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Gastrointestinal cancers are a leading cause of cancer morbidity and mortality worldwide with 4.2 million new cases and 3.2 million
deaths estimated in 2020. Despite the advances in primary and adjuvant therapies, patients still develop distant metastases and
require novel therapies. Mitogen‑activated protein kinase (MAPK) cascades are crucial signaling pathways that regulate many
cellular processes, including proliferation, differentiation, apoptosis, stress responses and cancer development. p38 Mitogen
Activated Protein Kinases (p38 MAPKs) includes four isoforms: p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ
(MAPK13). p38 MAPK was first identified as a stress response protein kinase that phosphorylates different transcriptional factors.
Dysregulation of p38 pathways, in particular p38γ, are associated with cancer development, metastasis, autophagy and tumor
microenvironment. In this article, we provide an overview of p38 and p38γ with respect to gastrointestinal cancers. Furthermore,
targeting p38γ is also discussed as a potential therapy for gastrointestinal cancers.
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INTRODUCTION
Gastrointestinal (GI) cancers of the colon, stomach, liver, esophagus,
and pancreas impacted an estimated 4.2 million patients (22%) and
resulted in 3.2 million deaths (32%) in 2020 and together are a
leading cause of cancer morbidity and mortality worldwide [1].
Current treatments for GI cancers involve multiples therapies
including surgery, radiation, chemotherapy or a combination
thereof. Based on the particular malignancy, radiation therapy is
one of the treatments for GI cancer that can be applied before or
after surgery. Chemotherapy is also combined with radiation to
enhance tumor sensitization. Immunotherapy for GI cancers includes
checkpoint inhibitors (PD-1, PD-L1 and CTLA-4), vaccine therapies
(peptide, protein, whole tumor cells, or dendritic cell-based
vaccines), cytokines (interferon-γ, interleukin-2, IL-10, or GM-CSF)
and adoptive T cell transfer [2]. Until now, surgical resection remains
the most common treatment for patients with colorectal [3], gastric
[4], and esophageal cancers [5]. Despite the advances in primary and
adjuvant therapies, patients can still develop metastases and
resistance to systemic therapy. Therefore, new therapeutic strategies
and novel targets are urgently in need to improve the survival.
The mitogen-activated protein kinases (MAPK) pathways consist

of three distinct kinases that play crucial roles in cell signaling. When
exposed to extracellular and intracellular signals, MAPKKKs are
activated and facilitate the direct phosphorylation of MAPKKs,
leading to their activation[6]. Subsequently, MAPKKs phosphorylate
and activate MAPKs [7]. MAPKs respond to a diverse range of stimuli,
such as hormones, cytokines, growth factors, endogenous stress,
and environmental signals [8]. Extracellular signal-regulated kinases
(ERK), c-Jun NH2-terminal kinase (JNK), and p38 are the three well-
known MAPKs that play a role in carcinogenesis. Among these, the
ERK pathway is predominantly triggered by growth factors like
epidermal growth factor, as well as hormones and proinflammatory
stimuli. On the other hand, the JNK and p38 pathways are activated
by different stress-inducing stimuli, such as ultraviolet radiation,

reactive oxygen species (ROS), as well as inflammatory cytokines like
tumor necrosis factor (TNF)-α and interleukin (IL)-1β [9]. MAPKs are
involved in regulating a range of cellular processes linked to the
development of cancer, including proliferation, differentiation,
apoptosis, inflammation, and immunity. Abnormal MAPK signaling
may result in excessive or unregulated cell proliferation, as well as
resistance to apoptosis[10].

P38 PATHWAYS
The p38 MAPK family was first identified in studies of endotoxin-
induced cytokine expression [11]. P38 is involved in inflammation,
cell growth, cell differentiation, cell death, and the cell cycle [12].
There are four p38 isoforms including p38α (MAPK14), p38β
(MAPK11), p38γ (SAPK3, ERK6 orMAPK12), and p38δ (MAPK13) with
an overall sequence homology >60% and an identity within the
kinase domains >90% [13]. The four p38 MAPK isoforms are
ubiquitously expressed with different levels of expression in various
tissues (Fig. 1). For example p38α is expressed in all cell types and
tissues; p38β is predominant in the brain; p38γ is found in skeletal
muscle and p38δ is mainly expressed in the testis, pancreas, kidney
and small intestine [14]. Despite the high level of sequence
homology of the four isoforms, they interact with different down-
stream effectors such as: MK2 (MAPK-activating protein kinase 2),
PRAK (p38-related/activated protein kinase), ATF-2 (activating
transcription factor-2), MEF2 (myocyte enhancement factor 2) and
c-Jun and upstream MAPK kinase activators (including MKK4, MKK3
and MKK6) [15]. Phosphorylated p38 MAPK can activate a wide range
of stimuli, such as transcription factors, protein kinases, cytoplasmic
substrates and nuclear substrates [16]. The downstream events of
these p-p38 MAPK have cell-specific consequences including
regulation of RNA splicing, cytokine production, inflammatory
response, apoptosis, cell-cycle arrest and cell differentiation [16].
Activated p38α has been shown to downregulate cyclins, upregulate
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cyclin-dependent kinase (CDK) inhibitors, modulate the tumor
suppressor p53 at the G1/S and the G2/M phases and induce
apoptosis. This reduces cell proliferation in primary cells (cardiomyo-
cytes, hepatocytes, fibroblasts, hematopoietic cells, and airway
epithelium). In contrast, p38α has also been shown to support cell
survival via anti-apoptotic inflammatory signals interleukin-6 (IL-6)
and enable DNA-repair after chemotherapy which results in drug-
resistance in cancer cells [17]. Moreover, upregulation of p38 MAPK
promotes cell invasion by inducing epithelial to mesenchymal
transdifferentiation (EMT) [18]. Downregulation of p38 MAPK leads to
suppressed expression and activity of matrix metalloproteinases
MMP-2 and MMP-9. This evidence supports the role of p38 in
facilitating cancer cell invasion [19]. Activated p38 signaling also
increases cell migration via Vascular Endothelial Growth Factor
(VEGF) expression promoting actin rearrangement [20]. The studies
noted above demonstrate a duality in the role of p38 MAPK signaling
as either an oncogene or tumor suppressor in many types of tumors.
In resting cells, p38α/β are mainly found in the cytoplasm, with

certain molecules undergoing phosphorylation in response to
stimulation [21]. Whether phosphorylated or not, p38α/β form a
complex with either a dimer of Imp7/3 or Imp9/3, which transport
them to the nuclear pores. While Imp3 remains outside, Imp7 or
Imp9 accompany the p38α/β into the nucleus. Once inside, p38α/
β disassociate from the importins and proceed to phosphorylate
their substrates. Finally, they are exported back to the cytoplasm.
Upon activation in myoblasts, the p38 signaling pathway
phosphorylates BAF60c, facilitating the recruitment of the SWI-
SNF chromatin-remodeling complex to muscle-specific regions.
This, in turn, promotes the activation of gene expression [22].
Among the MAPK family, p38γ is the only isoform that

possesses a short C-terminal sequence (-KETXL) capable of binding

to PDZ domains. When exposed to stress, p38γ can phosphorylate
and regulate the activity of various PDZ-domain containing
proteins involved in different signaling pathways. These include
α1-syntrophin [23], SAP (synapse-associated protein) 90/PSD
(post-synapse density) 95 [24], the scaffold protein SAP97/hDlg,
and the protein tyrosine phosphatase PTPH1 [25] (Fig. 2).
Interestingly, p38γ can also directly phosphorylate the transcrip-
tion factor MyoD without interaction with the PDZ domain and
subsequently suppress its activity [26]. In regard to tumorigenesis,
p38γ binding to PTPH1 via the PDZ domain increases Ras
transformation and promotes colon cancer development [25].
This review will aim to assess the role of p38 in cancers of the

gastrointestinal tract.

P38 IN GASTROINTESTINAL CANCERS
Esophageal cancer
In esophageal squamous cell carcinoma (ESCC), most publications
regarding the p38 MAPK pathway in carcinogenesis have been
focused on exploring the role of the p38α isoform. There is limited
published data on other p38 isoforms (β, γ, and δ). Overall p38
MAPK expression has been found to be significantly higher in
ESCC compared to normal esophageal tissue [27]. Zheng et al.
found a significant association between p38γ expression and
clinical stage, lymph nodes metastases, and tumor volume in ESCC
[28]. This suggested p38γ may serve as a metastasis-associated
gene in ESCC. Moreover, p38γ can promote cell motility and
growth in ESCC cells in vitro. Knockdown of p38γ can prevent
tumor progression in ESCC tumor bearing nude mice. These
findings indicate that p38γ plays an oncogenic role in ESCC and
may be targeted for therapy [28].

Fig. 1 p38 distribution and function. The p38 MAPKs include 4 isoforms (α, β, γ, and δ) ubiquitously expressed with different levels of
expression in various organs. p38 MAPK supports cell survival via anti-apoptotic inflammatory signals interleukin-6 (IL-6) and enable DNA-
repair after chemotherapy which results in drug-resistance in cancer cells. Upregulation of p38 MAPK promotes cell invasion by inducing
epithelial to mesenchymal transdifferentiation (EMT), matrix metalloproteinases MMP-2 and MMP-9. Activated p38 signaling also increases cell
migration via Vascular Endothelial Growth Factor (VEGF).
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GASTRIC CANCER
In the case of gastric cancer, Liu et al. demonstrated that cells
pretreated with a combination of ERK1/2 and p38 inhibitors could
enhance the anti-proliferative effects of 5-FU via suppressing the
ERCC1 (Excision Repair Cross Complementation group 1) protein
[29]. ERCC1 is upregulated in 5-FU-treated cells which may
contribute to drug resistance. This study proposed that activated
ERK1/2 and p38 kinases play a role in developing drug resistance
via upregulating ERCC1 expression in gastric cancer [29].
Interferon gamma (IFN-γ) plays an important role in the innate

and adaptive immune response as a cytokine with antitumor
functions [30]. Zhao et al. reported that gastric cancer cells treated
with IFN-γ underwent G1/S phase cell cycle arrest and had down-
regulated p38γ expression [31]. This study suggested that IFN-γ
may inhibit gastric cancer cell proliferation via regulating p38γ.

COLORECTAL CANCER
p38γ is markedly upregulated in colon cancer tissues compared to
surrounding colon epithelial cells [32]. p38γ knockdown was
found to inhibit tumor progression in a colitis-associated mouse
model [33]. In the same study p38γ activated the β-catenin/Wnt

pathways promoting CRC development [33]. This protumor role
has been corroborated by others where p38γ knock down
inhibited cell proliferation, migration, and induced apoptosis in
colon cancer cells in vitro. Overexpression of p38γ promoted CRC
cell progression. Loesch et al. found that overexpressed p38γ
MAPK activated the transcription factor c-Jun, and then recruited
p38γ as a cofactor to the matrix metalloproteinase 9 (MMP-9)
promoter thus enhancing cell invasion [34]. These studies
indicated p38γ as a potential therapeutic target for CRC.

PANCREATIC CANCER
In pancreatic adenocarcinoma, p38 expression was associated with a
shorter survival [35]. However, Zhong et al. reported that high
expression of p38 MAPK was associated with improved survival [36].
All isoforms of p38 MAPK were found in various human pancreatic
cancer cells in vitro [37]. The roles of the various p38 isoforms in
pancreatic cancer are controversial. Tian et al. proved that inhibition
of p38β decreased tumor progression while inhibition of p38α
enhanced tumor formation in pancreatic cancer mouse models [37].
In addition, p38γ has been reported to promote PDAC development
via KRAS signaling and aerobic glycolysis. Wang et al. indicated that

Fig. 2 Schematic representation of p38γ MAPK signal transduction pathway. A wide variety of stimuli including cellular stresses, UV,
proinflammatory cytokines, growth factors can activate p38γ MAPK. These lead to the initiation of a three-step MAPK phosphorylation
cascade (MAPKKK, MAPKK, and MAPK). Firstly, MAPKKKs (ASK1, MLK1&2, and TAO1&2) phosphorylate the p38 MAPK-specific MAPKKs MKK6
and MKK3, respectively. These subsequently phosphorylate p38γ MAPK. The phosphorylated p38γ can activate the downstream substrates
such as α-syntrophin, hDlg (human disc large), PTPH1 (protein tyrosine phosphatase H1), PSD95 (post-synapse density 95), and transcription
factor MyoD, which trigger cellular responses. ASK1 (apoptosis signal-regulating kinase-1), MLKs (mixed-lineage kinases), TAO (thousand-and-
one amino acid).
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KRAS mutation induced the expression and phosphorylation of
p38γ, and subsequently enhanced PFKFB3 (6-Phosphofructo-2-
Kinase/Fructose-2,6-Biphosphatase 3) and expression/phosphoryla-
tion of a glucose transporter GLUT2 (Glucose transporter 2).
Moreover, PFKFB3 and GLUT2 depend on p38γ for aerobic glycolysis
and tumor development [38]. This study proved that p38γ is crucial
for the G1/S transition in cell cycle and proliferation. p38γ
knockdown or p38γ inhibition in combination with a PFKFB3
inhibitor suppressed aerobic glycolysis and PDAC tumorigenesis
[38]. The above data highlight the heterogenous role of p38 MAPKs
isoforms and selective targeting will decide the promising effect for
cancer treatment.

LIVER CANCER
In hepatocellular carcinoma (HCC), high p38γ expression was
inversely related to survival [39]. In vitro, p38γ knockdown
suppressed proliferation and colony formation in HCC cell lines
[39]. Iyoda et al. showed that mutant MKK6 (a common activator
of four p38 MAPK isoforms) increases p38 pathway activation,
caspase-3 activity and subsequently induces apoptosis in human
hepatocellular carcinoma cell lines [40]. Tomás-Lobaet al. reported
that p38γ shares a high sequence homology and substrate
specificity with cyclin-dependent kinase (CDK)–cyclin protein
which regulates cell division in cancer development [39]. In this
study, p38γ expression correlated with the expression of fibrosis
markers ACTA2 and COL1A, that support the progression of liver
cancer. p38γ in human HCC biopsy samples were found to be
overexpressed compared to healthy livers. The data involving HCC
suggests the oncogenic role of p38γ in human liver tumors and
p38γ as a promising target for liver cancer therapy.
Table 1 summarizes physiological function of p38γ and its

impacts in human gastrointestinal cancers.

P38 IN IMMUNE REGULATION
p38α MAPK mediates the production of inflammatory cytokines in
different immune cells [41]. p38 enhances transcriptional activity
of NF-κB in primary human astrocytes via acetylation of p65 NF-κB
[42], a key regulator of the inflammatory response, which
contributes to chemoresistance through MDR1 expression in
cancer cells [43]. The p38α pathway can promote inflammation in
several cell types. Activated myeloid p38α enhances intestinal
insulin‐like growth factor‐1 (IGF‐1) production in intestinal
inflammation and tumorigenesis [44]. This study showed a
significant correlation between p38α phosphorylation in mono-
cytes/macrophages and IGF‐1 phosphorylation in samples from
ulcerative colitis patients and colon cancer patients. p38α

activation in dendritic cells promotes the expression of proin-
flammatory cytokines and chemokines and suppresses the
expression of anti-inflammatory cytokine in the colon of DSS
model, leading to colitis-associated tumorigenesis [45]. On the
other hand, p38α also has anti-inflammatory functions in innate
immune cells, which are mediated by the mitogen- and stress-
activated kinases 1 and 2 (MSK1/2) resulting to the expression of
anti-inflammatory genes such as IL-10, DUSP1, TTP, and IL-1ra [46].

P38 AND METASTASIS
Gamma synuclein (SNCG), a neuronal protein, is overexpressed in
different types of cancer. SNCG have been shown to promote TGF-
β-induced p38 MAPK phosphorylation by stabilizing MAPK kinase
3/6 (MKK3/6). The upregulation of p38 MAPK by SNCG leads to
increased MMP-9 expression, which enhances cancer cell invasion.
Overexpression of SNCG in liver cancer cells supports lung
metastasis, which can be suppressed by the p38 MAPK inhibitor
[47]. IL-1β induces the activation of p38 and the upregulates of
MMP-2 and MMP-9 by activating AP-1-dependent transcription in
gastric adenocarcinoma (GA) cells. Phospho-p38 is upregulated
and correlates with the expression of IL-1β, MMP-2, MMP-9 and
c-fos in human GA tissues and in a GA metastasis mouse model.
IL-1β also activated JNK but it was not associated with migration
and invasion in GA cells [48].

P38 REGULATES CELLULAR HOMEOSTASIS, AUTOPHAGY,
UBIQUITINATION, AND PROTEOLYSIS
Cellular homeostasis
The p38α pathway plays a dual role during colorectal tumorigen-
esis [49]. In normal colon epithelial cells, p38α maintains intestinal
homeostasis and barrier function to suppress colitis-associated
tumor initiation. On the other hand, p38α contributes to colon
tumor development by supporting proliferation and inhibiting
apoptosis of transformed epithelial cells. TGF-β1 mediates the
mRNA and protein levels of MMPs (MMP-2 and MMP-9) and their
inhibitors (TIMP-2 and RECK), which plays an essential role of
extracellular matrix homeostasis control in breast cancer progres-
sion. TGF-β1 phosphorylates p38 MAPK which can induce the
expression of MMP-2 and TIMP-2, and increased migration and
invasion in breast cancer cells [50].

AUTOPHAGY
Autophagy is a conserved process that recycles damaged cellular
proteins, organelles, and other cellular components to maintain
energy homeostasis and to protect cells against stress [51]. p38

Table 1. Physiological function of p38γ and its impacts in human gastrointestinal cancers.

Type of cancer Function Impacts References

Esophageal cancer Oncogene p38γ promotes the cell motility and growth in vitro. Knockdown of p38γ prevents the tumor
formation in mice. p38γ expression is markedly associated with clinical stage, lymph nodes
metastases, and tumor volume in ECSS tissues.

[28]

Gastric cancer Oncogene p38 and ERK1/2 inhibitors enhance the anti-proliferative effects of 5-FU via suppressing ERCC1
protein.

[29]

p38γ expression is down-regulated upon IFN-γ treatment and induced G1/S phase cell cycle arrest. [31]

Colorectal cancer Oncogene Overexpressed p38γ activates the c-Jun, recruits p38γ to MMP-9, leads to the increasing MMP-9
expression and enhances cell invasion.

[34]

p38γ activates β-catenin/Wnt pathways which promotes CRC development in a colitis-associated
mouse model.

[33]

Overexpression of p38γ promoted CRC cell progression. p38γ is markedly upregulated in colon
cancer tissues compared to surrounding colon epithelial cells.

[32]

Pancreatic cancer Oncogene p38γ knockout or p38γ inhibitor combination with a PFKFB3 inhibitor suppressed aerobic
glycolysis and PDAC tumorigenesis in KPC mice.

[38]

Liver cancer Oncogene High p38γ expression was associated with a lower survival rate in liver cancer while p38γ
knockdown suppressed proliferation and colony formation in HCC cell lines.

[39]
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MAPK have been shown to positively and negatively regulate
autophagy. Various stimulations (including oxidative stress, UV,
inflammatory cytokines, growth factor, and chemotherapy) can
activate p38 MAPK through the TAK1-MKK3/6-p38 and ASK1-
MKK3/6-p38 cascades [52]. Next, activated p38 phosphorylates
Atg5 leading to inhibition of autophagic membrane extension and
the transformation of LCI to LCII, which inhibits the autophagy
pathway [53]. p38 can regulate autophagy in response to
chemotherapeutic agents. Irinotecan (IRI) induces autophagy
and apoptosis through accumulation of reactive oxygen species
(ROS) and activation of the JNK and p38 MAPK pathways that
leads to tumor suppression in gastric cancer [54]. On the other
hand, Isoliquiritigenin (ISL) promotes apoptosis and blocks
autophagy through p38 activation that results in cell death and
tumor suppression in pancreatic cancer [55]. The combination of
ISL and Gemcitabine or 5-FU enhances the inhibition of cell
viability compared to single agents.

UBIQUITINATION
Ubiquitination, an important post-translational modification in cells,
is an ATP-dependent cascade adding ubiquitin, a ubiquitously
expressed protein consisting of 76 amino acids, to a substrate
protein and inducing the degradation of target protein [56].
Ubiquitin can be attached via 7 lysine residues (K6, K11, K27, K29,
K33, K48, and K63) or the first methionine (M1), which regulates
various cellular processes including endocytosis of membrane
proteins, protein degradation, and DNA repair [57–59]. Activation
of protease-activated receptor 1 (PAR1), a G protein–coupled
receptor (GPCR) for thrombin and inflammation, induces noncano-
nical p38 MAPK through autophosphorylation (independence of
MKK3/MKK6) via a ubiquitin and TAB1–TAB2–dependent pathway
on endosomes [60]. This study is the first one revealing the novel
insight of GPCR ubiquitination in mediating the p38 pathway. On the
other hand, p38 can phosphorylate Snail, which is a key regulator of
epithelial–mesenchymal transition, a major step in tumor metastasis
in ovarian cancer [61]. This process enhances Snail stability via
suppressed DYRK2-mediated phosphorylation, which is important for
GSK3β-dependent Snail phosphorylation and βTrCP-mediated Snail
ubiquitination and degradation. Activated p38γ and p38δ eliminate
the cancer stem cell properties and tumor initiating ability of non-
small cell lung cancer cells via the ubiquitination and degradation of
stemness proteins SOX2, OCT4, Nanog, KLF4 and c-MYC through
MK2-mediated phosphorylation of Hsp27, an important component
of the proteasomal degradation machinery [62].

PROTEOLYSIS
Proteolysis is a fundamental hallmark of cancer as malignant
tumors overexpress proteolytic enzymes for invasion, metastasis
and angiogenesis including plasminogen activation system (PAS)
and the matrix metalloproteinase family (MMPs) [63, 64].
Urokinase plasminogen activator (uPA) is overexpressed in gastric
carcinoma cells by enhancing the promoter activity through p38
MAPK signaling [65]. In colon cancer, the transcription factor c-Jun
is activated by p38γ, and then recruits p38γ into the matrix
metalloproteinase 9 (MMP-9) promoter leading to MMP-9 trans-
activation and cell invasion [34]. In gastric cancer, activation of p38
MAPK through IL-1 increases cell invasion in vitro and promotes
tumor metastasis in vivo via upregulation of MMP-2 and MMP-9
[48]. WEF, an aqueous extract of Eupatorium fortune in Chinese
medicine, blocked PMA-induced p38 and JNK phosphorylation
and decreased PMA-induced NF-κB activation. This results to
suppress the metastatic properties such as anchorage-
independent colony formation, migration and invasion, by down-
regulating the expression and proteolytic activity of MMP-9 in
malignant metastatic cancer [66]. In addition, arsenite, an
environmental carcinogen, triggers p38 MAPK activation, and

subsequently induced cyclin B1 proteolysis through the
ubiquitin–proteasome pathway, which contributes to G2 arrest
[67]. Following arsenite exposure, DNA repair may activate p38,
promote G2-arrest, cell apoptosis and genome instability.

P38 CONTRIBUTION TO THE TUMOR MICROENVIRONMENT
p38 plays dual role in the tumor microenvironment. In breast
cancer, tumor-derived GM-CSF induced myeloid cells ARG1
expression through p38 activation and inhibited antitumor
function of T cells. ARG1 is a biomarker for protumor M2-
polarized macrophages. This results in an immunosuppressive
tumor microenvironment which causes resistance to adoptive T
cell transfer [48]. On the other hand, AMP-activated protein kinase
(AMPK) activates p38 MAPK and phosphorylates glycogen
synthase kinase-3β (GSK-3β). This leads to inhibition of PD-1
expression in Tregs and suppresses tumor progression [68]. In
addition, CD4+ T cells with activated p38 signaling can promote
pancreatic cancer progression [69].

TARGETING P38 GAMMA FOR CANCER TREATMENT
Overall, there remains some controversy as to the role of p38γ in
tumorigenesis and as a target for therapy in gastrointestinal
cancers. In general, p38γ levels are overexpressed in many human
malignancies including breast cancer [70], gliomas [71], and
gastrointestinal cancers [28, 32, 38, 39]. This section will focus on
targeting p38 as an oncogene in cancer therapy.
The four p38 MAPK isoforms have different sensitivity to kinase

inhibitors. The p38γ and p38δ isoforms (~75% identity) are less
similar in sequence compared to p38α (~60% identity) [72]. For
instance, pharmacological studies showed that specific com-
pounds (SB203580 and other pyridinyl imidazoles) can only inhibit
p38α and p38β, but not p38γ and p38δ [73]. Three main p38α
MAPK inhibitors have been in clinical trials: MW150 (by ADDF, in
safety studies), Neflamapimod (by EIP Pharma, in efficacy studies
[74]) for Alzheimer’s disease and Losmapimod (by GlaxoSmithK-
line) for myocardial infarction [75]. PH-797804 is an oral p38
inhibitor tested for Rheumatoid Arthritis (Clinical trial
NCT00383188). There are some clinical trials targeting p38 for
cancer treatment. Ralimetinib (or LY2228820), a selective inhibitor
of p38α and p38β, is being tested as monotherapy or in
combination with other agents, for the treatment of ovarian
cancer [76], glioblastoma, and metastatic breast cancer. This
clinical trial (NCT01663857) evaluated the efficacy of ralimetinib in
combination with gemcitabine and carboplatin for patients with
recurrent platinum-sensitive epithelial ovarian cancer. The combi-
nation therapy resulted in the improvement of progression-free
survival (PFS). p38 MAPK Inhibitor LY3007113 is being tested for
advanced or metastatic cancer [77]. Talmapimod (SCIO-469), an
orally active, selective, and ATP-competitive p38α inhibitor, is
being tested as a monotherapy or in combination with
Bortezomib for relapsed multiple myeloma (Clinical trial
NCT00087867) (Table 2).
The p38 MAPK inhibitor (SB203580) significantly increased the

sensitivity of colorectal cancer cell to 5-FU, a common therapy for
colon cancer. The combination of SB203580 and 5-FU markedly
reduced cell viability through a decrease of pro-apoptotic protein
Bax expression [78]. However, long-term treatment of 5-FU results
in chemoresistance. The development of multidrug resistance
(MDR) related to the overexpression of ATP-binding cassette (ABC)
transporters decreases drug accumulation in cancer cells and
cause chemoresistance. The SW480/5-FU cells showed a signifi-
cantly increased protein expression level of MDR-related proteins
(P-gp, MRP1 and ABCG2). Noscapine treatment decreased the
expression of these proteins in the SW480/5-FU cells, and
combination with p38 MAPK inhibition enhances the sensitivity
of 5-FU-resistant colon cancer cells to noscapine [79].
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Until now, there is one p38γ inhibitor named pirfenidone
(PFD) that suppressed pro-inflammatory cytokines and tumor
growth in a colitis-associated CRC model [33] and pancreatic
cancer mouse model [38]. Pirfenidone has been clinically tested
for patients with idiopathic pulmonary fibrosis [80]. A combined
p38γ and p38δ inhibitor (BIRB796) reduced IFN-γ [81]. A potent
p38γ inhibitor (F7 or PIK75) effectively suppressed tumor growth
in a cutaneous T-cell lymphoma (CTCL) mouse model [82]. This
small molecule p38γ inhibitor has been screened through a
high-throughput kinase inhibitor library. F7 or PIK75 inhibited
p38γ kinase activity, significantly reduced tumors burden in
mice, and eliminated CD4+ malignant CTCL cells but not
healthy CD4+ cells. Based on the Drugbank platform, several
p38γ-targeted drugs including phosphonothreonine, phosphoa-
mino phosphonicacid-adenylate ester, CEP-1347 and KC706 are
being investigated and tested [83, 84].
In the past 15 years immnunotherapy has evolved as a therapeutic

strategy for several solid tumors. Different types of immunotherapies
have been investigated in GI cancers, including adoptive T-cell
transfer [85, 86], dendritic cell vaccines [87, 88], peptide vaccines
[89, 90], and immune checkpoint inhibitors [91–94].
Recently, using CRISPR-Cas9 targeted 25 TCR-driven kinases,

Gurusamy et al. found that knockout MAPK14 (p38α) can increase

T cell expansion and memory. This also decreases reactive
oxidative stress (ROS), and genomic stress (gH2AX) which
accounts for an effective anti-tumor T cell [95]. Anti-CD19 CAR
T cells expanded with the p38 inhibitor (BIRB796) markedly
suppressed tumor growth and enhanced survival in tumor bearing
mice. Therefore, it is interesting to combine p38 inhibitors and
other immunotherapies like adoptive T cell transfer to enhance
therapeutic effects in GI cancers.

CONCLUSION
p38 MAPKs have been explored as regulators of environmental stress
and inflammation as well as mediators of homeostasis maintenance.
Recent studies implicate crucial functions of p38α in the tumorigen-
esis and cancer development. In this review, we summarized the
primary impact of p38 in gastrointestinal cancers, in which p38 is
overexpressed, plays as an oncogene through regulation of various
cellular processes (metastasis, autophagy, ubiquitylation and proteo-
lysis) and facilitating tumor malignancy (Fig. 3). Future research work
will clarify which isoform of p38 is more important and valuable for
combination therapy in gastrointestinal cancers. An in-depth under-
standing of the p38 pathway and downstream mechanisms will
translate into better therapeutic strategies.

Table 2. p38 inhibitors in clinical trials.

Inhibitor Target Disease Studies

MW150 p38α Alzheimer NCT05194163: safety study (phase 2)

Neflamapimod p38α Alzheimer NCT03402659: efficacy study (phase 2) [74]

Dementia With Lewy Bodies NCT04001517: efficacy study (phase 2)

Losmapimod p38α and p38β Myocardial infarction NCT00910962: safety and efficacy study (phase 2) [75]

PH-797804 p38α Rheumatoid Arthritis NCT00383188: safety and efficacy study (phase 2)

Ralimetinib (LY2228820) p38α and p38β Ovarian cancer NCT01663857: in combination with gemcitabine [76]

Advanced cancer NCT01393990

Metastatic breast cancer NCT02322853

Glioblastoma NCT02364206: in combination with Temozolomide and radiotherapy

LY3007113 p38α Advanced cancer NCT01463631: safety study (phase 1) [77]

Talmapimod (SCIO-469) p38α and p38β Multiple myeloma NCT00087867: monotherapy or in combination with Bortezomib (phase 2)

Fig. 3 p38 in cancer hallmarks and immune response.
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