Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circ-GSK3B up-regulates GSK3B to suppress the progression of lung adenocarcinoma

Abstract

GSK3B is the mRNA form of glycogen synthase kinase 3 beta (GSK-3β), which is a critical repressor of Wnt/β-catenin signaling pathway and generally inhibited in cancer cells. Plenty of researches have disclosed that circular RNAs, namely circRNAs exert important functions in the progression of various human malignancies including lung adenocarcinoma (LUAD). Therefore, we attempted to explore whether there existed certain circRNAs that could mediate LUAD development by regulating GSK3B expression and Wnt/β-catenin pathway. In the present research, circ-GSK3B (hsa_circ_0066903) was found to be significantly down-regulated in LUAD tissues and cells and it suppressed the proliferation, migration and stemness of LUAD cells. Furthermore, it was discovered that circ-GSK3B competitively sponged miR-3681-3p and miR-3909 to elevate GSK3B expression. Circ-GSK3B could impair the binding ability of FKBP51 to GSK-3β to inhibit the phosphorylation of GSK-3βS9, resulting in the inactivation of Wnt/β-catenin signaling. In addition, the regulatory effect of circ-GSK3B on LUAD tumorigenesis and cell progression was testified through in vitro and in vivo rescue experiments. In conclusion, circ-GSK3B suppressed LUAD development through up-regulating and activating GSK3B.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Circ-GSK3B is with low expression in LUAD cells.
Fig. 2: Circ-GSK3B represses LUAD cell proliferation, migration and stemness.
Fig. 3: Circ-GSK3B regulates GSK3B mRNA level by serving as a ceRNA in LUAD.
Fig. 4: Circ-GSK3B hinders the binding of FKBP51 to GSK-3β in LUAD.
Fig. 5: Circ-GSK3B regulates LUAD progression via up-regulating and activating GSK3B.
Fig. 6: Circ-GSK3B inhibits the tumorigenesis of LUAD via elevating GSK3B expression.

Similar content being viewed by others

Data availability

All data available on reasonable request from the corresponding author, MZ.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clinic. 2018;68:394–424.

    Google Scholar 

  2. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83:584–94.

    Article  PubMed  Google Scholar 

  3. Wu C, Xu B, Zhou Y, Ji M, Zhang D, Jiang J, et al. Correlation between serum IL-1beta and miR-144-3p as well as their prognostic values in LUAD and LUSC patients. Oncotarget 2016;7:85876–87.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA: Cancer J Clinic. 2017;67:7–30.

    Google Scholar 

  5. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: Cancer J Clinic. 2016;66:7–30.

    Google Scholar 

  6. Kabbout M, Garcia MM, Fujimoto J, Liu DD, Woods D, Chow CW, et al. ETS2 mediated tumor suppressive function and MET oncogene inhibition in human non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2013;19:3383–95.

    Article  CAS  Google Scholar 

  7. Xu C, Xie D, Yu SC, Yang XJ, He LR, Yang J, et al. beta-Catenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer Res. 2013;73:3181–9.

    Article  CAS  PubMed  Google Scholar 

  8. Saji H, Tsuboi M, Shimada Y, Kato Y, Hamanaka W, Kudo Y, et al. Gene expression profiling and molecular pathway analysis for the identification of early-stage lung adenocarcinoma patients at risk for early recurrence. Oncol Rep. 2013;29:1902–6.

    Article  CAS  PubMed  Google Scholar 

  9. Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16:94.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen T, Yang Z, Liu C, Wang L, Yang J, Chen L, et al. Circ_0078767 suppresses non-small-cell lung cancer by protecting RASSF1A expression via sponging miR-330-3p. Cell Prolif. 2019;52:e12548.

    Article  PubMed  Google Scholar 

  11. Yang C, Yuan W, Yang X, Li P, Wang J, Han J, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 2018;17:19.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wu S, Li H, Lu C, Zhang F, Wang H, Lu X, et al. Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis. Biol Chem. 2018;399:1457–67.

    Article  CAS  PubMed  Google Scholar 

  13. Sheng K, Lu J, Zhao H. ELK1-induced upregulation of lncRNA HOXA10-AS promotes lung adenocarcinoma progression by increasing Wnt/beta-catenin signaling. Biochem Biophys Res Commun. 2018;501:612–8.

    Article  CAS  PubMed  Google Scholar 

  14. Yao Y, Hua Q, Zhou Y. CircRNA has_circ_0006427 suppresses the progression of lung adenocarcinoma by regulating miR-6783-3p/DKK1 axis and inactivating Wnt/beta-catenin signaling pathway. Biochem Biophys Res Commun. 2019;508:37–45.

    Article  CAS  PubMed  Google Scholar 

  15. Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol cell Biol. 2001;2:769–76.

    Article  CAS  PubMed  Google Scholar 

  16. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003;116:1175–86.

    Article  CAS  PubMed  Google Scholar 

  17. Harwood AJ. Regulation of GSK-3: a cellular multiprocessor. Cell 2001;105:821–4.

    Article  CAS  PubMed  Google Scholar 

  18. Du J, Zhang G, Qiu H, Yu H, Yuan W. The novel circular RNA circ-CAMK2A enhances lung adenocarcinoma metastasis by regulating the miR-615-5p/fibronectin 1 pathway. Cell Mol Biol Lett. 2019;24:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Tang J, Lu T, Liu F. CAPN1 promotes malignant behavior and erlotinib resistance mediated by phosphorylation of c-Met and PIK3R2 via degrading PTPN1 in lung adenocarcinoma. Thorac Cancer. 2020;11:1848–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou J, Zhang S, Chen Z, He Z, Xu Y, Li Z. CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis. 2019;10:885.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jiang N, Zou C, Zhu Y, Luo Y, Chen L, Lei Y, et al. HIF-1ɑ-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β-catenin and Notch signaling. Theranostics 2020;10:2553–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo T, Ma H, Zhou Y. Bioinformatics analysis of microarray data to identify the candidate biomarkers of lung adenocarcinoma. PeerJ 2019;7:e7313.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cunha EN, de Souza MFB, Lanza DCF, Lima J. A low-cost smart system for electrophoresis-based nucleic acids detection at the visible spectrum. PloS ONE. 2020;15:e0240536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu Y, Chang H, Wu L, Zhang X, Zhang L, Zhang J, et al. High prevalence of ROS1 gene rearrangement detected by FISH in EGFR and ALK negative lung adenocarcinoma. Exp Mol Pathol. 2020;117:104548.

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Yao S, Diao Y, Geng Y, Bi Y, Liu G. miR-15b enhances the proliferation and migration of lung adenocarcinoma by targeting BCL2. Thorac Cancer. 2020;11:1396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma S, Wang X, Zhang Z, Liu D. Actin-like protein 8 promotes cell proliferation, colony-formation, proangiogenesis, migration and invasion in lung adenocarcinoma cells. Thorac Cancer. 2020;11:526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Xu Z, Ren X, Chen X, Wei J, Lin W, et al. Function of low ADARB1 expression in lung adenocarcinoma. PloS ONE. 2019;14:e0222298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Xiao H, Wu D, Zhang D, Zhang Z. miR-335-5p Regulates Cell Cycle and Metastasis in Lung Adenocarcinoma by Targeting CCNB2. OncoTargets Ther. 2020;13:6255–63.

    Article  CAS  Google Scholar 

  29. Hao J, Wang H, Song L, Li S, Che N, Zhang S, et al. Infiltration of CD8(+) FOXP3(+) T cells, CD8(+) T cells, and FOXP3(+) T cells in non-small cell lung cancer microenvironment. Int J Clin Exp Pathol. 2020;13:880–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Chen B, Wang Y, Zhao Q, Wu W, Zhang P, et al. NOTCH3 Overexpression and Posttranscriptional Regulation by miR-150 Were Associated With EGFR-TKI Resistance in Lung Adenocarcinoma. Oncol Res. 2019;27:751–61.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gao N, Ye B. Circ-SOX4 drives the tumorigenesis and development of lung adenocarcinoma via sponging miR-1270 and modulating PLAGL2 to activate WNT signaling pathway. Cancer Cell Int. 2020;20:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jia Y, Duan Y, Liu T, Wang X, Lv W, Wang M, et al. LncRNA TTN-AS1 promotes migration, invasion, and epithelial mesenchymal transition of lung adenocarcinoma via sponging miR-142-5p to regulate CDK5. Cell Death Dis. 2019;10:573.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wei C, Dong X, Lu H, Tong F, Chen L, Zhang R, et al. LPCAT1 promotes brain metastasis of lung adenocarcinoma by up-regulating PI3K/AKT/MYC pathway. J Exp Clin Cancer Res: CR. 2019;38:95.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sun Y, Luo J, Chen Y, Cui J, Lei Y, Cui Y, et al. Combined evaluation of the expression status of CD155 and TIGIT plays an important role in the prognosis of LUAD (lung adenocarcinoma). Int Immunopharmacol. 2020;80:106198.

    Article  CAS  PubMed  Google Scholar 

  35. Gassen NC, Hartmann J, Zannas AS, Kretzschmar A, Zschocke J, Maccarrone G, et al. FKBP51 inhibits GSK3beta and augments the effects of distinct psychotropic medications. Mol Psychiatry. 2016;21:277–89.

    Article  CAS  PubMed  Google Scholar 

  36. Gassen NC, Hartmann J, Zannas AS, Kretzschmar A, Zschocke J, Maccarrone G, et al. FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications. Mol Psychiatry. 2016;21:277–89.

    Article  CAS  PubMed  Google Scholar 

  37. Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 2018;9:117.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li H, Yao G, Feng B, Lu X, Fan Y. Circ_0056618 and CXCR4 act as competing endogenous in gastric cancer by regulating miR-206. J Cell Biochem. 2018;119:9543–51.

    Article  CAS  PubMed  Google Scholar 

  39. Yang L, Wang J, Fan Y, Yu K, Jiao B, Su X. Hsa_circ_0046264 up-regulated BRCA2 to suppress lung cancer through targeting hsa-miR-1245. Respir Res. 2018;19:115.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang HD, Jiang LH, Hou JC, Zhong SL, Zhou SY, Zhu LP, et al. Circular RNA hsa_circ_0052112 promotes cell migration and invasion by acting as sponge for miR-125a-5p in breast cancer. Biomed Pharmacother = Biomed Pharmacotherapie. 2018;107:1342–53.

  41. Wang X, Zhu X, Zhang H, Wei S, Chen Y, Chen Y, et al. Increased circular RNA hsa_circ_0012673 acts as a sponge of miR-22 to promote lung adenocarcinoma proliferation. Biochem Biophys Res Commun. 2018;496:1069–75.

    Article  CAS  PubMed  Google Scholar 

  42. Gao D, Chen HQ. Specific knockdown of HOXB7 inhibits cutaneous squamous cell carcinoma cell migration and invasion while inducing apoptosis via the Wnt/beta-catenin signaling pathway. Am J Physiol Cell Physiol. 2018;315:C675–c86.

    Article  CAS  PubMed  Google Scholar 

  43. He YM, Xiao YS, Wei L, Zhang JQ, Peng CH. CUL4B promotes metastasis and proliferation in pancreatic cancer cells by inducing epithelial-mesenchymal transition via the Wnt/beta-catenin signaling pathway. J Cell Biochem. 2018;119:5308–23.

    Article  CAS  PubMed  Google Scholar 

  44. Zhan P, Zhang B, Xi GM, Wu Y, Liu HB, Liu YF, et al. PRC1 contributes to tumorigenesis of lung adenocarcinoma in association with the Wnt/beta-catenin signaling pathway. Mol Cancer. 2017;16:108.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang R, Wu Y, Huang W, Chen W. MicroRNA-940 Targets INPP4A or GSK3beta and Activates the Wnt/beta-Catenin Pathway to Regulate the Malignant Behavior of Bladder Cancer Cells. Oncol Res. 2018;26:145–55.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu XF, Li XY, Zheng PS, Yang WT. DAX1 promotes cervical cancer cell growth and tumorigenicity through activation of Wnt/beta-catenin pathway via GSK3beta. Cell Death Dis. 2018;9:339.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang H, Wang Y, Lu J, Zhao Y. Long non-coding RNA LINC00222 regulates GSK3beta activity and promotes cell apoptosis in lung adenocarcinoma. Biomed Pharmacother = Biomed pharmacotherapie. 2018;106:755–62.

    Article  CAS  Google Scholar 

  48. Ji XK, Xie YK, Zhong JQ, Xu QG, Zeng QQ, Wang Y, et al. GSK-3beta suppresses the proliferation of rat hepatic oval cells through modulating Wnt/beta-catenin signaling pathway. Acta Pharmacologica Sin. 2015;36:334–42.

    Article  CAS  Google Scholar 

  49. Li ZT, Zhang X, Wang DW, Xu J, Kou KJ, Wang ZW, et al. Overexpressed lncRNA GATA6-AS1 Inhibits LNM and EMT via FZD4 through the Wnt/β-Catenin Signaling Pathway in GC. Molecular therapy. Nucleic Acids. 2020;19:827–40.

    Article  CAS  PubMed  Google Scholar 

  50. Yu Y, Chang Z, Han C, Zhuang L, Zhou C, Qi X, et al. Long non-coding RNA MINCR aggravates colon cancer via regulating miR-708-5p-mediated Wnt/β-catenin pathway. Biomed Pharmacother = Biomed pharmacotherapie. 2020;129:110292.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Hui-Fen Liu for her assistance.

Funding

This study was supported by fundings from Health Committee of Hubei Province of China (WJ2019M146 to MZ); Chen Xiao-Ping Foundation for the Development of Science and Technology of Hubei Province (CXPJJH11900018-06 to MZ) and Tongji Hospital Project (2016HGRY to MZ).

Author information

Authors and Affiliations

Authors

Contributions

MCZ and YHZ revised this study and wrote the draft. PX, XWF, and GLL performed experiment and interpreted data. MZ funded this study. All authors have read and approved the paper.

Corresponding author

Correspondence to Min Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, MC., Zhang, YH., Xiong, P. et al. Circ-GSK3B up-regulates GSK3B to suppress the progression of lung adenocarcinoma. Cancer Gene Ther 29, 1761–1772 (2022). https://doi.org/10.1038/s41417-022-00489-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00489-8

This article is cited by

Search

Quick links