Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Respective roles of Pik3ca mutations and cyproterone acetate impregnation in mouse meningioma tumorigenesis

Abstract

Despite their rarity, PIK3CA mutations in meningiomas have raised interest as potentially targetable, ubiquitous mutations owing to their presence in sporadic benign and malignant tumors but also in hormone-related cases. Using new genetically engineered mouse models, we here demonstrate that Pik3ca mutations in postnatal meningeal cells are sufficient to promote meningioma formation but also tumor progression in mice. Conversely, hormone impregnation, whether alone or in association with Pik3ca and Nf2 mutations, fails to induce meningioma tumorigenesis while promoting breast tumor formation. We then confirm in vitro the effect of Pik3ca mutations but not hormone impregnation on the proliferation of primary cultures of mouse meningeal cells. Finally, we show by exome analysis of breast tumors and meninges that hormone impregnation promotes breast tumor formation without additional somatic oncogenic mutation but is associated with an increased mutational burden on Pik3ca-mutant background. Taken together, these results tend to suggest a prominent role of Pik3ca mutations over hormone impregnation in meningioma tumorigenesis, the exact effect of the latter is still to be discovered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunohistochemical characterization of progesterone receptors in mouse meninges.
Fig. 2: Kaplan–Meier cumulative survival curves.
Fig. 3: Pathological characterization of Pik3ca-induced meningiomas in mice.
Fig. 4: Pathological characterization of CPA-induced lesions in mice.
Fig. 5: Effect of Pik3ca mutations and CPA impregnation in meningeal cells in vitro.
Fig. 6: Exome sequencing of mammary tumors and meninges under cyproterone acetate impregnation.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 2015;17:iv1–62.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339:1077–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45:285–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clark VE, Harmancı AS, Bai H, Youngblood MW, Lee TI, Baranoski JF, et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat Genet. 2016;48:1253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sahm F, Schrimpf D, Stichel D, Jones DTW, Hielscher T, Schefzyk S, et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 2017;18:682–94.

    Article  CAS  PubMed  Google Scholar 

  6. Choudhury A, Magill ST, Eaton CD, Prager BC, Chen WC, Cady MA, et al. Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. Nat Genet. 2022;54:649–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Youngblood MW, Miyagishima DF, Jin L, Gupte T, Li C, Duran D, et al. Associations of meningioma molecular subgroup and tumor recurrence. Neuro Oncol. 2021;23:783–94.

    Article  CAS  PubMed  Google Scholar 

  8. Coy S, Rashid R, Stemmer-Rachamimov A, Santagata S. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol. 2020;139:643–65.

    Article  PubMed  Google Scholar 

  9. Abedalthagafi M, Bi WL, Aizer AA, Merrill PH, Brewster R, Agarwalla PK, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol. 2016;18:649–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neurooncol. 2010;99:307–14.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Poisson M, Magdelenat H, Foncin JF, Bleibel JM, Philippon J, Pertuiset B, et al. [Estrogen and progestin receptors in meningiomas: a study in 22 cases (author’s transl)]. Rev Neurol. 1980;136:193–203.

    CAS  PubMed  Google Scholar 

  12. Kerschbaumer J, Freyschlag CF, Stockhammer G, Taucher S, Maier H, Thomé C, et al. Hormone-dependent shrinkage of a sphenoid wing meningioma after pregnancy: case report. J Neurosurg. 2016;124:137–40.

    Article  PubMed  Google Scholar 

  13. Weill A, Nguyen P, Labidi M, Cadier B, Passeri T, Duranteau L, et al. Use of high dose cyproterone acetate and risk of intracranial meningioma in women: cohort study. BMJ. 2021;372:n37.

    Article  PubMed  Google Scholar 

  14. Peyre M, Gaillard S, de Marcellus C, Giry M, Bielle F, Villa C, et al. Progestin-associated shift of meningioma mutational landscape. Ann Oncol J Eur Soc Med Oncol. 2018;29:681–6.

    Article  CAS  Google Scholar 

  15. Alcolado R, Weller RO, Parrish EP, Garrod D. The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol. 1988;14:1–17.

    Article  CAS  PubMed  Google Scholar 

  16. Leães CGS, Meurer RT, Coutinho LB, Ferreira NP, Pereira-Lima JFS, da Costa Oliveira M. Immunohistochemical expression of aromatase and estrogen, androgen and progesterone receptors in normal and neoplastic human meningeal cells. Neuropathol J Jpn Soc Neuropathol. 2010;30:44–9.

    Article  Google Scholar 

  17. Perrot-Applanat M, Groyer-Picard MT, Kujas M. Immunocytochemical study of progesterone receptor in human meningioma. Acta Neurochir. 1992;115:20–30.

    Article  CAS  PubMed  Google Scholar 

  18. Meffre D, Delespierre B, Gouézou M, Leclerc P, Vinson GP, Schumacher M, et al. The membrane-associated progesterone-binding protein 25-Dx is expressed in brain regions involved in water homeostasis and is up-regulated after traumatic brain injury. J Neurochem. 2005;93:1314–26.

    Article  CAS  PubMed  Google Scholar 

  19. Niu C, Yu J, Zou T, Lu Y, Deng L, Yun H, et al. Identification of hematopoietic stem cells residing in the meninges of adult mice at steady state. Cell Rep. 2022;41:111592.

    Article  CAS  PubMed  Google Scholar 

  20. Wang AZ, Bowman-Kirigin JA, Desai R, Kang L-I, Patel PR, Patel B, et al. Single-cell profiling of human dura and meningioma reveals cellular meningeal landscape and insights into meningioma immune response. Genome Med. 2022;14:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peyre M, Miyagishima D, Bielle F, Chapon F, Sierant M, Venot Q, et al. Somatic PIK3CA mutations in sporadic cerebral cavernous malformations. N Engl J Med. 2021;385:996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peyre M, Stemmer-Rachamimov A, Clermont-Taranchon E, Quentin S, El-Taraya N, Walczak C, et al. Meningioma progression in mice triggered by Nf2 and Cdkn2ab inactivation. Oncogene. 2013;32:4264–72.

    Article  CAS  PubMed  Google Scholar 

  23. Sartorius CA, Harvell DME, Shen T, Horwitz KB. Progestins initiate a luminal to myoepithelial switch in estrogen-dependent human breast tumors without altering growth. Cancer Res. 2005;65:9779–88.

    Article  CAS  PubMed  Google Scholar 

  24. Kalamarides M, Stemmer-Rachamimov AO, Niwa-Kawakita M, Chareyre F, Taranchon E, Han Z-Y, et al. Identification of a progenitor cell of origin capable of generating diverse meningioma histological subtypes. Oncogene. 2011;30:2333–44.

    Article  CAS  PubMed  Google Scholar 

  25. Kalamarides M, Niwa-Kawakita M, Leblois H, Abramowski V, Perricaudet M, Janin A, et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev. 2002;16:1060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boetto J, Apra C, Bielle F, Peyre M, Kalamarides M. Selective vulnerability of the primitive meningeal layer to prenatal Smo activation for skull base meningothelial meningioma formation. Oncogene. 2018;37:4955–63.

    Article  CAS  PubMed  Google Scholar 

  27. Kinross KM, Montgomery KG, Kleinschmidt M, Waring P, Ivetac I, Tikoo A, et al. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice. J Clin Invest. 2012;122:553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pang JC, Chung NYF, Chan NHL, Poon WS, Thomas T, Ng H. Rare mutation of PIK3CA in meningiomas. Acta Neuropathol. 2006;111:284–5.

    Article  PubMed  Google Scholar 

  29. Collord G, Tarpey P, Kurbatova N, Martincorena I, Moran S, Castro M, et al. An integrated genomic analysis of anaplastic meningioma identifies prognostic molecular signatures. Sci Rep. 2018;8:13537.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Patel AJ, Wan Y-W, Al-Ouran R, Revelli J-P, Cardenas MF, Oneissi M, et al. Molecular profiling predicts meningioma recurrence and reveals loss of DREAM complex repression in aggressive tumors. Proc Natl Acad Sci USA. 2019;116:21715–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vasudevan HN, Braunstein SE, Phillips JJ, Pekmezci M, Tomlin BA, Wu A, et al. Comprehensive molecular profiling identifies FOXM1 as a key transcription factor for meningioma proliferation. Cell Rep. 2018;22:3672–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Proctor DT, Patel Z, Lama S, Resch L, van Marle G, Sutherland GR. Identification of PD-L2, B7-H3 and CTLA-4 immune checkpoint proteins in genetic subtypes of meningioma. Oncoimmunology. 2019;8:e1512943.

    Article  PubMed  Google Scholar 

  33. Maxwell M, Galanopoulos T, Neville-Golden J, Antoniades HN. Expression of androgen and progesterone receptors in primary human meningiomas. J Neurosurg. 1993;78:456–62.

    Article  CAS  PubMed  Google Scholar 

  34. Carroll RS, Glowacka D, Dashner K, Black PM. Progesterone receptor expression in meningiomas. Cancer Res. 1993;53:1312–6.

    CAS  PubMed  Google Scholar 

  35. Shamseddin M, De Martino F, Constantin C, Scabia V, Lancelot A-S, Laszlo C, et al. Contraceptive progestins with androgenic properties stimulate breast epithelial cell proliferation. EMBO Mol Med. 2021;13:e14314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schuppler J, Günzel P. Liver tumors and steroid hormones in rats and mice. Arch Toxicol Suppl. 1979;2:181–95.

  37. Tucker MJ, Kalinowski AE, Orton TC. Carcinogenicity of cyproterone acetate in the mouse. Carcinogenesis. 1996;17:1473–6.

    Article  CAS  PubMed  Google Scholar 

  38. Schulte-Hermann R, Timmermann-Trosiener I, Schuppler J. Promotion of spontaneous preneoplastic cells in rat liver as a possible explanation of tumor production by nonmutagenic compounds. Cancer Res. 1983;43:839–44.

    CAS  PubMed  Google Scholar 

  39. Kalamarides M, Peyre M. Dramatic shrinkage with reduced vascularization of large meningiomas after cessation of progestin treatment. World Neurosurg. 2017;101:814.e7–e10.

    Article  PubMed  Google Scholar 

  40. Moore L, Leongamornlert D, Coorens THH, Sanders MA, Ellis P, Dentro SC, et al. The mutational landscape of normal human endometrial epithelium. Nature. 2020;580:640–6.

    Article  CAS  PubMed  Google Scholar 

  41. Kostecka A, Nowikiewicz T, Olszewski P, Koczkowska M, Horbacz M, Heinzl M, et al. High prevalence of somatic PIK3CA and TP53 pathogenic variants in the normal mammary gland tissue of sporadic breast cancer patients revealed by duplex sequencing. NPJ Breast Cancer. 2022;8:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Batchinsky-Parrou V, Barraud S, Kleiber JC, Litre F. First case of cyproterone acetate induced multiple meningiomas in identical female twins: a case report. Neurochirurgie. 2022;68:323–6.

    Article  CAS  PubMed  Google Scholar 

  43. de Germay S, Lafaurie M, Dupuy M, de Germay B. Meningiomas after cyproterone acetate exposure: case reports in twin sisters. Therapie. 2021;76:255–7.

    Article  PubMed  Google Scholar 

  44. Adams JR, Xu K, Liu JC, Agamez NMR, Loch AJ, Wong RG, et al. Cooperation between Pik3ca and p53 mutations in mouse mammary tumor formation. Cancer Res. 2011;71:2706–17.

    Article  CAS  PubMed  Google Scholar 

  45. Tucker MJ, Jones DV. Effects of cyproterone acetate in C57B1/10J mice. Hum Exp Toxicol. 1996;15:64–6.

    Article  CAS  PubMed  Google Scholar 

  46. Le Roux I, Konge J, Le Cam L, Flamant P, Tajbakhsh S. Numb is required to prevent p53-dependent senescence following skeletal muscle injury. Nat Commun. 2015;6:8528.

  47. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–7.

    Article  CAS  PubMed  Google Scholar 

  48. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;2017:PO.17.00011.

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the ICMice for their help in mouse handling and husbandry, the iGenSaq platform for exome analysis and especially Agnes Rastetter for libraries prep and sequencing, the Histomics platform, and gratefully acknowledge Gareau Thomas at ICM Data Analysis Core for the bioinformatics analysis.

Funding

This work was supported by a grant from the Fondation ARC (PJA 20171206327) to MP and a grant from Fondation de France-ANR to MK. PCC was funded by a grant from Fondation ARC (M2R20180507186). TLV was funded by a grant from Dijon University.

Author information

Authors and Affiliations

Authors

Contributions

MP was responsible for designing the study, conducting the experiments, interpreting results, and writing the first and final versions of the manuscript. PCC, TLV, ST, SH, SAJ, QV, PM, JB, AB, YT, and YD performed the experiments and interpreted the results. FB provided feedback and expertise on pathological analysis. MK contributed to the study design and critically reviewed the manuscript.

Corresponding author

Correspondence to Matthieu Peyre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted, and all applicable national guidelines for the care and use of animals were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cômes, PC., Le Van, T., Tran, S. et al. Respective roles of Pik3ca mutations and cyproterone acetate impregnation in mouse meningioma tumorigenesis. Cancer Gene Ther 30, 1114–1123 (2023). https://doi.org/10.1038/s41417-023-00621-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00621-2

Search

Quick links