Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acute type adult T-cell leukemia cells proliferate in the lymph nodes rather than in peripheral blood


A massive increase in the number of mature CD4+ T-cells in peripheral blood (PB) is a defining characteristic of acute type of adult T-cell leukemia (ATL). To date, the site of proliferation of ATL cells in the body has been unclear. In an attempt to address this question, we examined the expression of the proliferation marker, Ki-67, in freshly isolated ATL cells from PB and lymph nodes (LNs) of patients with various types of ATL. Our findings reveal that LN-ATL cells display higher expression of the Ki-67 antigen than PB-ATL cells in acute type patients. The gene expression of T-cell quiescence regulators such as Krüppel-like factor 2/6 and forkhead box protein 1 was substantially high in acute type PB-ATL cells. The expression of human telomerase reverse transcriptase, which is involved in T-cell expansion, was significantly low in PB-ATL cells from acute type patients, similar to that in normal resting T-cells. These findings suggest that ATL cells proliferate in the LNs rather than in PB.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Expression of Ki-67 in PB-ATL cells from HTLV-1–infected individuals.
Fig. 2: Expression of Ki-67 in LN-ATL cells.
Fig. 3: Expression of Ki-67 in paired samples of PB and LNs from acute type patients.
Fig. 4: Kinetics of Ki-67 expression in CD4+ T-cells after anti-CD3 stimulation.
Fig. 5: Induction of T-cell quiescence regulators in PB-ATL cells.
Fig. 6: Expression of the hTERT gene and DNA methylation of its promoter in HTLV-1–infected cells.

Data availability

Not applicable.


  1. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA. 1980;77:7415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita KI, et al. Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA. 1981;78:6476–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H. Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood. 1977;50:481–92.

    Article  CAS  PubMed  Google Scholar 

  4. Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984-87). Br J Haematol. 1991;79:428–37.

    Article  CAS  PubMed  Google Scholar 

  5. Tsukasaki K, Utsunomiya A, Fukuda H, Shibata T, Fukushima T, Takatsuka Y, et al. VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group Study JCOG9801. J Clin Oncol. 2007;25:5458–64.

    Article  CAS  PubMed  Google Scholar 

  6. Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30:837–42.

    Article  CAS  PubMed  Google Scholar 

  7. Utsunomiya A, Choi I, Chihara D, Seto M. Recent advances in the treatment of adult T-cell leukemia-lymphomas. Cancer Sci. 2015;106:344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shirono K, Hattori T, Hata H, Nishimura H, Takatsuki K. Profiles of expression of activated cell antigens on peripheral blood and lymph node cells from different clinical stages of adult T-cell leukemia. Blood. 1989;73:1664–71.

    Article  CAS  PubMed  Google Scholar 

  9. Yamada Y, Murata K, Kamihira S, Atogami S, Tsukasaki K, Sohda H, et al. Prognostic significance of the proportion of Ki-67-positive cells in adult T-cell leukemia. Cancer. 1991;67:2605–9.

    Article  CAS  PubMed  Google Scholar 

  10. Katsuya H, Ishitsuka K, Utsunomiya A, Hanada S, Eto T, Moriuchi Y, et al. Treatment and survival among 1594 patients with ATL. Blood. 2015;126:2570–7.

    Article  CAS  PubMed  Google Scholar 

  11. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133:1710–5.

    CAS  PubMed  Google Scholar 

  12. Miyoshi I, Kubonishi I, Yoshimoto S, Akagi T, Ohtsuki Y, Shiraishi Y, et al. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature. 1981;294:770–1.

    Article  CAS  PubMed  Google Scholar 

  13. Sugamura K, Fujii M, Kannagi M, Sakitani M, Takeuchi M, Hinuma Y. Cell surface phenotypes and expression of viral antigens of various human cell lines carrying human T-cell leukemia virus. Int J Cancer. 1984;34:221–8.

    Article  CAS  PubMed  Google Scholar 

  14. Hori T, Uchiyama T, Tsudo M, Umadome H, Ohno H, Fukuhara S, et al. Establishment of an interleukin 2-dependent human T cell line from a patient with T cell chronic lymphocytic leukemia who is not infected with human T cell leukemia/lymphoma virus. Blood. 1987;70:1069–72.

    Article  CAS  PubMed  Google Scholar 

  15. Yamada Y, Nagata Y, Kamihira S, Tagawa M, Ichimaru M, Tomonaga M, et al. IL-2-dependent ATL cell lines with phenotypes differing from the original leukemia cells. Leuk Res. 1991;15:619–25.

    Article  CAS  PubMed  Google Scholar 

  16. Maeda T, Yamada Y, Moriuchi R, Sugahara K, Tsuruda K, Joh T, et al. Fas gene mutation in the progression of adult T cell leukemia. J Exp Med. 1999;189:1063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamada Y, Sugahara K, Tsuruda K, Nohda K, Hata T, Maeda T, et al. Fas-resistance in ATL cell lines not associated with HTLV-I or FAP-1 production. Cancer Lett. 1999;147:215–9.

    Article  CAS  PubMed  Google Scholar 

  18. Mizuguchi M, Hara T, Yoshita-Takahashi M, Kohda T, Tanaka Y, Nakamura M. Promoter CpG methylation inhibits Krüppel-like factor 2 (KLF2)-Mediated repression of hTERT gene expression in human T-cells. Biochem Biophys Rep. 2021;26:100984.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.

    Article  CAS  Google Scholar 

  20. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  21. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  22. Shao H, Yuan CM, Xi L, Raffeld M, Morris JC, Janik JE, et al. Minimal residual disease detection by flow cytometry in adult T-cell leukemia/lymphoma. Am J Clin Pathol. 2010;133:592–601.

    Article  CAS  PubMed  Google Scholar 

  23. Kerdiles YM, Beisner DR, Tinoco R, Dejean AS, Castrillon DH, DePinho RA, et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat Immunol. 2009;10:176–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feng X, Ippolito GC, Tian L, Wiehagen K, Oh S, Sambandam A, et al. Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood. 2010;115:510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao Z, Sun X, Icli B, Wara AK, Feinberg MW. Role of Krüppel-like factors in leukocyte development, function, and disease. Blood. 2010;116:4404–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hwang SS, Lim J, Yu Z, Kong P, Sefik E, Xu H, et al. mRNA destabilization by BTG1 and BTG2 maintains T cell quiescence. Science. 2020;367:1255–60.

    Article  CAS  PubMed  Google Scholar 

  27. Hara T, Mizuguchi M, Fujii M, Nakamura M. Krüppel-like factor 2 represses transcription of the telomerase catalytic subunit human telomerase reverse transcriptase (hTERT) in human T cells. J Biol Chem. 2015;290:8758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuo CT, Veselits ML, Leiden JM. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science. 1997;277:1986–90.

    Article  CAS  PubMed  Google Scholar 

  29. Buckley AF, Kuo CT, Leiden JM. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc-dependent pathway. Nat Immunol. 2001;2:698–704.

    Article  CAS  PubMed  Google Scholar 

  30. Zinn RL, Pruitt K, Eguchi S, Baylin SB, Herman JG. hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res. 2007;67:194–201.

    Article  CAS  PubMed  Google Scholar 

  31. Guilleret I, Benhattar J. Unusual distribution of DNA methylation within the hTERT CpG island in tissues and cell lines. Biochem Biophys Res Commun. 2004;325:1037–43.

    Article  CAS  PubMed  Google Scholar 

  32. Guilleret I, Yan P, Grange F, Braunschweig R, Bosman FT, Benhattar J. Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int J Cancer. 2002;101:335–41.

    Article  CAS  PubMed  Google Scholar 

  33. Furuta R, Yasunaga JI, Miura M, Sugata K, Saito A, Akari H, et al. Human T-cell leukemia virus type 1 infects multiple lineage hematopoietic cells in vivo. PLoS Pathog. 2017;13:e1006722.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Watanabe T. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood. 2017;129:1071–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bittencourt AL, Mota K, Oliveira RF, Farre L. A dyshidrosis-like variant of adult T-cell leukemia/lymphoma with clinicopathological aspects of mycosis fungoides. A case report. Am J Dermatopathol. 2009;31:834–7.

    Article  PubMed  Google Scholar 

  36. Bittencourt AL, Barbosa HS, Vieira MD, Farre L. Adult T-cell leukemia/lymphoma (ATL) presenting in the skin: clinical, histological and immunohistochemical features of 52 cases. Acta Oncol. 2009;48:598–604.

    Article  CAS  PubMed  Google Scholar 

  37. Prada-Arismendy J, Arroyave JC, Rothlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev. 2017;31:63–76.

    Article  CAS  PubMed  Google Scholar 

  38. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5:172–83.

    Article  CAS  PubMed  Google Scholar 

  39. Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. New Engl J Med. 2015;373:1541–52.

    Article  CAS  PubMed  Google Scholar 

  40. Hallek M, Shanafelt TD, Eichhorst B. Chronic lymphocytic leukaemia. Lancet. 2018;391:1524–37.

    Article  PubMed  Google Scholar 

  41. Kikushige Y, Ishikawa F, Miyamoto T, Shima T, Urata S, Yoshimoto G, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011;20:246–59.

    Article  CAS  PubMed  Google Scholar 

  42. Sasaki H, Nishikata I, Shiraga T, Akamatsu E, Fukami T, Hidaka T, et al. Overexpression of a cell adhesion molecule, TSLC1, as a possible molecular marker for acute-type adult T-cell leukemia. Blood. 2005;105:1204–13.

    Article  CAS  PubMed  Google Scholar 

  43. Nakahata S, Saito Y, Marutsuka K, Hidaka T, Maeda K, Hatakeyama K, et al. Clinical significance of CADM1/TSLC1/IgSF4 expression in adult T-cell leukemia/lymphoma. Leukemia. 2012;26:1238–46.

    Article  CAS  PubMed  Google Scholar 

Download references


We thank A. Yamashita for critiquing the manuscript, C. Nagamine for providing technical assistance, and all the members of our laboratory for their suggestions and encouragement. This manuscript was supported by Grants-in-Aid for Scientific Research 19K08843 (M.M.) and JP23501258 (N.M.) from the Japan Society for the Promotion of Science and the Project of Establishing Medical Research Base Networks against Infectious Diseases in Okinawa (Y.T. and T.F.).

Author information

Authors and Affiliations



MM, MN, and YTan conceived and designed the experiments; MM, MT, SS, MYT, and NI performed the experiments and analyzed the data; YTak, KK, TF, and YTan collected the samples and provided advice; HH provided HTLV-1–infected cell lines; MM, MN, and YTan wrote the manuscript, and all the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mariko Mizuguchi or Yuetsu Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mizuguchi, M., Takatori, M., Sakihama, S. et al. Acute type adult T-cell leukemia cells proliferate in the lymph nodes rather than in peripheral blood. Cancer Gene Ther 29, 1570–1577 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links