple signaling pathways
driven by the microenvironment that is present in tumor but not
in vitro culture.

MATERIALS AND METHODS
Analysis of publicly available data
Glioblastoma transcriptome data from The Cancer Genome Atlas (TCGA)
[10] were downloaded from cBioPortal. Glioblastoma proteome data
(PDC000204) from the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) [4] were downloaded from the NCI Proteomic Data Commons.
Single-cell RNA sequencing data from Neftel, et al. [3] were downloaded
from the Broad Institute Single-Cell Portal.
Gene set variation analysis (GSVA) [24] was used to calculate sample-

wise gene (or gene product) set enrichment scores for each data set.
Hallmark gene sets were obtained from the Molecular Signatures
Database. TCGA tumors were grouped based on subtype annotations
provided in the dataset. To derive groups for the CPTAC proteome
dataset, samples were clustered based on expression of Verhaak subtype
genes [2] using the ‘M3C’ R package for Monte Carlo reference-based
consensus clustering [25] and the partitioning around medoids (PAM)
algorithm with 25 iterations. M3C consensus clustering yielded three
groups, which were manually assigned as mesenchymal, proneural, or
other based on Verhaak mesenchymal and proneural enrichment scores.
For the single-cell transcriptome dataset [3], a UMAP (https://arxiv.org/
abs/1802.03426) projection was generated using log-transformed
transcripts per million (log2(TPM/10+ 1)) expression of genes described
for CPTAC data clustering [2]. These data were previously filtered by
Neftel, et al. to remove cells and genes with low expression [3]. The
UMAP projection was created using a nearest neighbors setting of 30
and a minimum distance of 0.01. The samples projected in UMAP space
were then clustered with ‘ConsensusClusterPlus’ [26] using Euclidean
distance as the distance metric, 100 iterations, and the PAM algorithm,
which yielded six optimal groups. Mesenchymal cells were identified as
the cluster with the greatest enrichment of Verhaak, et al. mesenchymal
gene scores and Neftel, et al. mesenchymal meta-module scores [2, 3].
Proneural cells were similarly identified as the cluster with the greatest
enrichment of cells with proneural gene scores and OPC-like meta-
module enrichment [2, 3]. Pearson correlations of GSVA scores and
p-values were calculated using the cor.test function from the ‘stats’ R
package.

Cell culture
The glioma-initiating cell (GIC) lines G559 [21] and G816 [27] were
obtained from Jakub Godlewski (Brigham and Women’s Hospital, Boston,
MA) and Ichiro Nakano (University of Alabama), respectively. GIC lines were
propagated in suspension culture in neurobasal medium with B27 and N-2
supplements, 0.25mM L-glutamine, 100 units/mL penicillin, and 100 μg/
mL streptomycin (all from Gibco), with 50 ng/mL human recombinant EGF
and basic FGF (both growth factors from Peprotech). For experiments, GICs
were plated adherently on cell culture wells coated with Matrigel
basement membrane (Corning) diluted in 1 mL ice-cold PBS per well at a
concentration of 76 μg/mL for 1 h at room temperature, followed by
aspiration to remove excess PBS-Matrigel. All cell lines were confirmed
mycoplasma-negative using a MycoAlert PLUS Detection Kit (Lonza). STR
profiling to confirm human origin of G816 cells was conducted by the
Genetic Resources Core Facility (RRID:SCR_018669), Johns Hopkins
Department of Genetic Medicine, Baltimore, MD.

Chemical reagents and growth factors
Temozolomide (Santa Cruz Biotechnology) was reconstituted in DMSO at
20mg/mL, according to manufacturer recommendations. Recombinant
human TGFβ1 and TNFα (both from Peprotech) were reconstituted in
10mM citric acid (pH 3) and water, respectively.

Immunofluorescence microscopy and automated image
analysis
Cells were grown on Matrigel-coated 18-mm glass coverslips. After
treatment, cells were fixed with Prefer Fixative (Anatech) for 10min at
room temperature, then permeabilized with 0.25% Triton-X 100 in PBS for
5 min. Primary antibody (N-cadherin, CST #14215 S) was diluted in
Intercept Blocking Buffer (LI-COR) and incubated overnight at 4 °C in a
humidified chamber. Coverslips were washed and incubated with Alexa
Fluor secondary antibodies and Hoechst for 1 h at 37 °C. Coverslips were
mounted on glass slides with ProLong Gold Antifade Mountant
(Invitrogen).
Cells were imaged using a Zeiss Axiovert Observer Z1 fluorescence

microscope using a 20× objective. Image analysis was performed using
CellProfiler v3.1.8 (Broad Institute) to quantify cell area, form factor
(4π × area/perimeter2= 1 for a circle), and percent-touching (percentage
of a cell’s boundary that is touching another cell’s boundary) using the
nuclear stain to identify individual cells and N-cadherin to define cell
boundaries.

Quantitative reverse transcription PCR (RT-qPCR)
RNA was extracted from cells using the RNeasy kit (Qiagen) and reverse
transcribed using the High-Capacity cDNA Reverse Transcription Kit
(Applied Biosciences). RT-qPCR was performed using SYBR Green PCR
Master Mix (Applied Biosystems) on a QuantStudio3 Real-Time PCR System
(Applied Biosystems). Relative transcript abundance was determined using
the comparative CT method using GAPDH as a reference gene. RT-qPCR
primer sequences are provided in Supplementary Table 1.

RNA sequencing
RNA was extracted as described for RT-qPCR. Sample processing was
performed by the UVA Genome Analysis and Technology Core
(RRID:SCR_018883). RNA concentration was measured by Qubit assay,
and quality control was performed using a TapeStation kit (Agilent). Library
preparation was performed using the NEBNext Ultra II Directional RNA
Library Prep Kit for Illumina, and mRNA sequencing was performed using a
NextSeq 150-cycle high output kit (Illumina) and Illumina MiSeq 500
Sequencing System. Sequencing yielded at least 50 million reads for each
sample, mapping to 17,791 genes. Transcript counts normalized by
converting to log2 counts per million were used for all data analyses.
All analysis of RNA-seq data was performed in R. Differential expression

analysis (DEA) was performed using ‘limma’ [28]. Statistical significance was
calculated using moderated t-statistics, with adjusted p-values calculated
using the Benjamini–Hochberg method to account for multiple compar-
isons testing. Normalized enrichment score and gene set overrepresenta-
tion analyses were performed using ‘clusterProfiler’ [29].

Statistical analyses
For experiments where statistical significance was calculated, three
biological replicates were measured. This sample size was based on a
power analysis assuming a 50% change in gene expression with 10% error.
Samples were compared using ANOVA with Tukey’s honestly significant
difference or Games-Howell post-hoc testing for gene expression and cell
morphology experiments, respectively. For conditions where only one
comparison was needed, unpaired t-tests were used. Variance within each
group was estimated by calculating standard deviation, and similar
variances between groups were confirmed prior to statistical analysis.
Statistical analyses were performed using R version 4.2.2.

RESULTS
Patient tumor data support roles for TGFβ, TNFα, and hypoxia
in promoting a mesenchymal glioblastoma phenotype
Because the literature suggests that TGFβ, TNFα, and hypoxia
are common tumor microenvironment factors that drive PMT
[12, 13, 17, 18], we first established their relevance in human
tumors using publicly available patient data, beginning with
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TCGA bulk tumor transcriptomics [24]. Hallmark GSVA score
enrichment in TGFβ, TNFα, and hypoxic signaling pathways was
significantly greater in mesenchymal tumors relative to pro-
neural tumors (Fig. 1A). Classical tumors were excluded from
these analyses to isolate effects relevant to PMT. Additionally,
the mesenchymal gene signature defined by Verhaak, et al. [2]
significantly and positively correlated with gene signatures for
TGFβ, TNFα, and hypoxic signaling and negatively with the
proneural gene signature (Fig. 1B).
For CPTAC proteomic data [4], consensus clustering was first

used to assign tumors to subtypes (see Materials and Methods),
and the same GSVA approach described for TCGA data was then
used to show again that TGFβ, TNFα, and hypoxic signaling are
significantly upregulated in tumors identified as mesenchymal
versus proneural (Fig. 1C). As in the bulk transcriptomic analysis,
mesenchymal GSVA scores significantly correlated with Hallmark
TGFβ, TNFα, and hypoxia signaling and negatively correlated with
the proneural gene set (Fig. 1D).
To extend the analysis to account for intratumoral hetero-

geneity, single-cell transcriptomic data from Neftel, et al. [3] were
also analyzed. UMAP projection and consensus clustering
(Supplementary Fig. 1) were used to identify cells as mesenchymal
or proneural, and comparisons were made for GSVA enrichment
(Fig. 1E). TNFα and hypoxia pathways were significantly upregu-
lated in mesenchymal compared to proneural cells, while TGFβ
signaling was downregulated in mesenchymal cells. Mesenchymal
enrichment correlated strongly with these pathways and nega-
tively with proneural enrichment (Fig. 1F).
In aggregate, these analyses demonstrate correlations between

TNFα, TGFβ, and hypoxia and the mesenchymal glioblastoma
subtype, pointing to these microenvironmental factors as
potential drivers of the mesenchymal phenotype in vivo, as
previously described [13, 15, 30]. Across the three analyses
performed, TNFα/NF-κB-related signaling was consistently more
highly enriched in mesenchymal tumors and correlated with
mesenchymal traits in cells compared to TGFβ signaling. This may
indicate a more primary role for TNFα/NF-κB in driving PMT and a
more supporting role for TGFβ. Importantly, the Verhaak
mesenchymal gene set shares some genes with the Hallmark
pathways examined here (Supplementary Fig. 2). The analysis
presented in Fig. 1 utilized the complete gene sets, but further
analysis demonstrated qualitatively consistent trends when over-
lapping genes were removed from GSVA calculations of Hallmark
enrichment scores in all conditions except the CPTAC proteomic
enrichment of Hallmark TGFβ signaling, which was not signifi-
cantly different between subtypes (Supplementary Fig. 3).

TGFβ, TNFα, and temozolomide promote expression of a
subset of mesenchymal transcripts
To demonstrate that TGFβ and TNFα can promote mesenchymal
gene expression, we treated two proneural GIC lines [21] with
either or both recombinant ligands. Cells were plated on Matrigel
to limit effects of ligand and oxygen gradients, which can arise in
normal suspension spheroid culture of GICs when spheres grow to
diameters >200 μm [31, 32]. In both cell lines, TGFβ and TNFα
treatment for four days promoted the expression of several
mesenchymal markers (Fig. 2A, B). The subset of markers we
selected are commonly measured in small-scale investigations of
PMT and associated with poor patient outcomes [13, 33]. TGFβ
and TNFα both promoted mesenchymal marker expression as
individual treatments and frequently cooperated when used in
combination to drive larger changes in gene expression. Treat-
ment of G816 cells with TGFβ+ TNFα for six days at double the
ligand concentration (20 ng/mL) did not qualitatively alter the
expression of the markers measured except CD44, whose
expression increased but only modestly by approximately 10%
(Supplementary Fig. 4). Interestingly, TNFα was the only condition
that led to significantly reduced expression of the proneural

marker OLIG2. We also noted that GIC culture on Matrigel altered
the expression of multiple PMT markers (Supplementary Fig. 5),
indicating that Matrigel may promote some degree of PMT.
Despite the effects of Matrigel on baseline GIC phenotype,
exogenous ligand treatments still promoted mesenchymal gene
expression.
We next investigated the role of temozolomide (TMZ), the

frontline chemotherapeutic for glioblastoma, in promoting PMT.
Previous reports have demonstrated that PMT occurs prior to
glioblastoma recurrence, representing a potential mechanism by
which primary tumors evade therapy [8, 9, 34]. The role of
chemotherapy in driving phenotypic changes has typically been
attributed to selection of chemoresistant cells, rather than to a
direct effect of chemotherapy in promoting PMT [8, 34]. We found
that a four-day treatment with a sub-lethal dose of TMZ (100 μM)
promoted expression of the mesenchymal markers FN1 and
COL1A2 in both GIC lines (Fig. 2C, D), consistent with the TMZ-
driven upregulation of mesenchymal genes shown previously [35].
In addition to gene expression changes driven by TGFβ+ TNFα
and temozolomide, these treatments also altered cell morphology.
TGFβ+ TNFα-treated cells were less round with more protrusions,
as indicated by a decreased form factor. Cell areas increased and
cell-cell contacts decreased in response to both treatments (Fig.
2E). Decreases in form factor and cell-cell contact have been
previously described as mesenchymal characteristics in vitro
[12, 36].
The effect of hypoxia was also of interest due to its reported

correlation with the mesenchymal phenotype in vivo (e.g., [3, 22]
and Fig. 1). In the two GIC lines used in our experiments, however,
hypoxia primarily led to an unexpected downregulation of
mesenchymal markers (Supplementary Fig. 6). Hypoxia was
therefore not investigated further. The unexpected effect of
hypoxia we observed may arise from fundamental differences
between the intact tumor microenvironment and in vitro cell
culture setting. Indeed, the preponderance of evidence connect-
ing hypoxia to PMT comes from in vivo studies [3, 17, 37, 38],
where nonautonomous cancer cell effects (e.g., crosstalk with
other cell types) are possible or where nutrient deprivation may
promote glycolysis to drive PMT [39]. At least one study [40] has
claimed that hypoxia drives PMT in vitro, but this study observed
the upregulation of only two mesenchymal markers to support
that claim.

Transcriptomic analysis of GICs reveals divergent expression
of subtype-specific genes in response to putative
mesenchymal agonists
To investigate the ability of the previously tested conditions to
drive PMT using a more systematic and unbiased approach, we
performed bulk RNA sequencing on one of the proneural GIC lines
described in Fig. 2 treated for four days with TGFβ+ TNFα or TMZ.
TGFβ and TNFα were combined given the ability for these ligands
to cooperate in driving mesenchymal gene expression (Fig. 2).
Surprisingly, transcriptomic analysis revealed that growth factors
simultaneously promoted and suppressed expression of both
mesenchymal and proneural transcripts, as defined by Verhaak,
et al. [2] (Fig. 3A). Temozolomide had a similar effect, though the
numbers of significantly altered mesenchymal and proneural
transcripts were lower (Fig. 3B). Analysis of genes defined by
Neftel, et al. as mesenchymal-like hypoxia-independent (Mes-like
1), mesenchymal-like hypoxia-dependent (Mes-like 2), and the
proneural analog oligodendrocyte progenitor cell (OPC-like)
genes, similarly lacked substantial enrichment for either treatment
[3] (Fig. 3C, D). Thus, neither treatment induced a clear, uniform
phenotypic shift along the proneural-mesenchymal axis, as
defined by established gene sets [2, 3].
To characterize mesenchymal and proneural gene expression

further, we performed normalized enrichment score (NES) analysis
for gene sets defined by Verhaak, et al. [2] (Fig. 3E). NES analysis
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Fig. 1 Analysis of publicly available data reveals that signaling in response to tumor microenvironment cues correlates with
mesenchymal glioblastoma. A GSVA scores for Hallmark TGF-β signaling, TNFα signaling via NF-κB, and Hypoxia were calculated for each
TCGA tumor categorized as proneural (PN, n= 29) or mesenchymal (MES, n= 49) [10]. Mann–Whitney rank-sum tests were used to calculate p-
values. Boxplots represent the median and are bounded by the first and third quartiles. B GSVA scores for the pathways described in (A) and
the Verhaak proneural gene set were used to calculate Pearson correlation coefficients (R) with GSVA scores for the Verhaak mesenchymal
gene set for all TCGA glioblastoma tumors (n= 152) [10]. p-values for correlation coefficients were generated as described in Materials and
Methods. C GSVA scores for the pathways described in (A) were calculated for each CPTAC glioblastoma tumor categorized as PN (n= 40) or
MES (n= 35) [4]. Mann–Whitney rank-sum tests were used to calculate p-values. D GSVA scores for the pathways described in (B) and the
Verhaak proneural gene set were used to calculate Pearson correlation coefficients with GSVA scores for the Verhaak mesenchymal gene set
for all CPTAC glioblastoma tumors (n= 99) [4]. E GSVA scores for the pathways described in (A) were calculated for each Neftel, et al. [3] sample
categorized as PN (n= 1128) or MES (n= 791). Mann–Whitney rank-sum tests were used to calculate p-values. F GSVA scores for the pathways
described in (B) and the Verhaak proneural gene set were used to calculate Pearson correlation coefficients with GSVA scores for the Verhaak
mesenchymal gene set for all malignant cells within the Neftel data set (n= 4916) [3]. p ~ 0 indicates a p-value calculated as equal to 0 due to
the large sample size.
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for Verhaak gene sets [2] further showed that growth factors
significantly enriched cells for both mesenchymal and proneural
subtype genes, while TMZ treatment more highly enriched for
mesenchymal genes than proneural genes, although not to a
statistically significant degree. NES analysis supports the conclu-
sion that the treatments did not induce uniform phenotypic shifts.
Differential expression and NES analyses using Hallmark TGFβ

and TNFα gene sets for the ligand-treated samples confirmed that

TGFβ and TNFα signaling were significantly enriched following
treatment, as expected (Fig. 4A, B). The same analysis of TMZ-
treated samples showed that TGFβ and TNFα signaling were not
enriched following treatment with the drug, suggesting that gene
expression changes induced by TMZ were driven independently
of TGFβ and TNFα pathways (Fig. 4C).
Finally, gene set overrepresentation analysis revealed signaling

pathways preferentially activated by different treatment

Fig. 2 Growth factors and temozolomide promote expression of a subset of mesenchymal genes in glioma-initiating cells. G816 (A) or
G559 (B) proneural GICs were plated on Matrigel and treated with 10 ng/mL TGFβ or TNFα, or both ligands, for 4 days. Expression of the
mesenchymal markers FN1, CD44, CHI3L1, and COL1A2 and the proneural marker OLIG2 were measured by RT-qPCR. Error bars represent the
mean ± standard deviation of three biological replicates. * indicates p < 0.05, as determined by one-way ANOVA and Tukey’s post-hoc test.
Only significant differences with respect to the untreated condition are shown. G816 (C) or G559 (D) cells were plated on Matrigel and treated
with DMSO (vehicle) or 100 μM temozolomide (TMZ) for 4 days, and the indicated transcripts were measured by RT-qPCR. Error bars represent
the mean ± standard deviation of three biological replicates. * indicates p < 0.05 using two-tailed unpaired t-test. E G816 cells were plated on
Matrigel-coated glass coverslips and treated with 10 ng/mL TGFβ+ TNFα or 100 μM temozolomide (TMZ) for four days. Immunofluorescence
microscopy was performed for N-cadherin to identify cell boundaries, and the indicated metrics (definitions in Materials and Methods) were
extracted using automated image analysis, n= 3. * indicates p < 0.05 as determined by one-way ANOVA and Games-Howell post-hoc test.
Scale bars= 100 μm.
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Fig. 3 Purported PMT agonists broadly promote the expression of both proneural and mesenchymal genes. G816 cells grown on Matrigel
were treated with (A) TGFβ+ TNFα (10 ng/mL each) or (B) TMZ (100 μM) for 4 days. Volcano plots were generated by performing differential
expression analyses comparing untreated cells to cells treated with TGFβ+ TNFα or TMZ. Differential expression analysis (DEA) yielded the
log2 fold-change (FC) of each transcript relative to the untreated condition. p-values were adjusted using Benjamini–Hochberg correction to
account for multiple comparison testing. Genes from the Verhaak, et al. mesenchymal (blue circles) and proneural (red triangles) gene sets are
shown to highlight the mixed phenotypic response to both TGFβ+ TNFα and TMZ treatment. All analyses were performed using the
expression of three independent replicates. C, D Data described in (A, B) were filtered instead for genes present in Neftel, et al. Mes-like 1 (blue
circles), Mes-like 2 (green squares), and OPC-like (red triangles) meta-modules. E Normalized enrichment scores (NES) were calculated for each
treatment relative to the untreated control for gene sets associated with the mesenchymal and proneural phenotypes. NES values and their
statistical significance are displayed within plots of running enrichment scores.
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conditions (Fig. 5). Notably, growth factors promoted gene
expression relating to epithelial-mesenchymal transition (EMT),
β-catenin, and Notch, as well as TNFα and TGFβ signaling. Growth
factors and TMZ both resulted in significantly upregulated genes
related to p53 and interferon signaling, which promote EMT in
multiple carcinomas [41–44]. Thus, while the treatment conditions
we investigated do not drive a uniform and distinct PMT, they
induce signaling associated with conventional EMT.

DISCUSSION
A central question addressed here is whether glioblastoma cells
can transition from a proneural to a mesenchymal state in
response to defined growth factor or chemotherapeutic

treatments. While the specific conditions we tested are reported
inducers of the mesenchymal state, prior work has typically
assessed acute transitions using a small number of proteins or
transcripts, far fewer than are used to define glioblastoma
molecular subtypes. Assuming that a PMT defined as a shift in
the preponderance of the markers included in subtyping systems
is even possible, our findings raise the question of whether PMT
requires the substantially more complex conditions reflective of
the glioblastoma tumor microenvironment. Perhaps the best
evidence that a PMT defined by established molecular subtypes
can occur comes from in vivo studies using genetically barcoded,
orthotopically implanted glioblastoma cells [3]. In those experi-
ments, single-cell RNA sequencing revealed that cells of a single
lineage can give rise to cells of each glioblastoma molecular

Fig. 4 Exogenous TGFβ+ TNFα promotes significant, anticipated transcriptomic enrichments. A Volcano plots were generated by
performing differential expression analysis (DEA) on bulk RNA-seq data gathered from G816 cells (see Fig. 3) to compare TGFβ+ TNFα-treated
versus untreated samples. The log2 fold-changes (FC) of genes present in the Hallmark TGFβ and TNFα via NF-κB gene sets are shown. The
Benjamini–Hochberg method was used to adjust p-values for multiple comparisons. B, C NES plots were generated for the Hallmark pathways
in (A) for: (B) TGFβ+ TNFα-treated samples and (C) TMZ-treated samples.
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subtype. That finding suggests that PMT based on subtype
switching is possible, but the specific agonists, pathways, and
timescale for that shift remain unknown.
Based on data presented here, it appears unlikely that simple

cell culture conditions and small numbers of exogenous growth
factors or drugs sufficiently recapitulate the complex signaling
program necessary for a uniform PMT. Given that glioblastoma
subtypes were identified through consensus clustering of tumors
based on transcriptomic features, the subtype-defining genes
broadly reflect the conditions of the tumor microenvironment and
also the common genetic aberrations associated with the
subtypes [2, 10]. While signaling associated with TGFβ, TNFα,
and hypoxia correlate overall with the mesenchymal subtype,
these correlations may primarily indicate that those conditions
contribute to partial shifts to a mesenchymal state without a
wholesale shift in subtype transcripts. This finding raises the
interesting possibility that the diversity of microenvironmental
factors present in glioblastomas may give rise to a diversity of
mesenchymal states.
The lack of concordance among accepted glioblastoma

subtyping strategies may exacerbate issues in using the subtyping
features to monitor phenotypic shifts. For example, only three
mesenchymal genes are shared [9] between the Phillips [1] and
Verhaak [2] classifications. The more recent classification system
developed by Neftel, et al. based on single-cell transcriptomics
defined two distinct mesenchymal-like subtypes with similarly
limited overlap with previous molecular subtyping systems [3]
(Supplementary Fig. 7). Similar issues arise in molecular subtyping
systems for pancreas cancer, for example, where there is virtually
no overlap among gene sets for mesenchymal-like states and
virtually no overlap of any of those gene sets with conventional
EMT markers [45].
The field’s use of the term “mesenchymal” for one of the

glioblastoma molecular subtypes may also encourage a poten-
tially inappropriate tendency to view different subtypes, defined
based on large numbers of transcriptomic features, as readily
interconvertible in an analogous fashion to EMT in carcinoma cells,
where acute exogeneous treatments of growth factors (e.g., TGFβ)
drive clear phenotypic changes [46, 47]. While comparisons are
frequently made between PMT and EMT, the naming of the
mesenchymal glioblastoma subtype was based largely on the two
markers CD44 and MERTK, with the latter being an unconventional
mesenchymal marker [2]. Further, CD44 is most commonly
associated with glioblastoma stemness, which is related but not
identical to the mesenchymal phenotype [48]. Since glioblastoma
molecular subtypes stratify patients for response to therapy [2], it
is reasonable to hypothesize that drugging against specific
subtypes could promote chemoresponse. While the rational

identification of druggable signaling pathways that promote the
mesenchymal phenotype could potentially be facilitated using
network-level and multiscale computational models of cancer
[49–51], our findings suggest that it may be challenging to identify
treatment conditions that uniformly shift cells toward a glioblas-
toma mesenchymal state, which would be needed to generate the
datasets required to develop such models. Therefore, it may be
preferable simply to focus on specific phenotypes (e.g., migration
or chemoresistance) or on subsets of the mesenchymal gene
signature that play validated roles in regulating drug response, or
to utilize alternative gene sets selected directly for their role in
predicting therapeutic resistance [8]. For example, TGFβ may not
drive a robust PMT, but TGFβ signaling strongly regulates
response to temozolomide [30, 52]. Thus, identifying the specific
genes altered by TGFβ in glioblastoma that control response to
chemotherapy would provide an alternative approach for
identifying drug targets independent of a specific assessment
of PMT.
Following the example of EMT researchers [53], efforts should

be made to formalize the nomenclature, definitions, and guide-
lines for studying mesenchymal transitions in glioblastoma, as
driven in different contexts. Moreover, efforts should be made to
distinguish transitions that occur in response to acute, well-
defined treatments in cell culture model systems from true shifts
among glioblastoma molecular subtypes. Based on the way
molecular subtypes were originally defined, a robust definition of
a PMT would include not only a shift in most subtype-defining
transcripts but also an anticipated shift in the survival probabilities
of animal models bearing proneural or mesenchymal tumors [2].
Isolated environmental effects (e.g., growth factors or hypoxia)
experienced by glioblastoma cells in vitro or in vivo may drive
changes in some of the subset-defining transcripts and alter acute
responses to chemotherapies. Such effects are clearly worth
elucidating, even if they do not represent a robust PMT. Whether
the complex and heterogeneous conditions of the glioblastoma
microenvironment are required to drive a bona fide PMT and
whether such a transition is truly functionally distinct from the less
uniform shifts observed as acute responses to isolated environ-
ment effects remains to be seen. Probing that issue is worthwhile
though, as it may provide important new understanding for our
ability to design durable treatments to slow glioblastoma
progression.
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