Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tafazzin mediates tamoxifen resistance by regulating cellular phospholipid composition in ER-positive breast cancer

Abstract

Tamoxifen is the frontline therapeutic agent for the estrogen receptor-positive (ER + ) subtype of breast cancer patients, which accounts for 70–80% of total breast cancer incidents. However, clinical resistance to tamoxifen has become increasingly common, highlighting the need to identify the underlying cellular mechanisms. In our study, we employed a genome-scale CRISPR-Cas9 loss-of-function screen and validation experiments to discover that Tafazzin (TAZ), a mitochondrial transacylase, is crucial for maintaining the cellular sensitivity of ER+ breast cancer cells to tamoxifen and other chemotherapies. Mechanistically, we found that cardiolipin, whose synthesis and maturation rely on TAZ, is required to maintain cellular sensitivity to tamoxifen. Loss of metabolic enzymatic activity of TAZ causes ERα downregulation and therapy resistance. Interestingly, we observed that TAZ deficiency also led to the upregulation of lysophosphatidylcholine (LPC), which in turn suppressed ERα expression and nuclear localization, thereby contributing to tamoxifen resistance. LPC is further metabolized to lysophosphatidic acid (LPA), a bioactive molecule that supports cell survival. Thus, our findings suggest that the depletion of TAZ promotes tamoxifen resistance through an LPC-LPA phospholipid synthesis axis, and targeting this lipid metabolic pathway could restore cell susceptibility to tamoxifen treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome-wide screen for tamoxifen resistance genes in ER-positive breast cancer cells.
Fig. 2: Depletion-of-TAZ induces multiple drug resistance in ER-positive breast cancer.
Fig. 3: Loss-of-TAZ down-regulates ERα signaling and reduces cell proliferation rate.
Fig. 4: Metabolic enzymatic activity of TAZ is essential for its role in tamoxifen resistance.
Fig. 5: TAZ KO alters cellular phospholipid metabolism and induces tamoxifen resistance.
Fig. 6: Blockade of the LPA synthesis and signaling pathway re-sensitizes tumor cells to tamoxifen treatment.

Similar content being viewed by others

Data availability

Additional data could be reasonably requested from the corresponding author.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135:584–90.

    Article  PubMed  Google Scholar 

  3. Kittaneh M, Montero AJ, Gluck S. Molecular profiling for breast cancer: a comprehensive review. Biomark Cancer. 2013;5:61–70.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Prim. 2019;5:66.

    Article  PubMed  Google Scholar 

  5. Giuliano M, Schiff R, Osborne CK, Trivedi MV. Biological mechanisms and clinical implications of endocrine resistance in breast cancer. Breast. 2011;20:S42–S49.

    Article  PubMed  Google Scholar 

  6. Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharm Ther. 2018;186:1–24.

    Article  CAS  Google Scholar 

  7. Droog M, Beelen K, Linn S, Zwart W. Tamoxifen resistance: from bench to bedside. Eur J Pharm. 2013;717:47–57.

    Article  CAS  Google Scholar 

  8. Jia M, Dahlman-Wright K, Gustafsson JA. Estrogen receptor alpha and beta in health and disease. Best Pr Res Clin Endocrinol Metab. 2015;29:557–68.

    Article  CAS  Google Scholar 

  9. Yao J, Deng K, Huang J, Zeng R, Zuo J. Progress in the Understanding of the Mechanism of Tamoxifen Resistance in Breast Cancer. Front Pharm. 2020;11:592912.

    Article  CAS  Google Scholar 

  10. Ranganathan P, Nadig N, Nambiar S. Non-canonical Estrogen Signaling in Endocrine Resistance. Front Endocrinol (Lausanne). 2019;10:708.

    Article  PubMed  Google Scholar 

  11. Mendes-Pereira AM, Sims D, Dexter T, Fenwick K, Assiotis I, Kozarewa I, et al. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen. Proc Natl Acad Sci USA. 2012;109:2730–5.

    Article  PubMed  CAS  Google Scholar 

  12. Ahn BY, Elwi AN, Lee B, Trinh DL, Klimowicz AC, Yau A, et al. Genetic screen identifies insulin-like growth factor binding protein 5 as a modulator of tamoxifen resistance in breast cancer. Cancer Res. 2010;70:3013–9.

    Article  PubMed  CAS  Google Scholar 

  13. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7.

    Article  PubMed  CAS  Google Scholar 

  14. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Katti A, Diaz BJ, Caragine CM, Sanjana NE, Dow LE. CRISPR in cancer biology and therapy. Nat Rev Cancer. 2022;22:259–79.

    Article  PubMed  CAS  Google Scholar 

  16. Xu G, Chhangawala S, Cocco E, Razavi P, Cai Y, Otto JE, et al. ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet. 2020;52:198–207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Schlame M, Xu Y. The Function of Tafazzin, a Mitochondrial Phospholipid-Lysophospholipid Acyltransferase. J Mol Biol. 2020;432:5043–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Seneviratne AK, Xu M, Henao JJA, Fajardo VA, Hao Z, Voisin V, et al. The Mitochondrial Transacylase, Tafazzin, Regulates for AML Stemness by Modulating Intracellular Levels of Phospholipids. Cell Stem Cell. 2019;24:621–36.e616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lu YW, Galbraith L, Herndon JD, Lu YL, Pras-Raves M, Vervaart M, et al. Defining functional classes of Barth syndrome mutation in humans. Hum Mol Genet. 2016;25:1754–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Role of Cardiolipin in Mitochondrial Function and Dynamics in Health and Disease: Molecular and Pharmacological Aspects. Cells. 2019;8:728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Claypool SM, McCaffery JM, Koehler CM. Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins. J Cell Biol. 2006;174:379–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Samanta K, Chakravarti B, Mishra JK, Dwivedi SK, Nayak LV, Choudhry P, et al. Anti-tumor activity of a new series of benzoxazepine derivatives in breast cancer. Bioorg Med Chem Lett. 2010;20:283–7.

    Article  PubMed  CAS  Google Scholar 

  23. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34:184–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc. 2017;12:828–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15:554.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42:e168.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL, Morey L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun. 2021;12:1786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Diaz Bessone MI, Gattas MJ, Laporte T, Tanaka M, Simian M. The Tumor Microenvironment as a Regulator of Endocrine Resistance in Breast Cancer. Front Endocrinol (Lausanne). 2019;10:547.

    Article  PubMed  Google Scholar 

  29. Hanker AB, Sudhan DR, Arteaga CL. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell. 2020;37:496–513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ahmadpour ST, Maheo K, Servais S, Brisson L, Dumas JF. Cardiolipin, the Mitochondrial Signature Lipid: Implication in Cancer. Int J Mol Sci. 2020;21:8031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Phan TG, Croucher PI. The dormant cancer cell life cycle. Nat Rev Cancer. 2020;20:398–411.

    Article  PubMed  CAS  Google Scholar 

  32. Guler GD, Tindell CA, Pitti R, Wilson C, Nichols K, KaiWai Cheung T, et al. Repression of Stress-Induced LINE-1 Expression Protects Cancer Cell Subpopulations from Lethal Drug Exposure. Cancer Cell. 2017;32:221–37.e213.

    Article  PubMed  CAS  Google Scholar 

  33. Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, et al. Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell. 2017;20:233–46.e237.

    Article  PubMed  CAS  Google Scholar 

  34. Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJ, et al. Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol. 2008;183:681–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94:491–501.

    Article  PubMed  CAS  Google Scholar 

  36. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17:1675–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Koberlin MS, Snijder B, Heinz LX, Baumann CL, Fauster A, Vladimer GI, et al. A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses. Cell. 2015;162:170–83.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Law SH, Chan ML, Marathe GK, Parveen F, Chen CH, Ke LY. An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases. Int J Mol Sci. 2019;20:1149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, et al. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol. 2002;158:227–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Brindley DN, Lin FT, Tigyi GJ. Role of the autotaxin-lysophosphatidate axis in cancer resistance to chemotherapy and radiotherapy. Biochim Biophys Acta. 2013;1831:74–85.

    Article  PubMed  CAS  Google Scholar 

  41. Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne). 2019;10:245.

    Article  PubMed  Google Scholar 

  42. Ingle JN, Mailliard JA, Schaid DJ, Krook JE, Gesme DH Jr, Windschitl HE, et al. A double-blind trial of tamoxifen plus prednisolone versus tamoxifen plus placebo in postmenopausal women with metastatic breast cancer. A collaborative trial of the North Central Cancer Treatment Group and Mayo Clinic. Cancer. 1991;68:34–9.

    Article  PubMed  CAS  Google Scholar 

  43. Jaiyesimi IA, Buzdar AU, Decker DA, Hortobagyi GN. Use of tamoxifen for breast cancer: twenty-eight years later. J Clin Oncol. 1995;13:513–29.

    Article  PubMed  CAS  Google Scholar 

  44. Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell. 2021;39:759–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhang XH, Giuliano M, Trivedi MV, Schiff R, Osborne CK. Metastasis dormancy in estrogen receptor-positive breast cancer. Clin Cancer Res. 2013;19:6389–97.

    Article  PubMed  CAS  Google Scholar 

  46. Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14:611–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Massague J, Ganesh K. Metastasis-Initiating Cells and Ecosystems. Cancer Discov. 2021;11:971–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Rehman SK, Haynes J, Collignon E, Brown KR, Wang Y, Nixon AML, et al. Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive Chemotherapy. Cell. 2021;184:226–42.e221.

    Article  PubMed  CAS  Google Scholar 

  49. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ahn E-Y, Pan G, Oh JH, Tytler EM, McDonald JM. The Combination of Calmodulin Antagonists and Interferonγ Induces Apoptosis through CaspaseDependent and -Independent Pathways in Cholangiocarcinoma Cells. Am J Pathol. 2003;163:2053–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Pawar P, Ma L, Byon CH, Liu H, Ahn EY, Jhala N, et al. Molecular mechanisms of tamoxifen therapy for cholangiocarcinoma: role of calmodulin. Clin Cancer Res. 2009;15:1288–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Nam SW, Clair T, Kim YS, McMarlin A, Schiffmann E, Liotta LA, et al. Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res. 2001;61:6938–44.

    PubMed  CAS  Google Scholar 

  53. Yang SY, Lee J, Park CG, Kim S, Hong S, Chung HC, et al. Expression of autotaxin (NPP-2) is closely linked to invasiveness of breast cancer cells. Clin Exp Metastasis. 2002;19:603–8.

    Article  PubMed  CAS  Google Scholar 

  54. Brindley DN, Tang X, Meng G, Benesch MGK. Role of Adipose Tissue-Derived Autotaxin, Lysophosphatidate Signaling, and Inflammation in the Progression and Treatment of Breast Cancer. Int J Mol Sci. 2020;21:5938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chae CS, Sandoval TA, Hwang SM, Park ES, Giovanelli P, Awasthi D, et al. Tumor-Derived Lysophosphatidic Acid Blunts Protective Type I Interferon Responses in Ovarian Cancer. Cancer Discov. 2022;12:1904–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Tan Z, Lei H, Guo M, Chen Y, Zhai X. An updated patent review of autotaxin inhibitors (2017-present). Expert Opin Ther Pat. 2021;31:421–34.

    Article  PubMed  CAS  Google Scholar 

  57. Zulfikar S, Mulholland S, Adamali H, Barratt SL. Inhibitors of the Autotaxin-Lysophosphatidic Acid Axis and Their Potential in the Treatment of Interstitial Lung Disease: Current Perspectives. Clin Pharm. 2020;12:97–108.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Pan for helping with MAGeCK analysis; Z. Chang and Q. Ye for generously sharing the tamoxifen resistance cell; We thank all members of the Zheng laboratory for helpful discussions and technical assistance. We thank the Technology Center for Protein Sciences at Tsinghua University for mass-spectrometry support, the Laboratory Animal Research Center for animal research support, and the Center of Biomedical Analysis at Tsinghua University for FACS and optical imaging support.

Funding

The study was partially supported by the National Key Research and Development Program of China (2020YFA0509400 to HZ), the National Science Foundation of China (81772981 and 81972462 to HZ), the Tsinghua University Initiative Scientific Research Program, and the Tsinghua-Peking Center for Life Sciences.

Author information

Authors and Affiliations

Authors

Contributions

XL and HZ designed the overall study. XL performed the experiments, analyzed data, and wrote the paper. TZ provided technical help for next-generation data analysis. LZ provided help with the CRISPR/Cas9 screening. YZ provided technical help for animal work. HH provided technical help for cell works. HZ supervised the overall study. HZ, CL, and XL revised the paper.

Corresponding author

Correspondence to Hanqiu Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Tsinghua University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, Y., Zhang, T. et al. Tafazzin mediates tamoxifen resistance by regulating cellular phospholipid composition in ER-positive breast cancer. Cancer Gene Ther 31, 69–81 (2024). https://doi.org/10.1038/s41417-023-00683-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00683-2

Search

Quick links