Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PSMD12 interacts with CDKN3 and facilitates pancreatic cancer progression

Abstract

Proteasome 26S subunit, non-ATPase 12 (PSMD12) genes have been implicated in several types of malignancies but the role of PSMD12 in pancreatic cancer (PC) remains elusive. Bioinformatics analysis showed that PSMD12 was highly expressed in PC patients and was associated with shorter overall survival. PSMD12 was also shown to be highly expressed in PC tissues and cell lines. Upregulated PSMD12 showed enhanced cell viability, increased colony formation rate and upregulated levels of PCNA and c-Myc, while the inhibition of PSMD12 abated these levels. PSMD12 knockdown promoted cell apoptosis. The results of xenografts in nude mice confirmed that PSMD12 promoted PC tumor growth in vivo. Protein‒protein interaction network and functional enrichment analyses implied that PSMD12 may have a connection with cyclin-dependent kinase inhibitor 3 (CDKN3). Co‑immunoprecipitation and western blot results confirmed that PSMD12 could interact with and abate the ubiquitination level of CDKN3, thus stabilizing the CDKN3 protein. Rescue assays showed that PSMD12 overexpression caused cell proliferation and that knockdown-induced cell apoptosis could be reversed by CDKN3 regulation. This work reveals the essential roles of PSMD12 in the proliferation and apoptosis of PC development. PSMD12 may regulate CDKN3 expression by interacting with and abating the ubiquitination level of CDKN3, thereby participating in the malignant behavior of PC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PSMD12 is upregulated in pancreatic cancer (PC) tissues and cells.
Fig. 2: PSMD12 enhances PC cell proliferation.
Fig. 3: PSMD12 suppresses PC cell apoptosis.
Fig. 4: PSMD12 promotes PC progression in vivo.
Fig. 5: Protein‒protein interaction networks and functional enrichment analyses of PSMD12 and CDKN3.
Fig. 6: PSMD12 interacts with CDKN3.
Fig. 7: CDKN3 is involved in PSMD12-mediated malignant phenotype of PC.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author [XM].

References

  1. Ansari D, Tingstedt B, Andersson B, Holmquist F, Sturesson C, Williamsson C, et al. Pancreatic cancer: yesterday, today and tomorrow. Future Oncol. 2016;12:1929–46.

    Article  CAS  PubMed  Google Scholar 

  2. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395:2008–20.

    Article  CAS  PubMed  Google Scholar 

  3. Hartwig W, Werner J, Jäger D, Debus J, Büchler MW. Improvement of surgical results for pancreatic cancer. Lancet Oncol. 2013;14:e476–85.

    Article  PubMed  Google Scholar 

  4. Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, et al. Pancreatic cancer. Nat Rev Dis Prim. 2016;2:16022.

    Article  PubMed  Google Scholar 

  5. Liu ZH, Dong SX, Jia JH, Zhang ZL, Zhen ZG. KIF3B promotes the proliferation of pancreatic cancer. Cancer Biother Radiopharmaceut. 2019;34:355–61.

    Article  CAS  Google Scholar 

  6. Gillen S, Schuster T, Meyer Zum BĂĽschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7:e1000267.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Neoptolemos JP, Palmer DH, Ghaneh P, Psarelli EE, Valle JW, Halloran CM, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389:1011–24.

    Article  CAS  PubMed  Google Scholar 

  8. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.

    Article  CAS  PubMed  Google Scholar 

  9. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Article  Google Scholar 

  10. Ducreux M, Seufferlein T, Van Laethem JL, Laurent-Puig P, Smolenschi C, Malka D, et al. Systemic treatment of pancreatic cancer revisited. Semin Oncol. 2019;46:28–38.

    Article  CAS  PubMed  Google Scholar 

  11. KĂĽry S, Besnard T, Ebstein F, Khan TN, Gambin T, Douglas J, et al. De novo disruption of the proteasome regulatory subunit PSMD12 causes a syndromic neurodevelopmental disorder. Am J Hum Genet. 2017;100:689.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Du X, Shen X, Dai L, Bi F, Zhang H, Lu C. PSMD12 promotes breast cancer growth via inhibiting the expression of pro-apoptotic genes. Biochem Biophys Res Commun. 2020;526:368–74.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Li Z, Xu H, Liao Y, Sun C, Chen Y, et al. PSMD12 promotes glioma progression by upregulating the expression of Nrf2. Ann Transl Med. 2021;9:700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu H, Yao J, Du M, Ye J, He X, Yin L. CDKN3 promotes cell proliferation, invasion and migration by activating the AKT signaling pathway in esophageal squamous cell carcinoma. Oncol Lett. 2020;19:542–8.

    CAS  PubMed  Google Scholar 

  15. Dai W, Fang S, Cai G, Dai J, Lin G, Ye Q, et al. CDKN3 expression predicates poor prognosis and regulates adriamycin sensitivity in hepatocellular carcinoma in vitro. J Int Med Res. 2020;48:300060520936879.

    Article  CAS  PubMed  Google Scholar 

  16. Li T, Xue H, Guo Y, Guo K. CDKN3 is an independent prognostic factor and promotes ovarian carcinoma cell proliferation in ovarian cancer. Oncol Rep. 2014;31:1825–31.

    Article  CAS  PubMed  Google Scholar 

  17. Barrón EV, Roman-Bassaure E, Sánchez-Sandoval AL, Espinosa AM, Guardado-Estrada M, Medina I, et al. CDKN3 mRNA as a biomarker for survival and therapeutic target in cervical cancer. PLoS ONE. 2015;10:e0137397.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zang X, Chen M, Zhou Y, Xiao G, Xie Y, Wang X. Identifying CDKN3 gene expression as a prognostic biomarker in lung adenocarcinoma via meta-analysis. Cancer Informatics. 2015;14:183–91.

    PubMed  PubMed Central  Google Scholar 

  19. Wang J, Che W, Wang W, Su G, Zhen T, Jiang Z. CDKN3 promotes tumor progression and confers cisplatin resistance via RAD51 in esophageal cancer. Cancer Manag Res. 2019;11:3253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sawada MT, Morinaga C, Izumi K, Sawada H. The 26S proteasome assembly is regulated by a maturation-inducing hormone in starfish oocytes. Biochem Biophys Res Commun. 1999;254:338–44.

    Article  CAS  PubMed  Google Scholar 

  21. Cohen-Kaplan V, Livneh I, Avni N, Fabre B, Ziv T, Kwon YT, et al. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc Natl Acad Sci USA. 2016;113:E7490–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song Z, Li J, Zhang L, Deng J, Fang Z, Xiang X, et al. UCHL3 promotes pancreatic cancer progression and chemo-resistance through FOXM1 stabilization. Am J Cancer Res. 2019;9:1970–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohrt SE, Awadallah WN, Phillips RA 3rd, Case TC, Jin R, Nanda JS, et al. Identification of genes required for enzalutamide resistance in castration-resistant prostate cancer cells in vitro. Molr Cancer Ther. 2021;20:398–409.

    Article  CAS  Google Scholar 

  24. Fejzo MS, Anderson L, Chen HW, Guandique E, Kalous O, Conklin D, et al. Proteasome ubiquitin receptor PSMD4 is an amplification target in breast cancer and may predict sensitivity to PARPi. Genes Chromosomes Cancer. 2017;56:589–97.

    Article  CAS  PubMed  Google Scholar 

  25. Fararjeh AS, Chen LC, Ho YS, Cheng TC, Liu YR, Chang HL, et al. Proteasome 26S subunit, non-ATPase 3 (PSMD3) regulates breast cancer by stabilizing HER2 from degradation. Cancers. 2019;11:527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhi T, Jiang K, Xu X, Yu T, Zhou F, Wang Y, et al. ECT2/PSMD14/PTTG1 axis promotes the proliferation of glioma through stabilizing E2F1. Neurooncology. 2019;21:462–73.

    CAS  Google Scholar 

  27. Yu C, Cao H, He X, Sun P, Feng Y, Chen L, et al. Cyclin-dependent kinase inhibitor 3 (CDKN3) plays a critical role in prostate cancer via regulating cell cycle and DNA replication signaling. Biomed Pharmacother. 2017;96:1109–18.

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Ji S, Fu LY, Jiang T, Wu D, Meng FD. Knockdown of cyclin-dependent kinase inhibitor 3 inhibits proliferation and invasion in human gastric cancer cells. Oncol Res. 2017;25:721–31.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chang SL, Chen TJ, Lee YE, Lee SW, Lin LC, He HL. CDKN3 expression is an independent prognostic factor and associated with advanced tumor stage in nasopharyngeal carcinoma. Int J Med Sci. 2018;15:992–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu D, Zhang J, Wu Y, Shi G, Yuan H, Lu Z, et al. YY1 suppresses proliferation and migration of pancreatic ductal adenocarcinoma by regulating the CDKN3/MdM2/P53/P21 signaling pathway. Int J Cancer. 2018;142:1392–404.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao J, Zhai B, Gygi SP, Goldberg AL. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci USA. 2015;112:15790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82:373–428.

    Article  CAS  PubMed  Google Scholar 

  33. Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017;169:792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clague MJ, Urbé S. Ubiquitin: same molecule, different degradation pathways. Cell. 2010;143:682–5.

    Article  CAS  PubMed  Google Scholar 

  35. Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans. 2007;35(Pt. 1):12–7.

    Article  CAS  PubMed  Google Scholar 

  36. Xuan DTM, Wu CC, Kao TJ, Ta HDK, Anuraga G, Andriani V, et al. Prognostic and immune infiltration signatures of proteasome 26S subunit, non-ATPase (PSMD) family genes in breast cancer patients. Aging. 2021;13:24882–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016;26:484–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R, et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 2012;22:345–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song Y, Li S, Ray A, Das DS, Qi J, Samur MK, et al. Blockade of deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Oncogene. 2017;36:5631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou C, Li H, Han X, Pang H, Wu M, Tang Y, et al. Prognostic value and molecular mechanisms of proteasome 26S subunit, non-ATPase family genes for pancreatic ductal adenocarcinoma patients after pancreaticoduodenectomy. J Invest Surg. 2022;35:330–46.

    Article  PubMed  Google Scholar 

  41. Salah Fararjeh A, Al-Khader A, Al-Saleem M, Abu Qauod R. The prognostic significance of proteasome 26S subunit, non-ATPase (PSMD) genes for bladder urothelial carcinoma patients. Cancer Informatics. 2021;20:11769351211067692.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JM designed the study and contributed to drafting the manuscript. WZ, YY and BW collated the data, carried out data analyses, and produced the initial draft of the manuscript. XM contributed to revising the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Xiangpeng Meng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal experiments were approved by the Institutional Animal Care and Use Committee of Shengjing Hospital of China Medical University (code: 2022PS918K). All patients involved in this study were aware and provided informed consent. This study was approved by the Ethics Committee of the Shengjing Hospital of China Medical University (code: 2022PS919K) and performed in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Zhou, W., Yuan, Y. et al. PSMD12 interacts with CDKN3 and facilitates pancreatic cancer progression. Cancer Gene Ther 30, 1072–1083 (2023). https://doi.org/10.1038/s41417-023-00609-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00609-y

Search

Quick links