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Androgen deprivation therapy (ADT) is the standard care for advanced prostate cancer (PCa) patients. Unfortunately, although
tumors respond well initially, they enter dormancy and eventually progress to fatal/incurable castration-resistant prostate cancer
(CRPC). B7-H3 is a promising new target for PCa immunotherapy. CD276 (B7-H3) gene has a presumptive androgen receptor (AR)
binding site, suggesting potential AR regulation. However, the relationship between B7-H3 and AR is controversial. Meanwhile, the
expression pattern of B7-H3 following ADT and during CRPC progression is largely unknown, but critically important for identifying
patients and determining the optimal timing of B7-H3 targeting immunotherapy. In this study, we performed a longitudinal study
using our unique PCa patient-derived xenograft (PDX) models and assessed B7-H3 expression during post-ADT disease progression.
We further validated our findings at the clinical level in PCa patient samples. We found that B7-H3 expression was negatively
regulated by AR during the early phase of ADT treatment, but positively associated with PCa proliferation during the remainder of
disease progression. Our findings suggest its use as a biomarker for diagnosis, prognosis, and ADT treatment response, and the
potential of combining ADT and B7-H3 targeting immunotherapy for hormone-naïve PCa treatment to prevent fatal CRPC relapse.
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INTRODUCTION
B7-H3, also known as CD276, is a B7 family immune checkpoint
molecule first discovered in 2001 [1]. It is universally expressed
across various species and is the most evolutionarily conserved B7
family member so far [2]. Despite being initially described as an
immune costimulatory molecule [1], later findings showed that B7-
H3 is an immune inhibitory molecule affecting T cell activation
and proliferation [3].
Importantly, B7-H3 has recently been demonstrated to be

overexpressed in various solid tumors but less expressed in
normal tissues [4]. Its expression is always associated with
advanced disease stages and poor prognosis [5]. Therefore, B7-
H3 becomes an attractive target for cancer immunotherapy.
Currently, various B7-H3 targeting therapeutics, including B7-H3
vaccines [6], B7-H3-specific antibodies [7], and B7-H3-targeted
CAR-T cells [8], are in pre-clinical and clinical studies [9].
B7-H3 has also been reported to be highly expressed in prostate

cancer (PCa) [10, 11], suggesting its potential in PCa treatment.
Androgen receptor (AR) is the master transcription factor that
drives PCa growth and differentiation [12]. Androgen deprivation
therapy (ADT) is the standard care for high-risk hormone-naïve
PCa patients. But so far, the dynamic changes of B7-H3 expression
during PCa progression, particularly its expression following ADT,
up to the progression to castration-resistant PCa (CRPC), is largely
unknown. It has been reported that AR is a negative regulator of
CD276 (B7-H3) gene transcription [13]. Contradictorily, gene
expression analysis using various clinical cohorts suggested a

positive correlation of B7-H3 with AR and AR activity [13, 14].
Hence, we hypothesize B7-H3 expression is under multiple,
complex levels of regulation in PCa, leading to various expression
patterns at different stages during CRPC progression.
To select appropriate patients and an ideal time window for B7-

H3 targeting therapies, knowing their B7-H3 expression level in
PCa tissue is crucial. In this study, we investigated the dynamic
changes of B7-H3 expression during CRPC progression from
hormone-naïve PCa, following ADT treatment, using a panel of
unique CRPC progression models from hormone-naïve PCa
patient-derived xenografts (PDXs). These models accurately
recapitulate the dynamics of prostate cancer progression and
treatment responses found in the clinic [15, 16] and allow for the
tracking of B7-H3 expression during PCa progression. Further-
more, we validated our findings in patients’ PCa samples. Our
findings may help identify patients and determine the optimal
timing of B7-H3 targeting immunotherapies for PCa patients.

MATERIALS AND METHODS
Cell lines
Human prostate cancer cell line LNCaP (CRL1740™), C4-2 (CRL-3314™), and
PC-3 (CRL-1435™) were obtained from the American Type Culture
Collection (ATCC; Manassas, VA, USA). The cell lines were maintained in
cell culture dishes in RPMI-1640 (Gibco, ThermoFisher Scientific, Waltham,
MA, USA) or Dulbecco’s modified Eagle’s medium (DMEM; Gibco)
supplemented with 10% fetal bovine serum (FBS; GE Healthcare HyClone,
Chicago, IL, USA) at 37 °C in a humidified incubator with a 5% CO2/air
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atmosphere. Mycoplasma testing was routinely performed using MycoA-
lertTM mycoplasma detection kit (Lonza, Basel, Switzerland). All the cells
were used within a passage range of 5–15. For androgen deprivation
treatment (ADT), prostate cancer cell lines were starved with RPMI-1640
containing 5% androgen-depleted charcoal-stripped FBS (CSS; Corning
Inc., Corning, NY, USA) or with the addition of 10 uM enzalutamide (ENZ;
Sigma-Aldrich, St. Louis, MO). For androgen supplementation treatment,
cells were cultured in the 5% CSS medium with the addition of 10 nM 5α-
Dihydrotestosterone (DHT; Sigma-Aldrich). Cell viability was determined by
trypan blue exclusion.

PCa patient-derived xenograft (PDX) models
All transplantable PDX tumor lines were grafted under the renal capsule of
male NRG mice as previously described [15]. The biological and genetic
background of the parental PDX tumor lines is summarized in
Supplementary Table S1. Each PDX tumor line was grafted into at least 6
host mice. When tumor reached 300mm3 in volume, 3 mice were
sacrificed, and tumors (pre-castration, pre-Cx) were harvested for RNA,
protein, and histopathologic analyses. The rest of mice were castrated and
monitored for tumor growth. Post-castration (post-Cx) tumors were either
collected at 12-week or at different time points post-Cx, with at least 3
mice at each time point. This study followed the ethical guidelines stated
in the Declaration of Helsinki, and specimens were obtained from patients
with their informed written consent following a protocol (#H09-01628)
approved by the Institutional Review Board of the University of British
Columbia (UBC). Animal studies were conducted according to protocol
#A17-0165, which was approved by UBC’s Animal Care Committee. All PDX
tumors were harvested before castration (pre-Cx) or at different time
points after host castration (post-Cx) or at CRPC after cancer relapse (CR).

Human PCa samples and clinical data
PCa specimens, including radical prostatectomy or robotic prostatectomy
samples from patients treated with neo-adjuvant hormonal therapy (NHT)
and patients treated with surgery alone (control), were obtained from the
Vancouver Prostate Centre Tissue Bank. Tissue microarray (TMA) of
duplicate 1mm cores was constructed manually (Beecher Instruments)
from post-ADT and control specimens. For cohort 2009, sections from 41
ADT-treated and 21 control group samples remained attached to the TMA
slides after B7-H3 or Ki67 immunohistochemical (IHC) staining. For cohort
2011, sections from 38 ADT-treated and 34 control group samples remained
attached to the TMA slides after IHC staining and were qualified for analysis.
These studies followed the ethical guidelines stated in the Declaration of
Helsinki, and specimens were obtained from patients with their informed
written consent following a protocol (#H09-01628) approved by the
Institutional Review Board of UBC. The baseline characteristics of patient
samples are summarized in Supplementary Tables S2 and S3.
The RNA expression data from the High-low clinical cohort were acquired

from Dr. Colin Collins [17, 18]. RNA-Seq reads were mapped using STAR 2.6.0a
to the reference database built upon human genome sequences and gene
annotations from Ensembl GRCh38 Release 90. We obtained the read counts
for all genes by htseq-count 0.11.2, and estimated differential expression
using DESeq2 1.16.1. Gene expression datasets were uploaded to figshare
(https://figshare.com/projects/High-Low_Risk_Prostate_Cancer_Cohort_of_
Vancouver_Prostate_Centre/166142). In this study, only data from high-risk
patients (Supplementary Table S4) were used for comparing B7-H3
expression between untreated and NHT-treated samples.

Immunohistochemical (IHC) staining and scoring
Tumor tissue was fixed with formalin and embedded in paraffin. Tissues
were sectioned, probed, and stained for IHC analyses as previously
described [19, 20]. The following antibodies and conjugates were used:
rabbit anti-human B7-H3 (Clone: EPR20115; AbCam, Cambridge, UK;
1:1000), mouse anti-human Ki67 antibody (Clone: MIB-1; Dako, Jena,
Germany; 1:25), rabbit anti-human androgen receptor (AR) antibody
(Clone: ER179(2); AbCam; 1:100), rabbit anti-human prostate-specific
antigen (PSA) antibody (Clone: EP1588Y; AbCam; 1:200), biotinylated goat
anti-rabbit antibody (Vector Laboratories, Burlingame, CA, USA; 1:200), and
biotinylated goat anti-mouse antibody (Vector Laboratories; 1:200). Rabbit
IgG and mouse IgG were used as isotype control antibodies. Human breast
cancer tissue was used as B7-H3 staining positive control. For Ki67 staining,
images of five random fields at ×400 magnification were taken per tumor
and cells were counted to determine the percentage of positively stained
cells. For B7-H3 staining, images of five random fields at ×400

magnification were taken per tumor, and staining intensity was assessed
by percentage scoring using the following formula: intensity= (% area
score 3) × 3+ (% area score 2) × 2+ (% area score 1) × 1.

Western blotting and quantification
SDS-PAGE and Western blotting were done following the standard
protocol. Membranes were probed with rabbit anti-human B7-H3 antibody
(Clone: EPR20115; AbCam) or mouse anti-human GAPDH antibody (Clone:
GA1R; Invitrogen), and HRP-coupled secondary antibodies prior to the
application of ECL reagent (Millipore). The blots were imaged with a Bio-
Rad ChemiDocTM MP imaging system (Bio-Rad, Hercules, CA, USA), and the
bands were analyzed with Image Lab software (Bio-Rad).

Quantitative real-time PCR (qPCR)
Quantitative real-time PCR was performed on an ABI ViiA7 Real-Time PCR
System (ThermoFisher Scientific) using TB Green Premix Ex Taq II (TaKaRa,
Shiga, Japan). Expression of CD276 transcripts was assessed using
previously published primers [21]: CD276-forward: CTCACGAAGCAGGTG
AAGCTGCC; CD276-reverse: ACCTACAGCTGCCTGGTGCGC. The primers of
endogenous control, human GAPDH (ID: 378404907c1), were selected from
PrimerBank database [22]: GAPDH-forward: GGAGCGAGATCCCTCCAAAAT;
GAPDH-reverse: GGCTGTTGTCATACTTCTCATGG. PCR products were vali-
dated by gel electrophoresis before qPCR analysis. The cycling program
consisted of 95 °C for 10min, followed by 40 cycles of 95 °C for 15 s/60 °C
for 1 min. Fold changes were calculated using the 2−ΔΔCt method.

Statistical analysis
Statistical analyses were performed with GraphPad Prism 7.0 (GraphPad
Software). Mean ± SD was used to present the center value and the error
bar in the figures. For significance, a minimum p value of <0.05 was used as
cut-off. For comparison of two means, a two-sided student t test was
performed. When data was in the form of matched pairs, a paired t-test
was performed. The association of B7-H3 expression with Ki67 was
assessed using Pearson’s correlation.

RESULTS
Reduced B7-H3 expression was observed in post-ADT dormant
clinical samples and ADT-induced dormant PCa PDX models
To assess the impact of ADT on B7-H3 expression in hormone-
naive prostate adenocarcinoma, we first analyzed CD276 (B7-H3)
mRNA expression level using high-risk PCa clinical cohort with
45 samples from radical prostatectomy. High-risk cases were
selected for this study by meeting any of the following criteria:
Gleason ≥8, PSA ≥ 20, or clinical stage T3a and above. Within the
cohort, 12 samples were from neo-adjuvant hormone therapy
(NHT) treated patients (patients with prior hormone/androgen
deprivation therapy), and the rest were from untreated (Ctrl)
patients. As shown in Fig. 1, AR activity was significantly reduced
in post-NHT samples as shown by decreased KLK2, KLK3, and
TMPRSS2 mRNA expression. Consistently, marked decrease of cell
proliferation was also observed, as shown by decreased MKI67,
PCNA, and TPX2 mRNA expression. Importantly, CD276 mRNA
level was significantly lower in samples from ADT-treated patients
when compared with those from untreated patients.
Next, we performed B7-H3 IHC staining on a group (22 pairs) of

pre- and 12-week post-castration (Cx) PCa PDXs to confirm the
above findings. At the protein level, 14 out of 22 pairs showed
reduced B7-H3 expression in 12-week post-Cx PDXs compared to
pre-Cx samples (Fig. 2A, B). The hormonal response and
proliferation status of the PDXs were further confirmed with
Ki67 staining and serum prostate-specific antigen (PSA) level, and
the B7-H3 downregulation in 12-week post-Cx dormant PCa PDXs
was confirmed with Western blot analysis (Fig. 2C).

B7-H3 increased temporarily following castration although
decreased during PDX dormancy
We then assessed B7-H3 expression level in the LTL311 PDX model
before castration and at various time points after castration
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(Fig. 3A). Western blot results showed that B7-H3 increased at 1
week post-Cx, dropped to pre-Cx level during 2–3 weeks post-Cx,
further decreased during tumor dormancy (3–5 months post-
castration), gradually increased at 5 months post-Cx, and
eventually rose above pre-Cx level at relapse. LTL311 disease
course was confirmed with PSA level and Ki67 counts (Fig. 3B). The
reduction of B7-H3 expression during post-ADT PCa dormancy
was further confirmed by IHC staining in 3 more PDX models
(Fig. 3C).

B7-H3 expression was negatively regulated by androgen
receptor (AR) during the early phase of ADT, but for the rest of
PCa disease course, it was AR-irrelevant and proliferation-
associated
It has been reported that AR is one of the negative transcriptional
regulators of B7-H3 [13]. To further confirm the effect of androgen
deprivation on B7-H3 expression, we first used hormone-sensitive

PCa cell lines, LNCaP and C4-2, and assessed B7-H3 mRNA
expression under androgen-supplemented condition (CSS+ DHT)
versus androgen deprivation conditions (CSS; CSS+ DHT+ ENZ).
As shown in Fig. 4A, after 1 week of culture under androgen
ablation conditions, both androgen-sensitive PCa cell lines (i.e.,
LNCaP and C4-2) showed significantly increased B7-H3 mRNA
expression, compared to those with normal androgen exposures.
In contrast, B7-H3 mRNA expression level was not affected by the
presence or absence of androgen in the AR-negative and
androgen-independent PC3 cell line. This finding was further
confirmed in hormone-naïve PCa PDX models. As shown in Fig. 4B,
B7-H3 mRNA expression was significantly increased in PDX LTL674
during the first 3 weeks of host castration. For PDX LTL508 (Fig. 4C,
D), B7-H3 mRNA and protein expression increased up to 3 months
post-castration, decreased during deep dormancy and reached its
lowest point at 7-month post-castration. At 10 months post-
castration, LTL508 showed signs of early relapse. Clusters of Ki67-
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Fig. 1 Significant decrease of B7-H3 mRNA expression was observed in post-NHT dormant PCa patient samples. Compared to untreated
(Ctrl) group, NHT treated group showed significantly reduced mRNA expression of CD276 (B7-H3), AR activity markers (KLK2, KLK3, and
TMPRSS2), and proliferation markers (MKI67, PCNA, and TPX2).
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Fig. 2 Castration-induced dormant PCa PDXs showed decreased B7-H3 expression compared to active PDXs. A B7-H3 IHC scores of 22
pairs of active and castration-induced dormant PDXs. The dormant status was further confirmed by serum PSA level and Ki67 count. A
detailed list of PDXs and B7-H3, PSA, and Ki67 changes is shown in Supplementary Table S1. B Representative B7-H3 IHC images (×400
magnification) of normal prostate, as well as examples of active (Pre-Cx) and castration-induced dormant (12wk-Post-Cx) PCa PDXs.
C Representative Western blot analysis of selected PDXs. T47D is a human breast cancer cell line used as a positive control. Castration: Cx.

Fig. 3 B7-H3 increased temporarily following castration but decreased during PDX dormancy. A Time course of Western blot analyses on
LTL311 PDXs showed that B7-H3 increased after castration (from 1 to 3 weeks post-castration), gradually decreased and reached the lowest
point at 3–5 months post-castration and increased at cancer relapse (CR). B LTL311 disease course was confirmed by serum PSA levels and
Ki67 counts. C Representative B7-H3 IHC images (×400 magnification) from three more PDXs (LTL313, 648, and 508) and Ki67 IHC image from
LTL508 during their active and dormant stages as well as at cancer relapse.
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Fig. 4 B7-H3 expression was negatively regulated by AR during the early phase of ADT, but positively associated with proliferation
beyond that phase. A–C qPCR B7-H3 transcript analysis demonstrated increased B7-H3 mRNA expression upon androgen deprivation in
androgen-sensitive PCa cell lines (LNCaP and C4-2, A) and PDXs (LTL674, B, and LTL508, C). D Representative IHC staining images (×400
magnification) of B7-H3, proliferation marker (Ki67), and AR activity markers (AR and PSA) from PDX LTL508 at pre-Cx, 2-week, 3-month, 5-
month, 7-month post-Cx, and at early relapse (10-month post-Cx). Yellow arrows indicate sites of tumor recurrence. E IHC staining images (×25
and ×400 magnification) of B7-H3, Ki67, AR, and PSA from PDX LTL508 at late relapse (12-month post-Cx).

N. Kang et al.

1386

Cancer Gene Therapy (2023) 30:1382 – 1389



positive cells could be seen, and these cells had enlarged nuclei
and elevated membranous B7-H3. LTL508 disease course was
confirmed by AR and PSA staining. For late relapse at 12-month
post-castration (Fig. 4E), three types of tumors could be identified,
i.e., Ki67+ /AR+ /PSA+ , Ki67−/AR+ /PSA+ , and Ki67+ /AR+ /
PSA−. B7-H3 upregulation could be seen in Ki67+ /AR+ /PSA+
and Ki67+ /AR+ /PSA− regions but not in Ki67−/AR+ /PSA+
region.

B7-H3 expression was positively correlated to PCa
proliferation status in clinical samples
The influence of ADT on B7-H3 protein expression was then
studied using radical prostatectomy samples from patients that
underwent NHT treatment. Figure 5A showed representative
images of B7-H3 IHC staining. For both 2009 VPC cohort (Fig. 5B)
and 2011 VPC cohort (Fig. 5C), prostatectomy samples from NHT-
treated patients (ADT group) showed similar levels of B7-H3
expression compared to samples from untreated patients (Ctrl
group). However, B7-H3 expression was significantly reduced in
less-proliferative (dormant; Ki67 < 1%) PCa samples from both
untreated and ADT-treated patients. Moreover, B7-H3 protein
expression was positively correlated with PCa proliferation status,
as shown by Ki67 counts.

DISCUSSION
PCa is the second most common cancer worldwide and remains
one of the leading causes of cancer-related death in men in North
America. For high-risk hormone-naïve PCa patients, the mainstay
of the therapy continues to be ADT. However, despite an initial
response, the vast majority of residual PCa enters a dormant state

for months or years and later relapses in the form of incurable
CRPC [23, 24]. Progression to CRPC is associated with poor
prognosis, impaired quality of life, and fewer therapeutic options.
Although there have been significant advances in CRPC ther-
apeutics development in recent years, CRPC, particularly meta-
static CRPC, remains a lethal and hard-to-treat disease [16, 23–28].
Therefore, to prevent or delay the development of the fatal CRPC,
we propose to develop more effective therapeutic strategies by
targeting early critical drivers of lethal CRPC development, while
patient’s PCa can still be well managed.
One potential strategy in this regard is immunotherapy.

Nowadays, immunotherapies aiming at restoring immunosurveil-
lance and counteracting immune escape mechanisms are
revolutionizing the clinical management of a wide range of
tumors [29]. Many tumors evade immune surveillance through
upregulating immune checkpoint co-inhibitory ligands, like PD-1
ligand 1 (PD-L1) [30, 31], and immune checkpoint inhibitors (ICI)
targeting PD-L1/PD-1 axis have become routinely part of the
clinical approach for the management of many types of tumors
[32].
However, most PCa patients are not responsive to PD-L1/PD-1

blockade therapy [33, 34]. This is due to the unique characteristics
of PCa: low PD-L1 expression and naturally “cold” with limited
immune cell infiltration [34, 35]. In contrast to PD-L1, immune
checkpoint co-inhibitory ligand B7-H3 is preferentially expressed
in most PCa compared to benign prostate tissues [11]. In addition,
more pieces of evidence suggest that B7-H3 is associated with
tumor aggressiveness, migration, and metabolic reprogramming
[11, 36, 37]. Thus, beyond immune inhibitory function, B7-H3 may
also serve as a specific tumor antigen for advanced PCa
management. As a result, B7-H3 seems to be an attractive target

Fig. 5 B7-H3 expression was positively correlated to PCa proliferation status and significantly reduced in dormant clinical PCa samples.
A Representative IHC images showing (i) none, (ii) low, (iii) moderate, and (iv) high B7-H3 expression in clinical PCa samples. B,C B7-H3 IHC
scores of tumor samples from VPC 2009 cohort (B) and VPC 2011 cohort (C). (i) B7-H3 IHC scores were similar in the untreated (Ctrl) and NHT
treated patients. (ii) In the Ctrl group, B7-H3 IHC scores were significantly reduced in dormant patient samples (Ki67 < 1%) compared to active
patient samples (Ki67 > 1%). (iii) In the NHT group, B7-H3 IHC scores were also significantly reduced in dormant patient samples compared to
active patient samples. (iv) B7-H3 IHC scores were positively correlated to Ki67 percentages in 2009/2011 VPC cohort.
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for PCa immunotherapy, and various B7-H3 targeting therapeutics
have been studied in pre-clinical and clinical trials and have
demonstrated their feasibility for clinical application [14, 38–41].
Many factors may affect the outcome of B7-H3 immunothera-

pies. Adequate B7-H3 expression level is the leading factor. CD276
(B7-H3) gene transcription is negatively regulated by AR [13].
Contradictorily, gene expression analysis using various clinical
cohorts suggested a positive correlation of B7-H3 with AR and AR
activity [13, 14]. To discover the real relationship between AR and
B7-H3 expression and avoid between-individual variations, we
performed a longitudinal study on the B7-H3 expression during
PCa disease progression using our unique PCa PDX models. Our
data suggest a dynamic change and complex regulation of B7-H3
expression during PCa progression and following ADT treatment.
It partially agrees with others, that AR is the negative transcrip-
tional regulator of B7-H3 [13], but also suggests AR’s role in B7-H3
regulation is generally recessive and masked by regulators
associated with proliferation. During PCa disease course, B7-H3
is predominantly linked to proliferation status: highly proliferative
PCa has more B7-H3 expression, whereas dormant PCa has
reduced or no B7-H3 expression. This explains why B7-H3
expression positively correlates with AR and AR activity in clinical
PCa cohorts [13, 14], where AR activity is positively associated with
proliferation and is the driver for hormone-naïve PCa progression.
Only at the early phase of androgen deprivation, when PCa cells
become less proliferative due to androgen withdrawal, AR-
mediated regulation becomes dominant, resulting in less tran-
scriptional inhibition and more B7-H3 expression. Therefore, by
using our unique PDX models, we were able to perform
longitudinal study and view the dynamic regulation of B7-H3
expression following ADT: B7-H3 expression rises during the early
stage of ADT treatment (AR regulation is dominant), gradually
drops and reaches its lowest level during ADT-induced tumor
dormancy and gradually increases at relapse (proliferation-related
regulation is dominant).
Interestingly, in our High-low clinical cohort (Fig. 1), when NHT

successfully induced tumor dormancy, B7-H3 expression was
significantly reduced compared to untreated group. But in our
2009 VPC and 2011 VPC clinical cohorts, B7-H3 expression level
was not affected by NHT. The latter results are consistent with
previous findings, which suggest that B7-H3 remains stable in
response to hormone therapy [42]. But in fact, these results are not
paradoxical. B7-H3 was significantly reduced in the NHT-
responsive tumors, post-NHT dormant tumors in this case. Also,
the longitudinal study using our PDX models made the repeated
observation of B7-H3 expression in the same patient tumor
possible and confirmed the findings from the High-low clinical
cohort.
The second determining factor for a successful B7-H3 targeting

therapy is the tumor immune microenvironment (TIME). Unfortu-
nately, the “cold” PCa TIME remains a potential barrier to
successful B7-H3 targeting immunotherapy. To this end, ADT
can induce cancer cell death and intratumoral inflammation
[43–45], thereby turning “cold” tumors into “hot” tumors. Our data
demonstrated that B7-H3 expression could be temporarily but
significantly upregulated following ADT treatment, along with the
heated-up TIME for attracting more immune cells, the efficacy of
B7-H3 targeting immunotherapy might be significantly improved
if used in combination with ADT or right after ADT.
In this study, we investigated the dynamic change of B7-H3 during

PCa disease course and focused on the influence of ADT on B7-H3
expression. By referring to the changing pattern, it is possible to
predict B7-H3 expression level based on the analyses performed on
archival biopsy tissue, identify patients, and determine the optimal
timing of B7-H3 targeting immunotherapies. Most importantly, our
data suggest that B7-H3 might be a promising target for PCa
immunotherapy, particularly in the early weeks post-ADT before PCa
enters dormancy. Treatment-induced tumor dormancy is a stage in

cancer progression where cells cease dividing and survive in an
inactive state to avoid being killed by anticancer treatments.
Dormant tumor cells are treatment-resistant and capable of re-
entering the cell cycle when the unfavorable conditions improve or
when they effectively adapt to the new conditions. Although the
biological and clinical significance of tumor dormancy is increasingly
being recognized, the mechanisms for it are still largely unknown
[46, 47]. PCa treated with ADT often enters dormancy. After years of
dormancy, PCa can relapse as a more aggressive and castration-
resistant fatal disease [18, 23, 24]. Therefore, it is critical to fully kill
PCa cells and prevent them from entering dormancy. To this end, B7-
H3 targeting therapy, when used in combination with ADT, can more
effectively kill PCa cells, lower the chance of dormant cell formation,
and reduce the risk of PCa recurrence. Admittedly, our data also
indicate B7-H3-targeting therapies are likely irrelevant to ADT-
induced dormant PCa, which leaves an interesting question— what
are the players responsible for dormant cancer immune evasion?
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