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Transplantable in vivo CRISPR/Cas9 knockout screens, in which cells are edited in vitro and inoculated into mice to form tumours,
allow evaluation of gene function in a cancer model that incorporates the multicellular interactions of the tumour
microenvironment. To improve our understanding of the key parameters for success with this method, we investigated the choice
of cell line, mouse host, tumour harvesting timepoint and guide RNA (gRNA) library size. We found that high gRNA (80–95%)
representation was maintained in a HCT116 subline transduced with the GeCKOv2 whole-genome gRNA library and transplanted
into NSG mice when tumours were harvested at early (14 d) but not late time points (38–43 d). The decreased representation in
older tumours was accompanied by large increases in variance in gRNA read counts, with notable expansion of a small number of
random clones in each sample. The variable clonal dynamics resulted in a high level of ‘noise’ that limited the detection of gRNA-
based selection. Using simulated datasets derived from our experimental data, we show that considerable reductions in count
variance would be achieved with smaller library sizes. Based on our findings, we suggest a pathway to rationally design adequately
powered in vivo CRISPR screens for successful evaluation of gene function.
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INTRODUCTION
The molecular profiling of human tumours offers unprecedented
opportunities to individualise cancer therapy [1]. Detection of
oncogenic mutations in patient tumours allows treatment with
therapies that directly target the mutation, in some instances in a
tissue-agnostic approach [2]. In addition, gene expression profiles
can be used to track the emergence of resistance [3] and to
identify predictive biomarkers to optimally match drugs with
patients [4], but there is an incomplete understanding of the
genes that determine sensitivity to most anticancer agents. One
approach to remedy this is through the use of functional
genomics screens, which alter gene activity by knockdown (RNA
or CRISPR interference) or mutation (CRISPR/Cas9) using largescale
libraries, select specific phenotypes (e.g. drug sensitivity or
resistance) and then identify the gene(s) responsible [5, 6].
Whole genome functional genomic screens utilising CRISPR/

Cas9 technology were first applied for evaluating genes involved
in drug sensitivity or resistance in cancer cell lines in 2014 [7–9].
Since that time, a large number of in vitro whole genome screens
have been undertaken utilising multiple different guide RNA
(gRNA) libraries to identify essential genes [10–12] and uncover
novel genes implicated in tumour growth [13, 14], drug sensitivity
and resistance [15–18], synthetic lethal interactions [12, 19–21]
and immunotherapy response [22, 23]. However, while CRISPR/
Cas9 screens provide a powerful approach for gene discovery
in vitro, the complex multicellular interactions within the tumour
microenvironment [24, 25] means that the genes controlling cell

growth and drug sensitivity are not necessarily the same in cell
culture and in tumours. To address this, tumour models are
required that are suitable for in vivo functional genomics screens.
Tumour models for in vivo CRISPR screens can be generated

through direct mutagenesis in vivo or through in vivo transplanta-
tion of cells mutagenised in culture. The direct approach allows
spontaneous autochthonous tumour formation with preservation
of the tumour microenvironment in immunocompetent mice but
is associated with numerous technical challenges, restricting its
use to very small gRNA libraries of a few hundred gRNAs [26, 27].
Transplantable models, conversely, are more amenable to larger
gRNA libraries. Cancer cell lines transduced at scale with larger
gRNA libraries (thousands of gRNAs) can be injected into mice at
large cell numbers to ensure high representation of each gRNA at
inoculation [28–33]. However, the majority of transplantable
in vivo CRISPR screens report a dramatic loss of clonal diversity
during tumour growth due to the selection and bottleneck of
cellular evolution imposed by the transition from in vitro to in vivo
tumour growth [28, 29, 31, 32]. This loss of clonal diversity and
gRNA representation consequently limits the discovery of genes
that influence therapeutic response in these in vivo CRISPR
screens. Given these limitations, the optimisation of experimental
parameters would be beneficial when conducting in vivo screens.
To our knowledge, however, experimental data in the literature on
the importance of these parameters is limited.
In this study, we investigate the importance of several

experimental parameters for in vivo CRISPR screens and their
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impacts on clonal diversity as measured by the distribution of
gRNA counts in the tumour samples. We first evaluate the tumour-
initiating ability of 22 head and neck squamous cell carcinoma
lines in comparison with an HCT116 subline (HCT116/54C). We
construct CRISPR/Cas9 libraries of two selected cell lines with
different numbers of tumour-initiating cells and compare between
the cell lines and between mouse hosts when these libraries are
grown as tumour xenografts. Using the most promising combina-
tion of cell line and mouse host from our initial experiments, we
then conducted a larger experiment with four experimental
groups. We report that the major limiting factor in detecting
gRNA-driven selection is the high variance in gRNA counts
between tumours, which increases with time as the tumours
grow. We use our data to simulate a reduction in library sizes and
explore how this alters count variance and statistical power. Our
data and analyses demonstrate the key parameters that must be
optimised to ensure successful in vivo CRISPR screens and suggest
a pathway for the rational design of sufficiently powered screens.

MATERIALS AND METHODS
Cell culture
The UT-SCC cell lines were derived from head and neck squamous cell
carcinoma tumours by Dr Reidar Grénman (University of Turku, Turku, Finland)
and supplied by Prof. Bradly Wouters (University Health Network, Toronto,
Canada). HCT116/54C is an HCT116 subline that originated from a mixed
culture with UT-SCC-54C cells [34]. All cell lines were passaged in minimum
essential media (ThermoFisher Scientific, Waltham, MA) with 10% foetal calf
serum (Moregate Biotech, Hamilton, New Zealand), 4.5mg/mL D-glucose
(Sigma-Aldrich, St Louis, MO) and 20mM HEPES (Sigma-Aldrich) for up to
12 weeks, from authenticated frozen stocks [34] at 37 °C in humidified 5% CO2

incubators. All cell lines were confirmed to be Mycoplasma negative by
PlasmoTest (InvivoGen, San Diego, CA). Penicillin/streptomycin (ThermoFisher
Scientific) was added during the expansion of cultures for inoculation
into mice.

Lentiviral packaging
lentiCas9-Blast (AddGene, Watertown, MA; #52962) was packaged in
HEK293T cells using the pMD2.G (Addgene #12259) and psPAX2 (Addgene
#12260) packaging plasmids transfected with Lipofectamine 2000 (Ther-
moFisher Scientific). The Human GeCKOv2 A and B libraries in lentiGuide-
Puro were amplified as described [35], pooled at equimolar concentrations
and packaged in the same way. Filtered unconcentrated lentiCas9-Blast
lentivirus was used for transductions, while GeCKOv2 library lentivirus was
concentrated by centrifugation at 10,000 × g for 5 h with a 20% sucrose
cushion.

Transductions
To produce Cas9-expressing HCT116/54C and UT-SCC-74B cells, 5 × 104

cells in normal culture medium with 8 µg/ml polybrene were transduced
with lentiCas9-Blast lentivirus at a multiplicity of infection of 0.2–0.4.
Blasticidin (10 µg/ml) was applied 24 h after transduction to select stable
transductants. Cas9-expressing cells were expanded and transduced with
the GeCKOv2 lentiviral library, with puromycin selection (1–1.5 µg/ml)
2–4 days after transduction. For HCT116/54C, 6.4 × 107 cells were
transduced with a multiplicity of infection of 0.22 to obtain 1.25 × 107

individual transductants (HCT116/54C GeCKO library; 89% with a single
gRNA assuming Poisson statistics), and for UT-SCC-74B, 6 × 107 cells were
transduced with a multiplicity of infection of 0.18 to obtain 9.8 × 106

individual transductants (UT-SCC-74B GeCKO library; 91% receiving a single
gRNA). Cell populations were expanded for up to 8 weeks and either
cryopreserved at scale (2–3 × 107 cells/tube) or used immediately for
inoculations.

Animal experiments
Six- to eight-week-old female NOD scid gamma (NSG; NOD.Cg-Prkdcscid

Il2rγtm1Wjl/SzJ; Jackson Laboratory) or NIH-III mice were bred in the Vernon
Jansen Unit, University of Auckland, Auckland, New Zealand. Mice were
inoculated with unmodified cell lines at a range of cell numbers, or
HCT116/54C or UT-SCC-74B GeCKO libraries (107 cells per site), subcuta-
neously into bilateral flanks. TD50 values, defined as the number of cells

required for a 50% probability of tumour development, were determined
using logistic regression fitted to the proportion of tumours that
developed [36], with a tumour considered to have formed if it reached
250mm3 in volume within 100 days from inoculation. For the pilot study, a
small sample size of n= 3 per group was chosen. For the larger study, a
sample size of n= 36 tumours in total was chosen based on available
resources. Animals were randomised within blocks to receive treatment
with 6-thioguanine (3 mg/kg in PBS qd × 5; Sigma-Aldrich), evofosfamide
(50mg/kg in saline qd × 5/week for 3 weeks; Threshold Pharmaceuticals,
San Francisco, CA) or saline (qd × 5/week for 3 weeks) once median
tumour volume reached 250mm3. Treatments were administered by
intraperitoneal injection at 10ml/kg. All animals had ad libitum access to
food and water in microisolator cages and were maintained on a 12 h
light/dark cycle. Animal health and welfare were monitored regularly with
animals culled by cervical dislocation or CO2 asphyxiation if their condition
deteriorated, if they lost in excess of 20% of their pre-manipulation
bodyweight or if ethical tumour size limits were reached (longest tumour
diameter ≥20mm). Tumour volume was measured by electronic callipers
using the formula π/6 × width × length2 and was blinded to animal
treatment. Differences in tumour growth were assessed by log-rank test
on the time taken for tumours to quadruple in size.

Isolation of genomic DNA
Fifty million cells were harvested from trypsinised cell suspensions, rinsed
with PBS and stored at −80 °C. Genomic DNA (gDNA) was isolated using
the QIAamp DNA Blood Maxi Kit (QIAGEN, Hilden, Germany). For tumour
samples, harvested tumour tissue was cut into small fragments using a
scalpel blade and flash-frozen in liquid nitrogen at 0.5 g/tube. Genomic
DNA was isolated as described [28] with volumes scaled 1.5× for cells and
3.5× for up to 0.5 g tumour. For tumours >0.5 g, tissue was divided into
multiple tubes, and gDNA was isolated from each tube and then pooled.
Genomic DNA was desalted by adding NaCl to 0.2 M, followed by cold
ethanol to precipitate the DNA and centrifugation at 18,000 × g to pellet
the DNA. The pellet was rinsed once with cold, freshly prepared 70%
ethanol, allowed to air-dry for 10min and then dissolved in 10mM Tris, pH
8.0, by heating to 50 °C for 1 h. The gDNA was quality assessed by
Nanodrop and agarose gel electrophoresis (0.8%/TBE) and quantified by
Qubit DNA-BR assay (ThermoFisher Scientific).

Polymerase chain reaction
We modified the original PCR protocol designed for lentiGuide-Puro
vectors [8, 28], utilising a three-stage PCR protocol to amplify the gRNA
sequences from the gRNA cassette in the gDNA in preparation for Illumina
sequencing. Herculase II Fusion DNA Polymerase (Agilent Technologies,
Santa Clara, CA) was used for all reactions. Each reaction contained 0.5 µl
DNA polymerase, 1 mM dNTP mixture, 4% DMSO and 1× Herculase II Buffer
in 50 µl volume. Between each PCR, Ampure XP beads (Beckman Coulter,
Brea, CA) were used to purify the PCR products, and the Qubit DNA-BR
assay was used to quantify products. In PCR1, 0.25 µM of forward and
reverse primer (F1 and R1 from reference. [8]) and 5 µg gDNA per 50 µl
reaction was used. Cycling parameters were an initial denaturation at 98 °C
for 5 min, 20 cycles of denaturation at 98 °C for 60 s, annealing at 62 °C for
60 s, extension at 72 °C for 90 s, and a final extension at 72 °C for 10min.
For each cell culture sample, at least 150 µg was used for PCR1 (split into
individual reactions and pooled after PCR1), and for each tumour sample,
at least 200 µg (or all gDNA available) was used. PCR2 was used to add the
Illumina adapters and barcode the samples, with 10 µl-equivalent of PCR1
mix and 0.2 µM of barcoded primers (PCR2 F Barcode 1–6 and R Barcode
1–6 from ref. [28]) and 6 individual reactions performed for each sample.
Cycling parameters were an initial denaturation at 98 °C for 5 min, 10 cycles
of denaturation at 98 °C for 45 s, annealing at 62 °C for 35 s, extension at
72 °C for 90 s, and a final extension at 72 °C for 5 min. PCR3 was used to
further amplify the product, given low yields and amplification artefacts
due to long primers in PCR2. PCR3 was performed with 0.2 µM of primers
PCR3F (AATGATACGGCGACCACCGAGATC) and PCR3R (CAAGCAGAA-
GACGGCATACGAG) and 4 ng of purified PCR2 product. One reaction from
pooled PCR2 product was performed. Cycling parameters were an initial
denaturation at 98 °C for 2 min, 10 cycles of denaturation at 98 °C for 30 s,
annealing at 61 °C for 35 s, extension at 72 °C for 45 s, and a final extension
at 72 °C for 10min. Primers were ordered from Integrated DNA
Technologies (Coralville, IA), with HPLC-purified DNA oligos used for
PCR1 and PCR3 and desalted Ultramer oligos used for PCR2. Positive
controls for PCR used lentiguide-Puro EGFP gRNA (Addgene #80036),
which contained a gRNA sequence not present in the GeCKOv2 library.
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Agarose gel electrophoresis (1.5%/Tris-Borate-EDTA) was used to confirm
PCR products (317 for PCR1, ~360 for PCR2/PCR3). Samples were
sequenced on a NextSeq500 (Illumina, San Diego, CA) using high-output,
2 × 150 bp flow cells (Illumina).

Processing of sequencing data
A snakemake-based pipeline for processing sequencing data was
developed (https://gitlab.com/twlee79/pooled_screen_counts). Sequen-
cing data were demultiplexed according to the reverse index by the
Illumina platform and converted to FASTQ format. These data were then
demultiplexed according to the forward index using cutadapt v1.18 with
non-internal adapter sequences, allowing up to 1 nucleotide mismatch.
Fastqc 0.11.7 was carried out on the demultiplexed reads to check for
sequencing quality. Next, cutadapt was used to trim poor quality bases and
trim the vector 5′ and 3′ backbone sequence flanking the gRNA sequences.
The quality threshold of 10 was used, and the 5′/3′ adapters were specified
as linked adapters, allowing an adapter error rate of 0.1 and 19–21
nucleotide resulting sequences (expected 20-nucleotide gRNA sequences);
99.98% of demultiplexed reads were retained after trimming. The gRNA
sequences were then aligned to the gRNA sequences present in the
GeCKOv2 library using bowtie 2. Replicated gRNA sequences in the
GeCKOv2 library were collapsed to individual entries prior to alignment
(119,461 unique gRNAs; any replicated gRNA sequences were labelled
“non-unique”). Alignment scoring in bowtie 2 was set to local alignment
mode with a score of 10 for a match, 4-6 for a mismatch (depending on
quality), and per nucleotide gap penalty of −1, reporting the best
alignment and also the best alternative alignment score. The number of
reads aligned to each gRNA in the library was counted using a custom
script (count_fgs_sam; https://gitlab.com/twlee79/count_fgs_sam). The
minimum alignment score for a read to be counted was set to 189—
allowing for up to two mismatches or a 1-nt gap—with the additional
criterion that only unambiguous alignments were counted. An unambig-
uous alignment was defined as a read where the main alignment had a
score of 3 or greater than the best alternative alignment, i.e. the main
alignment had fewer mismatches or gaps than the best alternative. A
mean of 95.2% of trimmed reads aligned unambiguously and contributed
to the counts.

Read count normalisation
We calculated log normalised counts per million (log-ncpm) using a new
normalisation method called MPM—mean of pairwise log expression ratios
(M)—that we developed to deal with data containing many zero counts on
the low end and inflated counts on the high end (Supplemental Methods).
As the GeCKOv2 gRNA library contains 1000 non-targeting controls (NTCs),
which can be assumed to be neutral, and thus non-differential on average,
we calculated the size factors from NTC gRNAs alone with no a or m
trimming (a= 0,m= 0), and a pseudocount of 0.02. The normalised counts
thus represent counts relative to neutral gRNAs. Unless stated otherwise,
pseudocounts are used for normalisation only, and we present log2
normalised counts per million as-is without a pseudocount (zeroes at
negative infinity; plotted at y-axis minimum).

Analysis of gRNA counts with edgeR
The edgeR function estimateDisp was used to estimate the dispersion of
gRNA counts with MPM-normalised library sizes. The gRNA data was
filtered to retain only gRNAs detected in at least 6 large tumour samples
and with at least 12 reads in total from the large tumour samples. The
dispersion was estimated in edgeR ‘classic’ mode (using the quantile-
adjusted conditional maximum likelihood method) for a single-factor
experiment (with a level of the factor for each experimental condition) [37].
Hypothesis testing between experimental groups at the gRNA level was
performed using the edgeR exactTest function. Gene-level analysis was
conducted using the α-RRA method [38] with gRNAs ranked by edgeR p-
value and α set to a false discovery rate (FDR) cutoff of 0.2. RRA was
conducted separately for positive (i.e. positive log fold change (FC) vs.
control) and negative selection (negative logFC vs. control).

Estimation of the number of clones in tumour samples
All cells were assumed to have an independent and equal probability p of
surviving to form a clone. If ni is the number of cells containing gRNA i that
are inoculated, the detection of that gRNA was modelled as the outcome
of a set ni Bernoulli trials. Under these assumptions, the probability of the
gRNA being not detected is given by 1� pð Þni (i.e. the probability that no

cells with the gRNA survive), and the probability of the gRNA being
detected is given by 1� 1� pð Þni (i.e. the probability that at least one cell
with the gRNA survives to form a clone). A likelihood function was defined
based on the joint probability for the observed detection of a given subset
of gRNAs (non-targeting or all gRNAs), and p and its variance was
estimated using maximum likelihood estimation, with ni parameterised by
the proportion of counts for gRNA i in the inoculum multiplied by the
number of cells inoculated. The median number of surviving clones per
gRNA was then estimated as the median of pni across all gRNAs. To
account for the variable number of counts in each sample, the same
detection threshold (1 count) was used across all samples, but we
subsampled to a target NTC count of 105 counts (approximately 7 million
total counts) prior to estimating p. To reduce the dependence of the
estimate on particular subsamples, a total of 99 subsamples per sample
was performed, and the median was used. Three large tumour samples
had fewer than 105 NTC counts and were excluded.

Simulations of reduced library sizes
To generate datasets containing fewer gRNAs, we randomly combined
gRNAs into bins of 2, 5, 10, 20, 50, 100, 200, 400, 800 and 1600 gRNAs, with
binning performed separately for targeting and non-targeting gRNAs; the
counts of any excess gRNAs that could not fill a full bin were discarded. The
binned gRNAs were further subsampled to 100 000 (no binning), 50 000
(bin size= 2), 20 000, 10 000, 4000, 2000, 1000, 500, 250, 125 and 62 (bin
size= 1600) gRNAs to reduce the dependence on particular gRNAs. A total
of 100 simulated datasets were generated for each number of gRNAs. We
conducted analyses on either combined small tumours (total n= 11
combining pilot HCT116/54C tumours and 14 d tumours in treatment
experiment) or large tumours (total n= 28 combining no drug,
6-thioguanine and evofosfamide groups), with a varying number of
tumour samples randomly drawn from each dataset to assess accuracy and
precision of estimating dispersion from datasets of different sizes. Data
sets were normalised by MPM (a= 0, m= 0, pseudocount= 0.02) based
on subsampled NTC gRNAs (bin sizes ≤ 50) or all subsampled gRNAs (bin
sizes > 50). The common dispersion was calculated using edgeR in ‘classic’
mode with all samples in a single group. Power analyses were conducted
on the RnaSeqSampleSize package [39] using the estPower function with
dispersion (phi) set to the common dispersion estimate. For all
comparisons, mean count (lambda) was set to 10, and default options of
1 for normalisation factor and sample size ratio, FDR of 0.05, and 1%
prognostic genes. Power was calculated for various combinations of
sample size and effect size.

RESULTS
Selection of suitable cell lines for in vivo CRISPR/Cas9 screens
We hypothesised that a cell line with a high proportion of tumour-
initiating cells would be better suited for in vivo CRISPR/
Cas9 screens as it would undergo a reduced population bottle-
neck due to a larger founder population and therefore be less
sensitive to stochastic effects. We evaluated 22 UT-SCC head and
neck squamous cell carcinoma cell lines and an HCT116 colon
carcinoma subline (HCT116/54C) by inoculating immunodeficient
mice subcutaneously with different numbers of cells to identify
which cell lines could initiate tumours with few cells. In initial
experiments, only 11 of 23 cell lines grew as tumour xenografts
within 100 days of inoculation of 5 × 106 cells into NIH-III mice
(Fig. 1A). Four of these cell lines (UT-SCC-1B, UT-SCC-54B, UT-SCC-
74A, and UT-SCC-76A) had low tumour take rates and slow growth
with ≤50% of tumours established by day 90, while two others
(UT-SCC-1A and UT-SCC-42B) had frequent ulceration of skin over
the tumours.
The five cell lines with suitable growth kinetics (UT-SCC-16A,

-74B, -110B, -126A and HCT116/54C) were selected to conduct
limiting dilution assays in NIH-III and NSG mice to estimate the
TD50. We initially screened all cell lines for growth as tumour
xenograft models in NIH-III mice by inoculating 5 × 106 cells per
flank into 3–5 mice, followed by 106 and 105 cells for those with a
high take rate (>75%). For tumour models that grew as xenografts
at 105 or 106 cells, we proceeded to test in NSG mice, which were
expected to be more conducive to tumour growth, at 105, 104 and

T.W. Lee et al.

1612

Cancer Gene Therapy (2023) 30:1610 – 1623

https://gitlab.com/twlee79/pooled_screen_counts
https://gitlab.com/twlee79/count_fgs_sam


103 cells until fewer than 50% of tumours formed. Tumours were
formed in 100% of NIH-III mice at ≥106 for all cell lines, but the
establishment rate fell with cell inocula ≤ 104 in NSG mice (Fig. 1B).
As expected, tumour growth took longer on average with smaller
inocula (Fig. 1C, D) and tumour establishment rate was higher and
faster in NSG mice than NIH-III mice (Fig. 1E). The lowest TD50 of
approximately 1100 cells was estimated for HCT116/54C and UT-
SCC-126A, followed by UT-SCC-16A, UT-SCC-110B and UT-SCC-74B
(Table 1). Despite its low TD50, UT-SCC-126A was not investigated
further because it caused considerable weight loss in some
animals (e.g. three of four NSG mice inoculated bilaterally with 104

UT-SCC-126A required culling early due to ~20% bodyweight loss).

Pilot xenograft experiments with HCT116/54C and UT-SCC-
74B GeCKOv2 libraries
We next compared tumour xenografts of GeCKOv2 libraries of
HCT116/54C (joint lowest TD50) and UT-SCC-74B (a second model
with a higher TD50) cell lines to ascertain whether the TD50 was
consistent with model suitability for in vivo screens. Two mouse
strains—NSG and NIH-III mice—were compared by inoculating 107

cells and harvesting tumours when the smallest in each group
reached ~250mm3. HCT116/54C GeCKO tumours grew faster in
NSG mice than NIH-III mice and faster than UT-SCC-74B GeCKO
tumours, which grew equally in both mouse strains (Fig. 2A).
Almost all gRNAs were detected in the GeCKOv2 plasmid library

(99.98%), the HCT116/54C GeCKO library used for inoculation
(99.7%), and cells cultured in vitro for a further 12 d (99.3%; Fig. 2B;
Table S1). We observed high representation in HCT116/54C
GeCKO tumours in NSG hosts with 92.2–96.9% gRNAs detected,

with slightly lower representation in NIH-III hosts at 88.3–93.5%
(Fig. 2B). The vast majority of gRNAs were also detected in UT-SCC-
74B GeCKO cells (98.5%) but UT-SCC-74B GeCKO tumours in NSG
mice had considerably lower representation of 66.0–68.5%, with
many detected with only a single read (Fig. 2B; Table S1). In
considering only NTC gRNAs, >98% were detected in all HCT116/
54C GeCKO tumours but only ~86% in UT-SCC-74B GeCKO
tumours (Fig. 2B; Table S2). This suggests that cells receiving
non-targeting gRNAs had a growth or survival advantage within
the tumours compared to cells receiving most gRNAs targeting
a gene.
The decreases in representation in the tumour samples were

accompanied by disproportionate increases in the read counts of
the top-ranked gRNAs (i.e. those with the highest counts;
Table S1). The unequal read count distributions in the tumour
samples were also evident in the Lorenz curves of the gRNA count
data (Fig. 2C), with the UT-SCC-74B GeCKO/NSG tumours showing
extremely unequal read counts (top 1% of gRNAs accounting for
76–78% of reads). The NTC gRNAs showed only slightly smaller
read count inequality than gene-targeting gRNAs, suggesting that
the major driver is stochastic effects rather than changes in fitness
(Table S2, Fig. S1A). As a metric of inequality, we calculated the
Hoover index, which can be interpreted as the proportion of reads
needed to be redistributed to form a uniform distribution (Fig. 2D;
Tables S1 and S2). The Hoover indices followed the inverse pattern
of gRNA representation (compare Fig. 2D to B). The inverse
relationship suggests that the apparent loss of gRNA representa-
tion is at least partly driven by difficulty sampling low-frequency
gRNAs in highly unequal gRNA distributions.

Fig. 1 Establishment of tumour xenograft models. A Rate of tumour establishment for UT-SCC and HCT116/54C cell lines inoculated
bilaterally in NIH-III mice at 5 × 106 cells per flank. B Frequency of tumour establishment for UT-SCC and HCT116/54C cell lines inoculated at
different cell inocula into NIH-III (≥106) or NSG (≤105) mice. C Comparison of HCT116/54C tumour growth in NIH-III and NSG mice at different
cell inocula. D The rate of tumour establishment for HCT116/54C at different cell inocula. E Comparison of tumour establishment rate and
growth for HCT116/54C tumours in NSG (left panel) and NIH-III (right panel) mice inoculated with 105 cells.
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The skewed distribution of read counts, especially in UT-SCC-
74B tumours, meant that the data were zero-inflated at one end
and contained very high counts for a few gRNAs at the other end.
We found that most count normalisation methods, including the
commonly used TMM [40] and RLE [41] methods, as well as the
GMPR method [42] developed for zero-inflated microbiome data,
performed poorly with these highly unequal count distributions
containing many sampling zeroes. Therefore, we devised a new
normalisation procedure, which we call MPM, for our data to
account for its unique characteristics (Supplemental Methods and
Results; Figs. S4–S7). MPM is a generalisation of the GMPR method,
but a key difference is the treatment of zeroes—these are
excluded completely in GMPR but are substituted in MPM for
pseudocounts when a zero is present in one sample during a
pairwise comparison (double zeroes are excluded). This treatment
is more consistent with all zero counts being modelled as
sampling zeroes, as suggested in previous work [43]. The exclusion
of all zeroes in GMPR results in the loss of information that a count
is lower in one sample than another sample and can bias library
size estimates upwards; MPM using an appropriate pseudocount
value performs better in this regard (see Supplemental Results).
Following MPM normalisation, each sample had similar median

normalised gRNA counts (Fig. 2E; Fig. S1B; Fig. S9; Tables S1 and S2).
This data representation again reveals that the loss of representation
from the plasmid to the cell libraries and the tumours is
accompanied by wider, more skewed gRNA distribution, with the
upper tails becoming progressively more extreme.

Increased read count inequality following subsequent growth
of HCT116/54C GeCKO tumours
Using the best combination of cell line and mouse host, we
evaluated the feasibility of conducting an in vivo screen with this

model. HCT116/54C GeCKO tumours (n= 36) in female NSG mice
were allowed to grow until the median tumour size reached
~250mm3 then the mice were randomised into four groups: one
(A) in which tumours were harvested immediately, a mock
treatment group (B) and two drug treatment groups (C with 6-
thioguanine, 6-TG and D with evofosfamide). Tumours in B-D were
allowed to grow until the largest tumour in each group reached
ethical size limits, at which point all tumours in the group were
collected (day 38, 42 and 43 post inoculation for groups B, C and
D, respectively). There was a small non-significant decrease in
tumour growth for the two drug treatment groups compared to
controls (Fig. 3A). Representation of gRNAs in the group A
tumours was high (90.1 ± 3.5%; mean ± SD) but was lower than in
the similarly-sized tumours in the pilot study (94.8 ± 2.8%), most
likely reflecting that the tumours grew slightly slower than in the
pilot study, taking 14 days to reach an average size of 230mm3

compared to 11 days to reach an average of 340mm3. Moreover,
there was a substantial decrease in representation of all gRNA and
NTC gRNAs in tumours in groups B–D relative to the group A
tumours at day 14 (Fig. 3B; Table S3). A much smaller loss of
representation was observed relative to the cell inoculum by
keeping the cells used for inoculation in culture for the duration of
the in vivo screen (95.0% gRNAs detected after 38 additional
days).
Similar to the small tumours in the pilot study, the decreases in

gRNA representation were mirrored by increases in inequality and
skew in the gRNA counts. Lorenz curves and Hoover indices show
inequality was much greater in the 14-day tumours (Hoover indexes
0.54–0.62) compared to the cell inoculum (0.29) or cells cultured for
an additional 14 days after inoculation (0.32) and somewhat greater
than that of cells cultured for an additional 38 days after inoculation
(0.50; Fig. 3C, D; Table S3). All large (38–43 day) tumours had

Table 1. Cell line characteristics and TD50.

Cell line Primary site Type TD50*

HCT116/54C Colon Primary 1100

UT-SCC-126A Labii inferioris Primary 1100; mice lose weight

UT-SCC-16A Lingus Primary 5400

UT-SCC-110B Gingiva, maxillary sinus Metastasis 7700

UT-SCC-74B Lingus Recurrent 9200

UT-SCC-1A Gingiva Primary <106; ulcerates

UT-SCC-42B Supraglottic larynx Metastasis <106; ulcerates

UT-SCC-1B Gingiva Recurrent Low take rate

UT-SCC-54B Buccal mucosa Recurrent Low take rate

UT-SCC-74A Lingus Primary Low take rate

UT-SCC-76A Lingus Primary Low take rate

UT-SCC-16B Lingus Metastasis Did not grow

UT-SCC-19A Glottic larynx Primary Did not grow

UT-SCC-19B Glottic larynx Recurrent Did not grow

UT-SCC-24A Lingus Primary Did not grow

UT-SCC-42A Supraglottic larynx Primary Did not grow

UT-SCC-46A Gingiva, maxilla Primary Did not grow

UT-SCC-54A Buccal mucosa Primary Did not grow

UT-SCC-59C Parotid Metastasis Did not grow

UT-SCC-60A Tonsilla Primary Did not grow

UT-SCC-63A Gingiva, mandibula Primary Did not grow

UT-SCC-76B Lingus Recurrent Did not grow

UT-SCC-110A Gingiva, maxillary sinus Recurrent Did not grow
aLow take rate indicates ≤50% of tumours established by day 90 at 5 × 106 cells in NIH-III mice. Did not grow indicates no tumours were established by day 90
at 5 × 106 cells in NIH-III mice.
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extremely unequal gRNA distributions as shown by the Lorenz
curves, Hoover indices of 0.89–0.96, and 74–96% of reads from only
the top 1% of gRNAs. Letter-value plots of normalised gRNA counts
similarly showed distribution becoming progressively wider going
from the cell culture samples to the 14-day tumours and then large
(38–43 day) tumours (Fig. 3E; Fig. S10). The latter gRNA distributions
all had very long upper tails indicating a strong skew towards

relatively few gRNAs having very high counts, while most others had
zero or very few counts. In the most skewed large tumour sample
(C4R), 17.6% of reads were from a single gRNA (Table S3). The
median gRNA count was zero for all large tumours. As with the pilot
study, similar but slightly smaller increases in count inequality and
skew could be seen in an analysis of NTC gRNAs in the tumour
samples (Fig. 3B, D; Fig. S1C, D; Table S4).

Fig. 2 Pilot whole genome in vivo screens for HCT116/54C and UT-SCC-74B GeCKOv2 libraries. A Growth curves for HCT116/54C and UT-
SCC-74B tumours in NSG and NIH-III mice. Bars represent the mean and SEM of 3–6 tumours. B Percentage of all or NTC gRNAs detected for
plasmid, HCT116/54C GeCKO cell inoculum, HCT116/54C GeCKO tumours in NSG mice, HCT116/54C GeCKO tumours in NIH-III mice and UT-
SCC-74B GeCKO cell inoculum and tumours in NSG mice. Replicates for plasmid and cell samples are PCR replicates from the same gDNA
sample (n= 2 each); tumour replicates are individual tumours in separate hosts (n= 3 per group). The bar indicates mean ± SEM. C Lorenz
curves to show the distribution of all gRNA read counts. The curve for summed PCR replicates (plasmid and cell samples) or median tumours
(by Hoover index) in a group is highlighted. The black line is the line of equality (plas: plasmid; HCT: HCT116/54C; 74: UT-SCC-74B; NIH: NIH-III).
D Hoover index of each sample as a measure of inequality of the read counts for all and NTC gRNAs. E Letter-value plot of log normalised
counts per million (log-ncpm) for all gRNAs in plasmid, cell inocula and GeCKO tumour samples (zeroes given pseudocount of 0.5). The white
line inside the black boxes indicates the median (M), and the black boxes indicate the upper/lower quartiles (F; fourths). The next smallest
boxes indicate the upper/lower eighths (E) and so on. Counts for plasmid and cell samples were summed from two PCR replicates prior to
normalisation. The remaining outliers are shown as open circles.
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Random variation in clonal dynamics precludes gRNA-induced
selection in HCT116/54C GeCKO tumours
The representation and count distribution data in HCT116/54C
GeCKO tumours suggested a greater loss of targeting gRNAs
compared to non-targeting controls. To more directly test this,

we compared the ratio of the 90th percentile read counts of all
gRNAs to the 90th percentile read counts of the NTC gRNAs. The
90th percentile was used to obtain a reasonable number of
counts since the median and upper quartile were zero for
several large tumour samples. If the distribution of read counts
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for all gRNAs and NTC gRNAs was changing uniformly during
tumour growth, this ratio was expected to stay constant for all
groups. Instead, there was a progressive decrease in this ratio
from the cell samples to the small tumours (14 d) to the large
(38–43 d) tumours (Fig. 4A). These data indicate a greater
depletion of cells harbouring targeting gRNAs compared to NTC
gRNAs in the tumours. A likely explanation of this effect is the
overall negative selection of cells harbouring knockouts
compared to control cell lines due to a general loss of fitness
in these cells. Thus, although there were large random
differences in growth and survival among clones, some effects
of selection could be detected when averaging across a large
number of gRNAs.

Given the extremely high variability in the large tumour counts,
we reasoned that detection of any gRNA-driven selection among
the treatment groups would be rare. Unexpectedly, after filtering
for low abundance gRNAs (73,421 targeting gRNAs retained), an
initial analysis of the entire in vivo screen data set (including small
14 d tumours) using the edgeR exact test pipeline [37] resulted in
the detection of a large number of gRNAs significantly selected
either positively or negatively (>10,000 each direction; FDR < 0.1)
for the comparisons between untreated vs. 6-TG and untreated vs.
evofosfamide. Further investigation revealed that this was caused
by the inclusion of the small tumours during the analysis.
Including only the large tumours in the analysis resulted in the
detection of a more realistic number of gRNAs as being selected

Fig. 3 Whole genome in vivo screens for HCT116/54C GeCKOv2 libraries in small and large tumours. A HCT116/54C GeCKO tumour
growth after the commencement of drug treatment at day 14 (arrow) (mean ± SEM; n= 8–10). B Percentage of all or NTC gRNAs detected for
HCT116/54C GeCKO cells (inoculum or cultured an additional 14 or 38 days after inoculation) and HCT116/54C GeCKO tumours collected at
14 days, 38 days with no drug, 42 days with 6-thioguanine (6-TG) or 43 days with evofosfamide (evo). Replicate cell samples are PCR replicates
from the same gDNA sample (n= 2 each); tumour replicates are individual tumours grown bilaterally (n= 8 for 14 d and evo; n= 10 for 38 d
and 6-TG). The bar indicates mean ± SEM. C Lorenz curves to show the distribution of all gRNA read counts. The curve for summed PCR
replicates (plasmid and cell samples) or median tumours (by Hoover index) in a group is highlighted. The black line is the line of equality.
D Hoover index of each sample as a measure of inequality of the read counts for all and NTC gRNAs. E Letter-value plot of log normalised
counts per million (log-ncpm) for all gRNAs in cell and tumour samples (zeroes given pseudocount of 0.5). Counts for plasmid and cell samples
were summed from two PCR replicates prior to normalisation. Sample name refers to group, animal number and flank position (e.g. A1L
represents a tumour on the left flank of mouse 1 from group A).

Fig. 4 Assessing gRNA-driven selection in HCT116/54C in vivo screens. A Ratio of counts for the gRNA at the 90th count percentile among
all gRNAs to counts for the NTC gRNA at the 90th count percentile. The bar indicates mean ± SEM. B Distribution of log2 normalised cpm of
the top 16 gRNAs (by p-value control versus 6-thioguanine) targeting genes expected to be involved in 6-thioguanine resistance in the
tumour samples. The selected genes were HPRT1, NUDT5 and 23 genes in the KEGG mismatch repair geneset (6-TG= 6-thioguanine,
evo= evofosfamide). Lines are the average log cpm calculated with aveLogCPM (prior count of 0.5), and statistics are for the no drug versus
6-thioguanine comparison using the edgeR exactTest function with dispersion estimated from large tumour samples only. C Variation in
counts of four gRNAs across samples in the large tumour dataset. The four gRNAs represent those with the highest and 10th highest
maximum log normalised cpm across all samples for all or NTC gRNAs. D Variation in counts of the six gRNAs in the library targeting CXCL2
across samples in the large tumour dataset. For C, D, the numbers above each individual targeting gRNA represent previously reported
estimates of guide activity [14], with scores approaching 1 representing highly effective gRNAs and those approaching 0 representing poorly
performing gRNAs.
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(approximately 2000 in each direction for 6-thioguanine and 0 for
evofosfamide; FDR < 0.1; Supplemental Data Files 1 and 3). This
was due to a change in the dispersion estimates—common
dispersion was 4.8 for the dataset including small tumours, and 8.2
for the large tumours only. In the first analysis, the inclusion of
small tumours, which had lower variability in counts, effectively

biased the estimated dispersion downwards relative to what
would be applicable for the large tumours, resulting in failure to
control type I error.
Although a number of gRNAs were detected at FDR < 0.1 in the

large tumour dataset for 6-thioguanine, gene-level analysis of these
gRNA-level data by RRA [38] detected no gene hits at FDR < 0.1 for
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either 6-TG or evofosfamide compared to untreated (Supplemental
Data Files 2 and 4). To further evaluate the performance of the
screen, we assessed the enrichment of gRNAs targeting well-
characterised 6-TG sensitivity genes HPRT1 and NUDT5 [44], as well
as those in the mismatch repair pathway [7], in treated tumours. The
top gRNAs (by FDR) targeting this subset of genes were either
enriched or depleted in treated tumours vs. controls rather than
being predominately enriched (Fig. 4B). For example, one gRNA
targeting NUDT5 was depleted (A32983 log2 FC− 7.9, FDR= 0.078),
but another was enriched (A32982 log2 FC 6.1, FDR= 0.11). In
addition, there was large variability in gRNA counts and frequent
incidence of zero counts across all tumours, such that any apparent
enrichment in one group versus another was largely driven by a
small number of tumours having very high counts despite other
samples having much lower counts (potentially zero).
The high count dispersion, together with the pattern of read

counts among individual tumours for a particular gRNA, suggest a
strong random component of clonal expansion within each
tumour. Individual clones (with gRNAs as barcodes) potentially
expand to a very high frequency in an apparently random fashion,
which masks any potential effects of selection. Indeed, we found
that the identities of the top gRNAs were different in each sample
(Fig. S2A), and Spearman correlation analysis failed to identify any
grouping of large tumours by treatment group or overall (Fig.
S2B). To further demonstrate this, we plotted the read counts of
the gRNAs with the highest (CXCL12 gRNA #B11840) and 10th
highest (SLC18A3 gRNA #A44491) log-ncpm across all samples, as
well as the NTC gRNAs with the highest (NTC gRNA #0404) and
10th highest (NTC #0161) log-ncpm across all samples. The read
counts of these four gRNAs varied widely across large tumour
samples (Fig. 4C). For instance, the log-ncpm for CXCL12 gRNA
#B11840 in one 6-TG-treated tumour was 26.5, while zero counts
were detected in another 6-TG-treated tumour. This wide variation
suggests largely random expansion of clones within these
tumours. In smaller tumours, the counts were less variable but
were still unusually high or low in certain samples, indicating a
degree of random clonal expansion was already present in these
smaller tumours. To confirm this variation applied across all gRNA
targeting the same gene, we also investigated all gRNAs targeting
CXCL12 and observed a similar level of variation between samples
as we had seen for CXCL12 gRNA #B11840 (Fig. 4D). Estimated
guide activities (in the range 0–1; ref. [14]) for the CXCL12 gRNAs
vary from 0.31 to 1.00. Although the CXCL12 gRNA with the most
variable counts (#B11840) was the one with the highest estimated
activity (1.00) while the least active guide (#A11852; 0.31) had the
most dropouts, the other guides with estimated activities in the
range 0.33–0.89 showed a similar pattern of count variability. This

is consistent with the variation in counts being driven by
stochastic effects instead of gRNA-editing effects.

Count dispersion increases with growth time and is much
greater in tumour samples
To obtain a statistical measure of the level of random variation in
gRNA counts in different sample groups, we used edgeR to
estimate the negative binomial dispersion for different subsets of
our dataset. To simplify comparisons, we determined the common
dispersion, which assumes all gRNAs have the same dispersion,
and took the square root of this to estimate the biological
coefficient of variation (BCV; square root of common dispersion)
for each subset. We performed this analysis on both technical
replicates and biological replicates. Among technical replicates,
the BCV across sequencing runs for the same sample was low at
0.012 (Fig. 5A), which is expected given this variation should
follow a Poisson distribution. BCV of a similar magnitude was
obtained for PCR replicates of the GeCKOv2 plasmid sample
(0.022), but interestingly the BCV for PCR replicates of various
samples of HCT116/54C GeCKO cells was greater (0.091–0.164),
suggesting amplification bias during the PCR process used for
gRNA readout was contributing to count variation. Several
HCT116/54C GeCKO cell samples collected at different times were
available, with culture periods from the initial post-transduction
sample (‘time zero’) varying from 16–55 d. When all cell samples
(n= 5) were analysed as a single group, the BCV was 0.489, while
cell samples cultured ~30 d (28–31 d, n= 2) had a BCV of 0.392
and those cultured ~16 d (16–17 d, n= 2), 0.208, showing that
dispersion was increasing with growth time. The BCV of even small
tumour samples was considerably greater at 0.84–1.18, while for
the large tumours, it increased further to 2.81-3.17. These
increases in dispersion with growth in both the cell and tumour
samples are consistent with the widening of the count distribution
that occurred with increased growth time (Fig. 3E). We also
estimated the count dispersion for various combinations of
sample groups to illustrate the risk of underestimating dispersion
when a lower dispersion group is included among higher
dispersion groups. The BCV with all large tumour groups was
2.83, but when 14 d tumours were included, this decreased to
2.16, further decreasing to 1.92 if the pilot tumours were also
included. Combining cell samples and all tumours led to
additional decreases in the BCV estimate (Fig. 5A).

Simulations show reduced count dispersion in tumour
samples with reduced gRNA library sizes
The GeCKOv2 whole genome gRNA library used in this study
consists of 119 461 unique gRNAs. With 107 cells inoculated per

Fig. 5 Count dispersion and statistical power in HCT116/54C whole genome and simulated libraries of reduced size. A Biological
coefficient of variation (BCV) estimated in edgeR for different subsets of samples. Data points represent different sample groups, and lines
represent combinations of sample groups. Seq Reps: Sequencing replicates (n= 2) of the same library (14 d tumour) produced by PCR. PCR
Reps: PCR replicates of the plasmid DNA (Pls) or the same genomic DNA samples from cultured HCT116/54C GeCKO cells (Cells), n= 2 each.
Cells: Replicate HCT116/54C GeCKO cell samples cultured in parallel from the time zero sample for 16–17 d (~16 d; n= 2), 28–31 d (~30 d;
n= 2), or all samples combined (n= 5), including one sample cultured for 55 d; any PCR replicates were collapsed by summing prior to
calculating BCV for these biological replicates. Tumours: Pilot study tumours for HCT116/54C GeCKO in NSG (NSG, n= 3) and NIH-III mice (NIH;
n= 3) and UT-SCC-74B GeCKO in NSG mice (74B, n= 3). Larger study tumours collected early (14 d, n= 8), control-treated tumours (38 d,
n= 10), 6-thioguanine-treated tumours (6-TG; n= 10) and evofosfamide-treated tumours (evo; n= 8). B Estimates of the median number of
clones present in each sample from the pilot and larger study, based on the estimated probability of survival of cells with neutral (NTC) gRNAs,
and the median number of cells per gRNA. C Estimates of BCV in simulated datasets of reduced library size by random binning and/or
subsampling gRNAs and samples from small tumour data (NSG pilot+ 14 d). Boxplots show the distribution of the BCV estimates for
100 simulated datasets for n= 3, n= 10 or n= 20 tumours and indicate the number of gRNAs. D Estimates of BCV in simulated datasets of
reduced library size from large tumour data (untreated, 6-TG and evo; 38–43 d). The number of clones/gRNA in C and D is estimated based on
the median number of clones/gRNA for a full library multiplied by the binning factor. E Power curves determined from the common
dispersion estimates of simulated datasets at a log2 effect size of 2 for small and large tumours. Circles and solid lines indicate the curve
obtained from the dispersion estimate from n= 3 tumours; the median across 100 simulated datasets is plotted. The dark grey area represents
the lower and upper quartiles, and the light grey area is the range. The squares and dashed line indicate the power curve when using the
maximum dispersion estimate across 100 simulated datasets from n= 10 (small tumours) or n= 20 (large tumours); cln/gRNA: clones/gRNA.
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tumour, there was an average of 84 cells/gRNA. However, not all
these cells will survive to form a clone. To approximate the number
of clones/gRNA, we used a binomial model to estimate the overall
probability of a cell with neutral (NTC) gRNA surviving in a tumour to
form a clone based on the pattern of gRNAs detected (at a given
detection level) and the count distribution of the cell inocula. For
small NSG tumours, the estimated probability of a cell surviving to
form a clone was 0.034–0.10 (1 in 10–30), which implies a median of
2.3–7.0 clones/gRNA (Fig. 5B). In large tumours, the probability of
clones continuing to survive decreases to 0.0022–0.0074 (1 in
134–459), implying a number of surviving clones/gRNA of 0.15–0.52
(Fig. 5B). If we assume that the number of clones/gRNA is a more
important metric for coverage in in vivo screens compared to cells/
gRNA, these estimates suggest that the effective in vivo coverage of
our library was several orders of magnitude less than typically
recommended for in vitro screens (minimum coverage of at least
100 cells/gene is recommended; ref. [45]).
These estimated numbers of clones/gRNA suggest very low

effective in vivo coverage of our library. Improving coverage by
increasing the number of cells inoculated per gRNA would result in
greater averaging of the random effects on growth and survival,
resulting in reduced count dispersion, thereby increasing statistical
power to detect gRNA selection. Although there was limited scope
to increase the total number of cells inoculated, the number of cells
inoculated per gRNA could be increased by reducing the total
library size. To assess the effects of using a smaller gRNA library for
in vivo screens, we simulated smaller gRNA libraries by randomly
combining the gRNA counts in our full-size library into bins of
2–1600 gRNAs, followed by subsampling gRNAs (and samples) to
100,000 (unbinned), 50,000, 25,000, 10,000, 4000, 2000, 1000, 500,
250, 125 or 62 gRNAs; these represented datasets with coverage
84–130,000 cells/gRNA, respectively, but with much lower coverage
in terms of clones/gRNA: 3.4–5400 clones/gRNA in small tumours,
0.27–420 clones/gRNA in large tumours, based on our estimates of
the number of clones/gRNA in our full library. We reasoned that our
binned counts would mimic the random characteristics of clonal
expansion in smaller libraries, as clones with different gRNAs in the
larger library would be largely equivalent (in terms of random
characteristics) to different clones that receive the same gRNA in a
smaller library. Any signal due to the gRNAs themselves, which we
have already established was small relative to the random clonal
expansion effect (Fig. 4), was further averaged out by the random
nature of the binning, particularly among bins with a greater
number of gRNAs, as well as subsampling to reduce dependence on
any particular sample or gRNA.
To assess the effects of a smaller gRNA library on count dispersion

and statistical power, we estimated the common dispersion using
edgeR following binning/subsampling on our dataset. The disper-
sion was estimated with a varying number of tumour samples to
evaluate the degree to which the dispersion that would apply to a
large dataset could be estimated from only a small number of
samples; such a situation would occur, for example, when a pilot
experiment is conducted to inform power calculations for a later
full-sized experiment. For small tumours, our simulations showed
that a reduction in BCV to approximately 0.5 could be achieved with
10,000 gRNAs, a further reduction to about 0.3 with 2000 gRNAs,
which are of a similar BCV magnitude to samples of HCT116/54C
GeCKO cells, and below 0.1 with very small library sizes of <200
gRNAs (Fig. 5C). When these library sizes were considered in terms
of the estimated number clones/gRNA, BCV values of 0.15–0.3 were
achievable with ~150–700 clones/gRNA in small tumours. For large
tumours, a reduction in gRNA library size to 2000 or less reduced the
BCV below 1.5, similar to in small tumours with a full library, while a
very small library size of 62 gRNA was required to achieve a similar
BCV to in cells of approximately 0.5 (Fig. 5D). On a per clone basis,
dispersion as estimated by BCV was also higher in large tumour
samples compared to small tumour samples, which is consistent
with random clonal dynamics being cumulative throughout the

tumour growth period. BCV estimates were less precise when
determined from a small number of pilot samples, as indicated by
the greater range, particularly at the lower end, when estimated
from n= 3 compared to using a larger number of samples (n= 10
or n= 20), coupled with a tendency for the median to be lower at
n= 3 (Fig. 5C, D).
To estimate the consequence of varying count dispersion on

downstream statistical analysis, we conducted power and sample
size calculations using these common dispersion estimates (Fig.
5E; Fig. S3; Table S5). When dispersion was estimated from n= 3
tumours, the estimates of the sample size required to achieve
0.8 statistical power had a greater range and lower median, with
the minimum across simulations at n= 3 being approximately 1.5-
to 2-fold less than that of the most conservative estimates
(maximum across simulations) with n= 10/n= 20 tumours
(except where the estimated sample sizes required were
themselves close to n ≤ 3). This suggests that when the sample
size is estimated from a smaller pilot dataset, a conservative
sample size inflating factor of 2 is needed to ensure the correct
level of statistical power in a full dataset. When using the more
precise n= 10 dispersion estimates for small tumours, our
simulations showed that at a log2 effect size of 2, a median
estimate of 35 tumours (range 34–37 across simulated datasets) is
required to achieve power of 0.8 with 100,000 gRNAs, progres-
sively reducing to 3 tumours (range: 3–4) with 2000 gRNAs. We
estimate that there would be 170 clones/gRNA when using a
library of 2000 gRNAs. For large tumours (dispersion estimates
from n= 20 tumours) and 4000–100,000 gRNAs, >50 tumours per
group were required to achieve power of 0.8 (Fig. 5E; Fig. S3A;
Table S5) at effect size of 2, falling to 20–50 tumours at 500–2000
gRNAs, and <20 tumours at library sizes of <500 gRNAs. Although
our power calculations indicate very small libraries are needed to
achieve good power with feasible group sizes (<20–30) at this
effect size, these can also be interpreted in the context of the
number of clones present: we estimate ~100–400 clones/gRNA
will survive in libraries of <500 gRNAs in large tumours. These
estimates highlight how the reductions in count dispersion,
achieved through the use of a smaller gRNA library, substantially
reduce the sample sizes needed to achieve good statistical power.

DISCUSSION
In vivo CRISPR/Cas9 screens offer the opportunity to identify
genes responsible for a specific phenotype in response to
selective pressure, while maintaining the complex multicellular
interactions of the tumour microenvironment. In this study, we
investigated several parameters that could be optimised when
conducting these screens, including cell line, host mouse strain,
tumour collection time and gRNA library size. Our low TD50

HCT116/54C line retained >99% gRNA representation in cultured
cells and had much higher gRNA representation than the
moderate TD50 cell line UT-SCC-74B when GeCKO-transduced
cells were inoculated into NSG mice at 107 cells. Although not
definitive since only two models were used, our data does suggest
that using a conducive mouse host and cell line with a low TD50

and, therefore, potentially a high frequency of tumour-initiating
cells can lead to high gRNA representation on tumour initiation.
Despite the high gRNA representation at tumour initiation with

our HCT116/54C GeCKO tumour model, a considerable loss in
gRNA representation was observed as tumours were grown to
>1 cm3. The loss of representation was accompanied by a
substantial increase in read count inequality that was highly
variable between tumours and observed with both targeting and
non-targeting gRNA, suggesting that stochastic differences in
clonal growth and survival rather than gRNA-induced selection
were the dominant driver. These clonal dynamics would include
both random clonal expansion (where some clones have a growth
advantage) and random clonal dropout (where some clones have
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a survival disadvantage). Our data suggests, however, that it is
stochastic clonal expansion, likely expedited by the genetic
bottleneck of tumour initiation [46], that is a more important
limiting factor for in vivo CRISPR/Cas9 screens. In the unequal read
count distributions of the tumour samples, the majority of reads
were from only a small fraction of gRNAs, with up to 1.4–17% of all
reads from a single gRNA in the large tumours, probably from a
single expanded clone. The random expansion of individual clones
has also been reported as a confounding factor in cell-based
CRISPR/Cas9 screens [47] and is common in xenograft models
[46, 48]. Clonal expansion can also lead to apparent dropout due
to sampling effects (sampling zeroes; ref. [43]), where clones that
remain present in the population but are less abundant become
difficult to detect due to repeated sampling of the expanded
clones.
Although there were some indications of gRNA-driven selection

among our tumour samples, ultimately, random clonal dynamics
within the tumours prevented us from identifying drug sensitivity
genes in our study, due to the high count dispersion. Indeed, the
BCV estimates we observed of about 1 for small tumours and
approaching 3 for large tumours vastly exceed typical values
observed in count data from RNAseq [49]. Given the high
dispersion, we ran simulations to identify the parameters our
model would require to have 80% statistical power to detect
gRNA-mediated gene selection. Our simulated datasets indicated
that count variance could be reduced by reducing library size and
increasing averaging across clones, increasing statistical power to
a level where gRNA-driven selection (log2 fold-change 2) is
detectable in a study of feasible size with 20,000 or fewer gRNAs.
In large tumours, however, our simulations suggested very small
library sizes of ≤500 gRNAs are needed to achieve similar power at
the same effect size when large groups (n ~ 20–30) are used. This
suggests that the improvements made by using a smaller library
are rapidly diminished by cumulative time/growth-dependent
stochastic effects. To overcome this strong time-dependent effect,
initiating tumour treatment when tumours are small (~150 mm3)
and collecting tumours 7–14 days after treatment when tumours
at most are moderate in size (<~750 mm3) may allow count
variance to be adequately constrained to retain sufficient
statistical power to detect smaller treatment effects. When
assessed in terms of the number of clones/gRNA, our simulations
suggest a rule of thumb when choosing a library size is coverage
in the range of 50–400 clones/gRNA, which is similar to the
suggested coverage of 25–250 cells/gRNA (100–1000 cells/gene)
for in vitro screens [45, 50], although expressed in terms of clones
instead of cells. In terms of likely effect sizes, the mean estimated
level of negative selection (for essential genes) in our large
tumours was low (−0.39 log2 fold-change) but somewhat greater
than in vitro samples cultured over a similar period of 40 days
(−0.19 log2 fold-change; Supplemental Results; Fig. S8), suggest-
ing a similar magnitude of selection would be observed in in vivo
screens as that observed in in vitro screens when coverage is
sufficient, and the screens are adequately powered. Although this
estimate was lower than the effect sizes used in our power
calculations, it represents an average value rather than the effect
size that would occur with the most selective genes and the most
active gRNAs. In addition, this number likely reflects the
performance of the GeCKOv2 library, which is known to be poorer
than more recent libraries [44], and is not suitable to be
generalised across gRNA libraries. The use of gRNAs with high
targeting efficiency [44, 51] is likely to be important to maximise
the effect sizes and ensure success in in vivo screening.
A number of successful transplantable in vivo CRISPR/

Cas9 screens have been reported in the literature. Consistent
with our simulations of the smaller datasets, most of these used
smaller libraries limited to a subset of genes consisting of <10,000
gRNAs, with libraries potentially further subpooled [52–55]. In a
non-exhaustive survey of the literature for previous whole

genome in vivo screens, we found that, when sufficient detail
was provided, most datasets resembled that of the current study
in terms of loss of representation, read count inequality and highly
expanded counts of a small number of clones, particularly in larger
tumours [28, 29, 31, 32, 56–58]. Two studies, however, report
considerably higher gRNA representation and lower count
inequality than our model [30, 33]. In both of these studies,
tumours were inoculated at 3 × 107 cells into mice, a 3-fold
increase on our inoculum. This extends to a ~6-fold increase in
cells/gRNA (~450 vs. ~84 in our study) as they used the GeCKOv2A
half-library, and this may have contributed to greater averaging
across clones in tumours and a reduction in count variance
compared to our study. However, it is likely other variables, such
as improved tumour growth characteristics due to the particular
cell line/host combination used (i.e. more tumour-initiating cells),
also contributed to the significantly better-quality data compared
to all the other long-term whole genome in vivo screens. Indeed,
in our own data, a considerable difference in performance was
observed between the HCT116/54C GeCKO and UT-SCC-74B
GeCKO models, with the use of NSG over NIH-III hosts providing
only a minor improvement.
Our study provides several insights regarding the underlying cell

growth characteristics in in vivo tumour xenograft screens with
implications for the analyses of the resulting data. Firstly, we show
that count dispersion is dependent on sample type (cells versus
tumours) and increases with growth time in both cell and tumour
samples. These observations have an intuitive explanation—count
dispersion is driven by random clonal dynamics, and the extent of
this effect is expected to be cumulative over time and greater in
tumours due to the founder effect and stronger microenviron-
mental differences between clones. Although not unexpected, we
are not aware that this issue has been highlighted previously. We
also show that the variable nature of count dispersion across
samples poses a risk of improperly controlling statistical error when
samples of mixed dispersion are combined (e.g. small and large
tumours, cells cultured from significantly different periods).
Methods developed to analyse sequencing count data, including
methods originally developed for RNAseq such as edgeR [37, 49]
and the negative binomial method for gRNA counts in MAGeCK
[38], typically allow for heterogeneity in variance among different
genes/gRNAs by modelling a mean-variance trend but do not allow
for heteroskedasticity among sample groups. While this may not be
an issue in RNAseq data where counts measure gene expression, we
believe it warrants further attention in analyses of CRISPR/Cas9-
screen gRNA data, given random clonal dynamics are a potentially
large source of heteroskedasticity between sample groups, even for
purely in vitro screens. As a minimum, care should be taken when
analysing these data to ensure all groups have similar variances. If
required, tools that separate the estimation of the dispersion from
statistical tests, such as edgeR, could be used to perform
conservative statistical analyses where dispersion is estimated from
the group(s) with the most variance rather than across all groups. In
addition, the use of linear model-based voom/limma analysis with
sample-specific weights [59] may improve analyses by modelling
sample-specific variation; we did not test this method in the present
study as our data contained a high proportion of zero counts, which
we considered to be unsuitable for linear model analysis of counts.
In addition, the characteristics of our data could be used to
parameterise computational tools [50] that model the clonal
dynamics in in vivo screens, allowing more sophisticated in silico
simulations to be carried out to assess the contribution of various
screen parameters and ensure studies are adequately powered.
Finally, our study provides a pathway towards a more rational

approach in designing in vivo CRISPR/Cas9 screens for drug sensitivity
genes. The first step in designing a screen is to consider the trade-offs
between library size and resulting statistical power. As we have
shown, smaller libraries can have greater power and are ideal if a
focussed set of genes is being investigated, however may not be
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suitable for more exploratory research. A two-stage screening process
with candidates for in vivo screening first identified within in vitro
screens in simple cultures or more biologically complex 3D spheroid
or organoid cultures [60, 61] could be used if there is no candidate-
focused gene set initially available. If a full genome library in vivo is
required, apart from more recent optimised whole-genome libraries
with higher targeting efficiency (e.g. Brunello or Brie) [44], a further
optimised “minimal” library (~38,000 gRNAs) could be used to
provide some reduction in library size [51]. Once the initial candidate
strategy is chosen, it may be beneficial to test multiple cell lines and
animal hosts to identify the combination that provides the best
tumour growth characteristics in pilot tumour growth experiments
(n= 3 tumours), similar to those performed in the current study. The
resulting gRNA counts should be evaluated not only in terms of
representation but also count inequality and variance, with the
combination with the lowest variance preferred to increase the
chances of detecting gRNA-driven selection. It may also be useful to
evaluate different tumour collection timepoints to ascertain the
degree to which count variance increases over time. Regardless, a
pilot study (n= 3) of the chosen cell line and host should be
conducted at the candidate tumour collection timepoint (not done in
the current study) prior to commencing a full-sized experiment.
Power calculations can then be performed using these pilot data to
estimate the sample size needed to detect treatment effects at the
gRNA level. Here, it is worth noting that our simulated datasets
suggest a sample size inflating factor of 2may be needed to provide a
conservative estimate due to imprecise variance estimates from
limited data (an expected issue when using pilot data to estimate
power for a main experiment; ref. [62]). If the estimated sample size
proves infeasible, it would be preferable to make changes to the
screen design to improve power (library size, cell line, host) rather
than proceeding with an underpowered in vivo screen, for both
resource and ethical reasons.
In summary, we report that the main limiting factor for in vivo

CRISPR/Cas9 screens in detecting gRNA-driven changes among
treatment groups is variable clonal dynamics within tumours
leading to high count variance. This can be addressed to a degree
by cell line and mouse host choice. We found that count variance
increased with increasing growth time, likely due to random
differences in cell growth and survival in the tumours. In large
tumours of our model, count dispersion accumulated to a very
high level, with the populations dominated by relatively few
individual clones. Using simulated binned datasets, we showed
that count dispersion can be reduced by the use of small tumours
(or those grown for a short period of time) and greater averaging
using smaller gRNA libraries. Based on these analyses, we
conclude that our xenograft model would have been suitable
for short-medium duration in vivo screens using a more focused
library of up to several thousand gRNAs. These findings will likely
extend to other xenograft models with similar in vivo growth
characteristics.

DATA AVAILABILITY
The gRNA count dataset, analysis code and other associated files are available in
Figshare (https://doi.org/10.17608/k6.auckland.23037053).
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