Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Leveraging synthetic lethality to uncover potential therapeutic target in gastric cancer

Abstract

Since trastuzumab was approved in 2012 for the first-line treatment of gastric cancer (GC), no significant advancement in GC targeted therapies has occurred. Synthetic lethality refers to the concept that simultaneous dysfunction of a pair of genes results in a lethal effect on cells, while the loss of an individual gene does not cause this effect. Through exploiting synthetic lethality, novel targeted therapies can be developed for the individualized treatment of GC. In this study, we proposed a computational strategy named Gastric cancer Specific Synthetic Lethality inference (GSSL) to identify synthetic lethal interactions in GC. GSSL analysis was used to infer probable synthetic lethality in GC using four accessible clinical datasets. In addition, prediction results were confirmed by experiments. GSSL analysis identified a total of 34 candidate synthetic lethal pairs, which included 33 unique targets. Among the synthetic lethal gene pairs, TP53-CHEK1 was selected for further experimental validation. Both computational and experimental results indicated that inhibiting CHEK1 could be a potential therapeutic strategy for GC patients with TP53 mutation. Meanwhile, in vitro experimental validation of two novel synthetic lethal pairs TP53-AURKB and ARID1A-EP300 further proved the universality and reliability of GSSL. Collectively, GSSL has been shown to be a reliable and feasible method for comprehensive analysis of inferring synthetic lethal interactions of GC, which may offer novel insight into the precision medicine and individualized treatment of GC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study overview.
Fig. 2: Identifying driver genes in gastric cancer.
Fig. 3: Clinical and biological characteristics of SL interactions.
Fig. 4: Computational validation of the synthetic lethal interaction between TP53 and CHEK1.
Fig. 5: Estimation of drug response prediction analysis.
Fig. 6: TP53-mutant GC cells exhibited higher sensitivity to CHEK1 inhibitors than TP53-wild-type cell lines.
Fig. 7: CHEK1 inhibitors selectively killed TP53-mutant GC cells by inducing cell apoptosis and could synergize with DNA-damaging anticancer drugs to kill TP53-mutant GC cells.
Fig. 8: Further experiments validated the usability and reliability of GSSL.

Similar content being viewed by others

Data availability

All data and access to all databases used in this study are publicly available.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-a Cancer J Clinicians. 2018;68:394–424.

    Article  Google Scholar 

  2. Zhang PH, Zheng ZG, Ling L, Yang XH, Zhang N, Wang X, et al. w09, a novel autophagy enhancer, induces autophagy-dependent cell apoptosis via activation of the EGFR-mediated RAS-RAF1-MAP2K-MAPK1/3 pathway. Autophagy. 2017;13:1093–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chung HC, Bang YJ, Fuchs CS, Qin SK, Satoh T, Shitara K, et al. First-line pembrolizumab/placebo plus trastuzumab and chemotherapy in HER2-positive advanced gastric cancer: KEYNOTE-811. Future Oncol. 2021;17:491–501.

    Article  CAS  PubMed  Google Scholar 

  4. Wang DS, Liu ZX, Lu YX, Bao H, Wu X, Zeng ZL, et al. Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer. Gut. 2019;68:1152–61.

    Article  CAS  PubMed  Google Scholar 

  5. Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017;355:1152–8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Fong PC, Boss DS, Yap TA, Tutt A, Wu PJ, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.

    Article  CAS  PubMed  Google Scholar 

  7. Yeoh KG, Tan PT. Mapping the genomic diaspora of gastric cancer. Nat Rev Cancer. 2022;22:71–84.

    Article  CAS  PubMed  Google Scholar 

  8. Kroll ES, Hyland KM, Hieter P, Li JJ. Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics. 1996;143:95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zecchini V, Frezza C. Metabolic synthetic lethality in cancer therapy. Biochimica Et Biophysica Acta-Bioenerg. 2017;1858:723–31.

    Article  CAS  Google Scholar 

  10. Muller FL, Aquilanti EA, DePinho RA. Collateral lethality: a new therapeutic strategy in oncology. Trends Cancer. 2015;1:161–73.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jerby-Arnon L, Pfetzer N, Waldman YY, McGarry L, James D, Shanks E, et al. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell. 2014;158:1199–209.

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Zhang Q, Han J, Zhao Y, Zhao C, Yan B, et al. Computational methods, databases and tools for synthetic lethality prediction. Brief Bioinform. 2022;23:bbac106.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sinha S, Thomas D, Chan S, Gao Y, Brunen D, Torabi D, et al. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat Commun. 2017;8:13.

    Article  Google Scholar 

  14. Lee JS, Das A, Jerby-Arnon L, Arafeh R, Auslander N, Davidson M, et al. Harnessing synthetic lethality to predict the response to cancer treatment. Nat Commun. 2018;9:12.

    Google Scholar 

  15. Das S, Deng X, Camphausen K, Shankavaram U. DiscoverSL: an R package for multi-omic data driven prediction of synthetic lethality in cancers. Bioinformatics. 2019;35:701–2.

    Article  CAS  PubMed  Google Scholar 

  16. Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B, et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  ADS  Google Scholar 

  17. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21:449–U217.

    Article  CAS  PubMed  Google Scholar 

  18. Lei ZD, Tan IB, Das K, Deng NT, Zouridis H, Pattison S, et al. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology. 2013;145:554–65.

    Article  CAS  PubMed  Google Scholar 

  19. Yoon SJ, Park J, Shin Y, Choi Y, Park SW, Kang SG, et al. Deconvolution of diffuse gastric cancer and the suppression of CD34 on the BALB/c nude mice model. Bmc Cancer. 2020;20:10.

    Article  Google Scholar 

  20. Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569:503–8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, et al. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17:520–5.

    Article  CAS  PubMed  Google Scholar 

  22. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49:1779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a Cancer Dependency Map. Cell. 2017;170:564–76.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bashashati A, Haffari G, Ding JR, Ha G, Lui K, Rosner J, et al. DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol. 2012;13:14.

    Article  Google Scholar 

  25. Wu GM, Feng X, Stein L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 2010;11:23.

    Article  Google Scholar 

  26. He CY, Qiu MZ, Yang XH, Zhou DL, Ma JJ, Long YK, et al. Classification of gastric cancer by EBV status combined with molecular profiling predicts patient prognosis. Clin Transl Med. 2020;10:353–62.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ge S, Xia X, Ding C, Zhen B, Zhou Q, Feng J, et al. A proteomic landscape of diffuse-type gastric cancer. Nat Commun. 2018;9:1012.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  28. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    Article  CAS  PubMed  Google Scholar 

  29. Lee YS, Cho YS, Lee GK, Lee S, Kim YW, Jho S, et al. Genomic profile analysis of diffuse-type gastric cancers. Genome Biol. 2014;15:R55.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cancer Genome Atlas Research, N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  ADS  Google Scholar 

  31. Jeong SH, Park M, Park SY, Park J, Kim TH, Lee YJ, et al. Transcriptome analysis and the prognostic role of NUDC in diffuse and intestinal gastric cancer. Technol Cancer Res Treat. 2021;20:15330338211019501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Tamborero D, Schroeder MP, Jene-Sanz A, et al. IntOGen-mutations identifies cancer drivers across tumor types. Nat Methods. 2013;10:1081–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou SB, Diaz LA, Kinzler KW. Cancer Genome Landscapes. Science. 2013;339:1546–58.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat Methods. 2013;10:1108–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang JK, Jia TQ, Carlin DE, Ideker T. pyNBS: a Python implementation for network-based stratification of tumor mutations. Bioinformatics. 2018;34:2859–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tan IB, Ivanova T, Lim KH, Ong CW, Deng NT, Lee J, et al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology. 2011;141:476–U551.

    Article  PubMed  Google Scholar 

  38. Cao J, Gong J, Li XH, Hu ZX, Xu YJ, Shi H, et al. Unsupervised hierarchical clustering identifies immune gene subtypes in gastric cancer. Front Pharmacol. 2021;12:12.

    Article  Google Scholar 

  39. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 2013;14:7.

    Article  Google Scholar 

  40. Corsello SM, Bittker JA, Liu ZH, Gould J, McCarren P, Hirschman JE, et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat Med. 2017;23:405–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–D1082.

    Article  CAS  PubMed  Google Scholar 

  42. Han YA, Yu GC, Sarioglu H, Caballero-Martinez A, Schlott F, Ueffing M, et al. Proteomic investigation of the interactome of FMNL1 in hematopoietic cells unveils a role in calcium-dependent membrane plasticity. J Proteom. 2013;78:72–82.

    Article  CAS  Google Scholar 

  43. Yu, G. Gene Ontology semantic similarity analysis using GOSemSim. In: Kidder BL, editor. Stem cell transcriptional networks: methods and protocols, 2nd Edition. Totowa, USA: Humana Press Inc: 2020. pp. 207–15.

  44. Ritchie ME, Phipson B, Wu D, Hu YF, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:13.

    Article  Google Scholar 

  45. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics. 2012;28:573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Azuaje F. Computational models for predicting drug responses in cancer research. Brief Bioinforma. 2017;18:820–9.

    CAS  Google Scholar 

  48. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE. 2014;9:3.

    Article  Google Scholar 

  49. Altelaar AFM, Munoz J, Heck AJR. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2013;14:35–48.

    Article  CAS  PubMed  Google Scholar 

  50. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamamoto M, Maehara Y, Oda S, Ichiyoshi Y, Kusumoto T, Sugimachi K. The p53 tumor suppressor gene in anticancer agent-induced apoptosis and chemosensitivity of human gastrointestinal cancer cell lines. Cancer Chemother Pharmacol. 1999;43:43–49.

    Article  CAS  PubMed  Google Scholar 

  52. Miller JJ, Orvain C, Jozi S, Clarke RM, Smith JR, Blanchet A, et al. Multifunctional compounds for activation of the p53-Y220C mutant in cancer. Chem-a Eur J. 2018;24:17734–42.

    Article  CAS  Google Scholar 

  53. Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, et al. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics. 2016;32:2866–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rosales KR, Reid MA, Yang Y, Tran TQ, Wang WI, Lowman X, et al. TIPRL Inhibits protein phosphatase 4 activity and promotes H2AX phosphorylation in the DNA damage response. PLoS ONE. 2015;10:e0145938.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Martinez-Jimenez F, Muinos F, Sentis I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020;20:555–72.

    Article  CAS  PubMed  Google Scholar 

  56. Pon JR, Marra MA. Driver and passenger mutations in cancer. In: Abbas AK, Galli SJ, Howley PM, editors. Annual review of pathology: mechanisms of disease. Vol. 10. Annual Reviews: Palo Alto; 2015. pp. 25–50.

  57. Huang A, Garraway LA, Ashworth A, Weber B. Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov. 2020;19:23–38.

    Article  CAS  PubMed  Google Scholar 

  58. O’Neil NJ, Bailey ML, Hieter P. Synthetic lethality and cancer. Nat Rev Genet. 2017;18:613–23.

    Article  PubMed  Google Scholar 

  59. Gemble S, Wardenaar R, Keuper K, Srivastava N, Nano M, Mace AS, et al. Genetic instability from a single S phase after whole-genome duplication. Nature. 2022;604:146–51.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Gali-Muhtasib H, Kuester D, Mawrin C, Bajbouj K, Diestel A, Ocker M, et al. Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res. 2008;68:5609–18.

    Article  CAS  PubMed  Google Scholar 

  61. Brown C. An elusive cancer target. Nature. 2016;537:S106–8.

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA. 2021;71:264–79.

    PubMed  Google Scholar 

  63. Gadhikar MA, Sciuto MR, Alves MVO, Pickering CR, Osman AA, Neskey DM, et al. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Therapeutics. 2013;12:1860–73.

    Article  CAS  Google Scholar 

  64. Alcaraz-Sanabria A, Nieto-Jimenez C, Corrales-Sanchez V, Serrano-Oviedo L, Andres-Pretel F, Montero JC, et al. Synthetic lethality interaction between aurora kinases and CHEK1 inhibitors in ovarian cancer. Mol Cancer Therapeutics. 2017;16:2552–62.

    Article  CAS  Google Scholar 

  65. Ohashi S, Kikuchi O, Nakai Y, Ida T, Saito T, Kondo Y, et al. Synthetic lethality with trifluridine/tipiracil and checkpoint kinase 1 inhibitor for esophageal squamous cell carcinoma. Mol Cancer Therapeutics. 2020;19:1363–72.

    Article  CAS  Google Scholar 

  66. Hubackova S, Davidova E, Boukalova S, Kovarova J, Bajzikova M, Coelho A, et al. Replication and ribosomal stress induced by targeting pyrimidine synthesis and cellular checkpoints suppress p53-deficient tumors. Cell Death Dis. 2020;11:16.

    Article  Google Scholar 

  67. Origanti S, Cai SR, Munir AZ, White LS, Piwnica-Worms H. Synthetic lethality of Chk1 inhibition combined with p53 and/or p21 loss during a DNA damage response in normal and tumor cells. Oncogene. 2013;32:577–88.

    Article  CAS  PubMed  Google Scholar 

  68. Kogan-Sakin I, Tabach Y, Buganim Y, Molchadsky A, Solomon H, Madar S, et al. Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ. 2011;18:271–81.

    Article  CAS  PubMed  Google Scholar 

  69. Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer. 2011;2:466–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hong D, Infante J, Janku F, Jones S, Nguyen LM, Burris H, et al. Phase I study of LY2606368, a checkpoint kinase 1 inhibitor, in patients with advanced cancer. J Clin Oncol. 2016;34:1764–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by The National Natural Science Foundation of China (81972206 and 82173215) and the Natural Science Foundation of Shanghai (22ZR1438800).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HG and RQ; methodology, HG, RQ, YZ, and XZ; validation, LZ, XT, and RQ; formal analysis, YX; investigation, CY, ZD, and TL; resources, SK and LZ; data curation, ZD and TL; writing—original draft preparation, HG, YZ, and LZ; writing—review and editing, WQ and CW; visualization, HG and RQ; supervision, ZZ and CZ; project administration, WQ and CW; funding acquisition, ZZ and CZ. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zizhen Zhang or Chunchao Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, H., Qian, R., Zhong, Y. et al. Leveraging synthetic lethality to uncover potential therapeutic target in gastric cancer. Cancer Gene Ther 31, 334–348 (2024). https://doi.org/10.1038/s41417-023-00706-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00706-y

Search

Quick links