Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

EZH1/2 as targets for cancer therapy

Subjects

Abstract

The enhancer of zeste homolog 2 (EZH2) and its highly related homolog EZH1 are considered to be epigenetic silencing factors, and they play key roles in the growth and differentiation of cells as the core components of polycomb repressive complex 2 (PRC2). EZH1 and EZH2 are known to have a role in human malignancies, and alterations in these two genes have been implicated in transformation of human malignancies. Inhibition of EZH1/2 has been shown to result in tumor regression in humans and has been studied and evaluated in the preclinical setting and in multiple clinical trials at various levels. Our work thus contributes to the understanding of the relationship between regulatory molecules associated with EZH1/2 proteins and tumor progression, and may provide new insights for mechanism-based EZH1/2-targeted therapy in tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structure of EZH1 and EZH2.
Fig. 2: The function of EZH1 and EZH2.
Fig. 3: Expression levels of EZH1 in TCGA database.
Fig. 4: EZH1 in oncology.
Fig. 5: Expression levels of EZH2 in human tumors.
Fig. 6: EZH2 in oncology.
Fig. 7: EZH2 inhibitors in early studies.
Fig. 8: EZH1/2 inhibitors in early studies.

Similar content being viewed by others

References

  1. Lee CH, Yu JR, Kumar S, Jin Y, LeRoy G, Bhanu N, et al. Allosteric activation dictates PRC2 activity independent of its recruitment to chromatin. Mol Cell. 2018;70:422–34.e6.

    Article  CAS  Google Scholar 

  2. Chen S, Jiao L, Shubbar M, Yang X, Liu X. Unique Structural platforms of SUZ12 dictate distinct classes of PRC2 for chromatin binding. Mol Cell. 2018;69:840–52.e5–.

    Article  CAS  Google Scholar 

  3. Chammas P, Mocavini I, Di Croce L. Engaging chromatin: PRC2 structure meets function. Br J cancer. 2020;122:315–28.

    Article  CAS  Google Scholar 

  4. Zhao Y, Guan YY, Zhao F, Yu T, Zhang SJ, Zhang YZ, et al. Recent strategies targeting embryonic ectoderm development (EED) for cancer therapy: allosteric inhibitors, PPI inhibitors, and PROTACs. Eur J Medicinal Chem. 2022;231:114144.

    Article  CAS  Google Scholar 

  5. Yusufova N, Kloetgen A, Teater M, Osunsade A, Camarillo JM, Chin CR, et al. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature. 2021;589:299–305.

    Article  CAS  Google Scholar 

  6. Völkel P, Bary A, Raby L, Chapart A, Dupret B, Le Bourhis X, et al. Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development. Sci Rep. 2019;9:4319.

    Article  Google Scholar 

  7. Bodega B, Marasca F, Ranzani V, Cherubini A, Della Valle F, Neguembor MV, et al. A cytosolic Ezh1 isoform modulates a PRC2-Ezh1 epigenetic adaptive response in postmitotic cells. Nat Struct Mol Biol. 2017;24:444–52.

    Article  CAS  Google Scholar 

  8. Liu P, Shuaib M, Zhang H, Nadeef S, Orlando V. Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cells. Epigenetics Chromatin. 2019;12:78.

    Article  CAS  Google Scholar 

  9. Grau D, Zhang Y, Lee CH, Valencia-Sánchez M, Zhang J, Wang M, et al. Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction. Nat Commun. 2021;12:714.

    Article  CAS  Google Scholar 

  10. McMullen ER, Skala SL, Gonzalez ME, Djomehri S, Chandrashekar DS, Varambally S, et al. Subcellular localization of EZH2 phosphorylated at T367 stratifies metaplastic breast carcinoma subtypes. Breast Cancer. 2021;28:496–505.

    Article  Google Scholar 

  11. Anwar T, Arellano-Garcia C, Ropa J, Chen YC, Kim HS, Yoon E, et al. p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat Commun. 2018;9:2801.

    Article  Google Scholar 

  12. Aoyama K, Oshima M, Koide S, Suzuki E, Mochizuki-Kashio M, Kato Y, et al. EZH1 targets bivalent genes to maintain self-renewing stem cells in EZH2-insufficient myelodysplastic syndrome. iScience. 2018;9:161–74.

    Article  CAS  Google Scholar 

  13. Wassef M, Luscan A, Aflaki S, Zielinski D, Jansen P, Baymaz HI, et al. EZH1/2 function mostly within canonical PRC2 and exhibit proliferation-dependent redundancy that shapes mutational signatures in cancer. Proc Natl Acad Sci. 2019;116:6075–80.

    Article  CAS  Google Scholar 

  14. Yamagishi M, Hori M, Fujikawa D, Ohsugi T, Honma D, Adachi N, et al. Targeting excessive EZH1 and EZH2 activities for abnormal histone methylation and transcription network in malignant lymphomas. Cell Rep. 2019;29:e7.

    Article  Google Scholar 

  15. Liu H, Hilliard S, Kelly E, Chen CH, Saifudeen Z, El-Dahr SS. The polycomb proteins EZH1 and EZH2 co-regulate chromatin accessibility and nephron progenitor cell lifespan in mice. J Biol Chem. 2020;295:11542–58.

    Article  CAS  Google Scholar 

  16. Li W, Bi C, Han Y, Tian T, Wang X, Bao H, et al. Targeting EZH1/2 induces cell cycle arrest and inhibits cell proliferation through reactivation of p57(CDKN1C) and TP53INP1 in mantle cell lymphoma. Cancer Biol Med. 2019;16:530–41.

    Article  CAS  Google Scholar 

  17. Zeng Z, Yang Y, Wu H. MicroRNA-765 alleviates the malignant progression of breast cancer via interacting with EZH1. Am J Transl Res. 2019;11:4500–7.

    CAS  Google Scholar 

  18. Schümann FL, Groß E, Bauer M, Rohde C, Sandmann S, Terziev D, et al. Divergent effects of EZH1 and EZH2 protein expression on the prognosis of patients with T-cell lymphomas. Biomedicines. 2021;9.

  19. Ping M, Wang S, Guo Y, Jia J. TRIM21 improves apatinib treatment in gastric cancer through suppressing EZH1 stability. Biochem Biophys Res Commun. 2022;586:177–84.

    Article  CAS  Google Scholar 

  20. Jung CK, Kim Y, Jeon S, Jo K, Lee S, Bae JS. Clinical utility of EZH1 mutations in the diagnosis of follicular-patterned thyroid tumors. Hum Pathol. 2018;81:9–17.

    Article  CAS  Google Scholar 

  21. Zhang Y, Li L, Lu KX, Yu LB, Meng J, Liu CY. LncRNA SNHG3 is responsible for the deterioration of colorectal carcinoma through regulating the miR-370-5p/EZH1 axis. Eur Rev Med Pharm Sci. 2021;25:6131–7.

    CAS  Google Scholar 

  22. Zhang Q, Deng X, Tang X, You Y, Mei M, Liu D, et al. MicroRNA-20a suppresses tumor proliferation and metastasis in hepatocellular carcinoma by directly targeting EZH1. Front Oncol. 2021;11:737986.

    Article  Google Scholar 

  23. Dou L, Yan F, Pang J, Zheng D, Li D, Gao L, et al. Protein lysine 43 methylation by EZH1 promotes AML1-ETO transcriptional repression in leukemia. Nat Commun. 2019;10:5051.

    Article  Google Scholar 

  24. Wang L, Liu N, Xue X, Zhou S. The effect of overexpression of the enhancer of zeste homolog 1 (EZH1) gene on aristolochic acid-induced injury in HK-2 human kidney proximal tubule cells in vitro. Med Sci Monit. 2019;25:801–10.

    Article  Google Scholar 

  25. Li J, Fan X, Wang Q, Gong Y, Guo L. Long noncoding RNA PRNCR1 reduces renal epithelial cell apoptosis in cisplatin-induced AKI by regulating miR-182-5p/EZH1. Kidney Blood Press Res. 2021;46:162–72.

    Article  CAS  Google Scholar 

  26. Zheng J, Chen L. Non-coding RNAs-EZH2 regulatory mechanisms in cervical cancer: The current state of knowledge. Biomed pharmacother. 2022;146:112123.

    Article  CAS  Google Scholar 

  27. Zhang H, Liang H, Wu S, Zhang Y, Yu Z. MicroRNA-638 induces apoptosis and autophagy in human liver cancer cells by targeting enhancer of zeste homolog 2 (EZH2). Environ Toxicol Pharm. 2021;82:103559.

    Article  CAS  Google Scholar 

  28. Paskeh MDA, Mehrabi A, Gholami MH, Zabolian A, Ranjbar E, Saleki H, et al. EZH2 as a new therapeutic target in brain tumors: molecular landscape, therapeutic targeting and future prospects. Biomed Pharmacother. 2022;146:112532.

    Article  CAS  Google Scholar 

  29. Zhang S, Liao W, Wu Q, Huang X, Pan Z, Chen W, et al. LINC00152 upregulates ZEB1 expression and enhances epithelial-mesenchymal transition and oxaliplatin resistance in esophageal cancer by interacting with EZH2. Cancer Cell Int. 2020;20:569.

    Article  CAS  Google Scholar 

  30. Shao X, Zhao T, Xi L, Zhang Y, He J, Zeng J, et al. LINC00565 promotes the progression of colorectal cancer by upregulating EZH2. Oncol Lett. 2021;21:53.

    Article  CAS  Google Scholar 

  31. Li HS, Xu Y. Inhibition of EZH2 via the STAT3/HOTAIR signalling axis contributes to cell cycle arrest and apoptosis induced by polyphyllin I in human non-small cell lung cancer cells. Steroids 2020;164:108729.

    Article  CAS  Google Scholar 

  32. Sawicka-Gutaj N, Shawkat S, Andrusiewicz M, Ziółkowska P, Czarnywojtek A, Gut P, et al. EZH2 and SMYD3 expression in papillary thyroid cancer. Oncol Lett. 2021;21:342.

    Article  CAS  Google Scholar 

  33. Bai Z, Wu Y, Bai S, Yan Y, Kang H, Ma W, et al. Long non-coding RNA SNGH7 Is activated by SP1 and exerts oncogenic properties by interacting with EZH2 in ovarian cancer. J Cell Mol Med. 2020;24:7479–89.

    Article  CAS  Google Scholar 

  34. Zheng XJ, Li W, Yi J, Liu JY, Ren LW, Zhu XM, et al. EZH2 regulates expression of FOXC1 by mediating H3K27me3 in breast cancers. Acta Pharm Sin. 2021;42:1171–9.

    Article  CAS  Google Scholar 

  35. Gao B, Liu X, Li Z, Zhao L, Pan Y. Overexpression of EZH2/NSD2 histone methyltransferase axis predicts poor prognosis and accelerates tumor progression in triple-negative breast cancer. Front Oncol. 2020;10:600514.

    Article  Google Scholar 

  36. Sasaki M, Sato Y. An immunohistochemical panel of insulin-like growth factor II mRNA-binding protein 3 (IMP3), enhancer of zeste homolog 2 (EZH2), and p53 is useful for a diagnosis in bile duct biopsy. Virchows Arch 2021;479:697–703.

    Article  CAS  Google Scholar 

  37. Patil S, Steuber B, Kopp W, Kari V, Urbach L, Wang X, et al. EZH2 regulates pancreatic cancer subtype identity and tumor progression via transcriptional repression of GATA6. Cancer Res. 2020;80:4620–32.

    Article  CAS  Google Scholar 

  38. Xu L, Meng X, Xu N, Fu W, Tan H, Zhang L, et al. Gambogenic acid inhibits fibroblast growth factor receptor signaling pathway in erlotinib-resistant non-small-cell lung cancer and suppresses patient-derived xenograft growth. Cell Death Dis. 2018;9:262–76.

    Article  Google Scholar 

  39. Fan DC, Zhao YR, Qi H, Hou JX, Zhang TH. MiRNA-506 presents multiple tumor suppressor activities by targeting EZH2 in nasopharyngeal carcinoma. Auris Nasus Larynx. 2020;47:632–42.

    Article  Google Scholar 

  40. Wen Y, Hou Y, Yi X, Sun S, Guo J, He X, et al. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics 2021;11:1795–813.

    Article  CAS  Google Scholar 

  41. Zhou J, Liu M, Sun H, Feng Y, Xu L, Chan AWH, et al. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy. Gut 2018;67:931–44.

    Article  CAS  Google Scholar 

  42. Song JY, Perry AM, Herrera AF, Chen L, Skrabek P, Nasr MR, et al. Double-hit signature with TP53 abnormalities predicts poor survival in patients with germinal center type diffuse large B-cell lymphoma treated with R-CHOP. Clin Cancer Res. 2021;27:1671–80.

    Article  CAS  Google Scholar 

  43. Ma J, Zhang J, Weng YC, Wang JC. EZH2-mediated microRNA-139-5p regulates epithelial-mesenchymal transition and lymph node metastasis of pancreatic cancer. Mol Cells. 2018;41:868–80.

    CAS  Google Scholar 

  44. Chu W, Zhang X, Qi L, Fu Y, Wang P, Zhao W, et al. The EZH2-PHACTR2-AS1-Ribosome axis induces genomic instability and promotes growth and metastasis in breast cancer. Cancer Res. 2020;80:2737–50.

    Article  CAS  Google Scholar 

  45. Wang X, Cao W, Zhang J, Yan M, Xu Q, Wu X, et al. A covalently bound inhibitor triggers EZH2 degradation through CHIP-mediated ubiquitination. Embo j. 2017;36:1243–60.

    Article  Google Scholar 

  46. Gui T, Liu M, Yao B, Jiang H, Yang D, Li Q, et al. TCF3 is epigenetically silenced by EZH2 and DNMT3B and functions as a tumor suppressor in endometrial cancer. Cell Death Differ. 2021;28:3316–28.

    Article  CAS  Google Scholar 

  47. Chakraborty AA, Nakamura E, Qi J, Creech A, Jaffe JD, Paulk J, et al. HIF activation causes synthetic lethality between the VHL tumor suppressor and the EZH1 histone methyltransferase. Sci Transl Med. 2017;9:eaal5272.

    Article  Google Scholar 

  48. Tang B, Sun R, Wang D, Sheng H, Wei T, Wang L, et al. ZMYND8 preferentially binds phosphorylated EZH2 to promote a PRC2-dependent to -independent function switch in hypoxia-inducible factor-activated cancer. Proc Natl Acad Sci USA. 2021;118:e2019052118.

    Article  CAS  Google Scholar 

  49. Schmidt A, Behrendt L, Eybe J, Warmann SW, Schleicher S, Fuchs J, et al. The effect of direct and indirect EZH2 inhibition in rhabdomyosarcoma cell lines. Cancers 2021;14:41–56.

    Article  Google Scholar 

  50. De Martino M, Nicolau-Neto P, Ribeiro Pinto LF, Traverse-Glehen A, Bachy E, Gigantino V, et al. HMGA1 induces EZH2 overexpression in human B-cell lymphomas. Am J cancer Res. 2021;11:2174–87.

    Google Scholar 

  51. Han H, Wang S, Meng J, Lyu G, Ding G, Hu Y, et al. Long noncoding RNA PART1 restrains aggressive gastric cancer through the epigenetic silencing of PDGFB via the PLZF-mediated recruitment of EZH2. Oncogene 2020;39:6513–28.

    Article  CAS  Google Scholar 

  52. Guan X, Deng H, Choi UL, Li Z, Yang Y, Zeng J, et al. EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis. Oncogene 2020;39:7127–41.

    Article  Google Scholar 

  53. Sanches JGP, Song B, Zhang Q, Cui X, Yabasin IB, Ntim M, et al. The role of KDM2B and EZH2 in regulating the stemness in colorectal cancer through the PI3K/AKT pathway. Front Oncol. 2021;11:637298–313.

    Article  Google Scholar 

  54. Li Z, Wang D, Lu J, Huang B, Wang Y, Dong M, et al. Methylation of EZH2 by PRMT1 regulates its stability and promotes breast cancer metastasis. Cell Death Differ. 2020;27:3226–42.

    Article  CAS  Google Scholar 

  55. You Z, Peng D, Cao Y, Zhu Y, Yin J, Zhang G, et al. P53 suppresses the progression of hepatocellular carcinoma via miR-15a by decreasing OGT expression and EZH2 stabilization. J Cell Mol Med. 2021;25:9168–82.

    Article  CAS  Google Scholar 

  56. Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, et al. SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell. 2020;38:350–65.e7.

    Article  CAS  Google Scholar 

  57. Wang L, Jin Q, Lee JE, Su IH, Ge K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci USA. 2010;107:7317–22.

    Article  CAS  Google Scholar 

  58. Jin B, Zhang P, Zou H, Ye H, Wang Y, Zhang J, et al. Verification of EZH2 as a druggable target in metastatic uveal melanoma. Mol Cancer. 2020;19:52–67.

    Article  CAS  Google Scholar 

  59. Tao T, Chen M, Jiang R, Guan H, Huang Y, Su H, et al. Involvement of EZH2 in aerobic glycolysis of prostate cancer through miR-181b/HK2 axis. Oncol Rep. 2017;37:1430–6.

    Article  CAS  Google Scholar 

  60. Guan X, Shi A, Zou Y, Sun M, Zhan Y, Dong Y, et al. EZH2-mediated microRNA-375 upregulation promotes progression of breast cancer via the inhibition of FOXO1 and the p53 signaling pathway. Front Genet. 2021;12:633756–70.

    Article  CAS  Google Scholar 

  61. Wang L, Chen C, Song Z, Wang H, Ye M, Wang D, et al. EZH2 depletion potentiates MYC degradation inhibiting neuroblastoma and small cell carcinoma tumor formation. Nat Commun. 2022;13:12–28.

    Article  Google Scholar 

  62. Duan D, Shang M, Han Y, Liu J, Liu J, Kong SH, et al. EZH2-CCF-cGAS axis promotes breast cancer metastasis. Int J Mol Sci. 2022;23:1788–804.

    Article  CAS  Google Scholar 

  63. Khan H, Jia W, Yu Z, Zaib T, Feng J, Jiang Y, et al. Emodin succinyl ester inhibits malignant proliferation and migration of hepatocellular carcinoma by suppressing the interaction of AR and EZH2. Biomedicine Pharmacother. 2020;128:110244–52.

    Article  CAS  Google Scholar 

  64. Wu L, Gong Y, Yan T, Zhang H. LINP1 promotes the progression of cervical cancer by scaffolding EZH2, LSD1, and DNMT1 to inhibit the expression of KLF2 and PRSS8. Biochem Cell Biol. 2020;98:591–9.

    Article  CAS  Google Scholar 

  65. Knutson SK, Warholic NM, Wigle TJ, Klaus CR, Allain CJ, Raimondi A, et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci USA. 2013;110:7922–7.

    Article  CAS  Google Scholar 

  66. Vaswani RG, Gehling VS, Dakin LA, Cook AS, Nasveschuk CG, Duplessis M, et al. Identification of (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for B-cell lymphomas. J medicinal Chem. 2016;59:9928–41.

    Article  CAS  Google Scholar 

  67. Honma D, Kanno O, Watanabe J, Kinoshita J, Hirasawa M, Nosaka E, et al. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci. 2017;108:2069–78.

    Article  CAS  Google Scholar 

  68. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012;492:108–12.

    Article  CAS  Google Scholar 

  69. Kagiyama Y, Fujita S, Shima Y, Yamagata K, Katsumoto T, Nakagawa M, et al. CDKN1C-mediated growth inhibition by an EZH1/2 dual inhibitor overcomes resistance of mantle cell lymphoma to ibrutinib. Cancer Sci. 2021;112:2314–24.

    Article  CAS  Google Scholar 

  70. Fujita S, Honma D, Adachi N, Araki K, Takamatsu E, Katsumoto T, et al. Dual inhibition of EZH1/2 breaks the quiescence of leukemia stem cells in acute myeloid leukemia. Leukemia 2018;32:855–64.

    Article  CAS  Google Scholar 

  71. Bradley WD, Arora S, Busby J, Balasubramanian S, Gehling VS, Nasveschuk CG, et al. EZH2 inhibitor efficacy in non-Hodgkin’s lymphoma does not require suppression of H3K27 monomethylation. Chem Biol. 2014;21:1463–75.

    Article  CAS  Google Scholar 

  72. Lu B, Shen X, Zhang L, Liu D, Zhang C, Cao J, et al. Discovery of EBI-2511: a highly potent and orally active EZH2 inhibitor for the treatment of non-hodgkin’s lymphoma. ACS Med Chem Lett. 2018;9:98–102.

    Article  CAS  Google Scholar 

  73. Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, et al. Selective inhibition of EZH2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA. 2012;109:21360–5.

    Article  CAS  Google Scholar 

  74. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol. 2012;8:890–6.

    Article  CAS  Google Scholar 

  75. Campbell JE, Kuntz KW, Knutson SK, Warholic NM, Keilhack H, Wigle TJ, et al. EPZ011989, a potent, orally-available EZH2 inhibitor with robust in vivo activity. ACS Med Chem Lett. 2015;6:491–5.

    Article  CAS  Google Scholar 

  76. Verma SK, Tian X, LaFrance LV, Duquenne C, Suarez DP, Newlander KA, et al. Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2. ACS Med Chem Lett. 2012;3:1091–6.

    Article  CAS  Google Scholar 

  77. Béguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M, et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 2013;23:677–92.

    Article  Google Scholar 

  78. Ma A, Stratikopoulos E, Park KS, Wei J, Martin TC, Yang X, et al. Discovery of a first-in-class EZH2 selective degrader. Nat Chem Biol. 2020;16:214–22.

    Article  CAS  Google Scholar 

  79. Kung PP, Rui E, Bergqvist S, Bingham P, Braganza J, Collins M, et al. Design and synthesis of pyridone-containing 3,4-dihydroisoquinoline-1(2H)-ones as a novel class of enhancer of zeste homolog 2 (EZH2) inhibitors. J medicinal Chem. 2016;59:8306–25.

    Article  CAS  Google Scholar 

  80. Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T, Macnevin CJ, et al. An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1. ACS Chem Biol. 2013;8:1324–34.

    Article  CAS  Google Scholar 

  81. Kulkarni RA, Bak DW, Wei D, Bergholtz SE, Briney CA, Shrimp JH, et al. A chemoproteomic portrait of the oncometabolite fumarate. Nat Chem Biol. 2019;15:391–400.

    Article  CAS  Google Scholar 

  82. Zhou C, He A, Kang Q, Li C, Liu T, Cai W, et al. Development of a UPLC-MS/MS method for determination of a dual EZH1/2 inhibitor UNC1999 in rat plasma. Bioanalysis 2022;14:67–74.

    Article  CAS  Google Scholar 

  83. Proudman D, Nellesen D, Gupta D, Adib D, Yang J, Mamlouk K. A matching-adjusted indirect comparison of single-arm trials in patients with relapsed or refractory follicular lymphoma who received at least two prior systemic treatments: tazemetostat was associated with a lower risk for safety outcomes versus the PI3-kinase inhibitors idelalisib, duvelisib, copanlisib, and umbralisib. Adv Ther. 2022;39:1678–96.

    Article  CAS  Google Scholar 

  84. Kusakabe Y, Chiba T, Oshima M, Koide S, Rizq O, Aoyama K, et al. EZH1/2 inhibition augments the anti-tumor effects of sorafenib in hepatocellular carcinoma. Sci Rep. 2021;11:21396–410.

    Article  CAS  Google Scholar 

  85. Koyen AE, Madden MZ, Park D, Minten EV, Kapoor-Vazirani P, Werner E, et al. EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair. Oncogene 2020;39:4798–813.

    Article  CAS  Google Scholar 

  86. Rizq O, Mimura N, Oshima M, Saraya A, Koide S, Kato Y, et al. Dual inhibition of EZH2 and EZH1 sensitizes PRC2-dependent tumors to proteasome inhibition. Clin Cancer Res. 2017;23:4817–30.

    Article  CAS  Google Scholar 

  87. Wang D, Quiros J, Mahuron K, Pai CC, Ranzani V, Young A, et al. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep. 2018;23:3262–74.

    Article  CAS  Google Scholar 

  88. Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J, et al. The histone methyltransferase EZH2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 2017;20:854–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research funding from National Natural Science Foundation of China (No. 82073895, 82073864), Science and Technology Planning Project of Guangzhou (No. 202002030294), Basic and Applied Basic Research Foundation of Guangdong (No. 2021A1515220126, 2018B030311020). In addition, thanks are given to all contributors in this field.

Author information

Authors and Affiliations

Authors

Contributions

RA was responsible for writing and revising the paper. RA, Y-QL and Y-LL contributed to data collection. Specially, all TCGA data analysis was provided by Y-QL. ZL was responsible for reviewing and directing the writing of the article. All authors approved the final manuscript for submission.

Corresponding author

Correspondence to Zhong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, R., Li, YQ., Lin, YL. et al. EZH1/2 as targets for cancer therapy. Cancer Gene Ther 30, 221–235 (2023). https://doi.org/10.1038/s41417-022-00555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00555-1

This article is cited by

Search

Quick links