Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein post-translational modifications in the regulation of cancer hallmarks

Abstract

Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the enzymatic cascade of ubiquitination and ubiquitin-like conjugation.
Fig. 2: Overview of the enzymatic cascade of acylation modification.
Fig. 3: Overview of the enzymatic cascade of methylation.
Fig. 4: PTMs contribute to the “hallmarks of cancer”.

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RobertA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Hunter T. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell. 1995;80:225–36.

    Article  CAS  PubMed  Google Scholar 

  4. Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochemical J. 2000;351:95–105.

    Article  CAS  Google Scholar 

  5. Singh V, Ram M, Kumar R, Prasad R, Roy BK, Singh KK. Phosphorylation: Implications in Cancer. Protein J. 2017;36:1–6.

    Article  CAS  PubMed  Google Scholar 

  6. Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020;5:1–28.

    Google Scholar 

  7. Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets. Nat Rev Drug Discov. 2011;10:29–46.

    Article  CAS  PubMed  Google Scholar 

  8. Cappadocia L, Lima CD. Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem Rev. 2018;118:889–918.

    Article  CAS  PubMed  Google Scholar 

  9. Celen AB, Sahin U. Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. Febs j. 2020;287:3110–40.

    Article  CAS  PubMed  Google Scholar 

  10. Enchev RI, Schulman BA, Peter M. Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol. 2015;16:30–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou L, Zhang W, Sun Y, Jia L. Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal. 2018;44:92–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zou T, Zhang J. Diverse and pivotal roles of neddylation in metabolism and immunity. Febs j. 2021;288:3884–912.

    Article  CAS  PubMed  Google Scholar 

  13. Villarroya-Beltri C, Guerra S, Sánchez-Madrid F. ISGylation - a key to lock the cell gates for preventing the spread of threats. J Cell Sci. 2017;130:2961–9.

    CAS  PubMed  Google Scholar 

  14. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–40.

    Article  CAS  PubMed  Google Scholar 

  15. Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 2017;18:90–101.

    Article  CAS  PubMed  Google Scholar 

  16. Yuan M, Song ZH, Ying MD, Zhu H, He QJ, Yang B, et al. N-myristoylation: from cell biology to translational medicine. Acta Pharm Sin. 2020;41:1005–15.

    Article  CAS  Google Scholar 

  17. Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front Immunol. 2017;8:751.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Resh MD. Fatty acylation of proteins: The long and the short of it. Prog Lipid Res. 2016;63:120–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang X, Wen H, Shi X. Lysine methylation: beyond histones. Acta Biochim Biophys Sin (Shanghai). 2012;44:14–27.

    Article  PubMed  Google Scholar 

  21. Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13:37–50.

    Article  CAS  PubMed  Google Scholar 

  22. Li N, Chen J. ADP-ribosylation: activation, recognition, and removal. Mol Cells. 2014;37:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupte R, Liu Z, Kraus WL. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 2017;31:101–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Poltronieri P, Mezzolla V, Farooqi AA, Di Girolamo M. NAD Precursors, Mitochondria Targeting Compounds and ADP-Ribosylation Inhibitors in Treatment of Inflammatory Diseases and Cancer. Curr Med Chem. 2021;288453–79.

    Article  CAS  PubMed  Google Scholar 

  25. Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13:448–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Humphrey SJ, James DE, Mann M. Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab. 2015;26:676–87.

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen LK, Kolch W, Kholodenko BN. When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun Signal. 2013;11:1–15.

    Article  Google Scholar 

  28. Müller S, Hoege C, Pyrowolakis G, Jentsch S. SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol cell Biol. 2001;2:202–10.

    Article  PubMed  Google Scholar 

  29. Sarge KD, Park-Sarge O-K. SUMO and its role in human diseases. Int Rev cell Mol Biol. 2011;288:167–83.

    Article  CAS  PubMed  Google Scholar 

  30. Pawson T, Scott JD. Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997;278:2075–80.

    Article  CAS  PubMed  Google Scholar 

  31. Knittle AM, Helkkula M, Johnson MS, Sundvall M, Elenius K. SUMOylation regulates nuclear accumulation and signaling activity of the soluble intracellular domain of the ErbB4 receptor tyrosine kinase. J Biol Chem. 2017;292:19890–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pirola L, Zerzaihi O, Vidal H, Solari F. Protein acetylation mechanisms in the regulation of insulin and insulin-like growth factor 1 signalling. Mol Cell Endocrinol. 2012;362:1–10.

    Article  CAS  PubMed  Google Scholar 

  33. Malik A, Afaq S, Alwabli AS, Al-Ghmady K. Networking of predicted post-translational modification (PTM) sites in human EGFR. Bioinformation. 2019;15:448–56.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.

    Article  CAS  PubMed  Google Scholar 

  35. Blagosklonny MV, Pardee AB. The restriction point of the cell cycle. Cell Cycle. 2002;1:102–9.

    Article  Google Scholar 

  36. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002;2:103–12.

    Article  CAS  PubMed  Google Scholar 

  37. Barrientes S, Cooke C, Goodrich DW. Glutamic acid mutagenesis of retinoblastoma protein phosphorylation sites has diverse effects on function. Oncogene. 2000;19:562–70.

    Article  CAS  PubMed  Google Scholar 

  38. Antonucci LA, Egger JV, Krucher NA. Phosphorylation of the Retinoblastoma protein (Rb) on serine-807 is required for association with Bax. Cell Cycle. 2014;13:3611–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Egger JV, Lane MV, Antonucci LA, Dedi B, Krucher NA. Dephosphorylation of the Retinoblastoma protein (Rb) inhibits cancer cell EMT via Zeb. Cancer Biol Ther. 2016;17:1197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cho EC, Zheng S, Munro S, Liu G, Carr SM, Moehlenbrink J, et al. Arginine methylation controls growth regulation by E2F-1. EMBO J. 2012;31:1785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell. 1991;67:293–302.

    Article  CAS  PubMed  Google Scholar 

  42. Horiuchi T, Nagata M, Kitagawa M, Akahane K, Uoto K. Discovery of novel thieno[2,3-d]pyrimidin-4-yl hydrazone-based inhibitors of cyclin D1-CDK4: synthesis, biological evaluation and structure-activity relationships. Part 2. Bioorg Med Chem. 2009;17:7850–60.

    Article  CAS  PubMed  Google Scholar 

  43. Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, Thangue NBL. Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol. 2001;3:667–74.

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen DX, Baglia LA, Huang SM, Baker CM, McCance DJ. Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. Embo j. 2004;23:1609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leduc C, Claverie P, Eymin B, Col E, Khochbin S, Brambilla E, et al. p14ARF promotes RB accumulation through inhibition of its Tip60-dependent acetylation. Oncogene. 2006;25:4147–54.

    Article  CAS  PubMed  Google Scholar 

  46. Markham D, Munro S, Soloway J, O’Connor DP, La NB. Thangue, DNA-damage-responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep. 2006;7:192–8.

    Article  CAS  PubMed  Google Scholar 

  47. Pickard A, Wong PP, McCance DJ. Acetylation of Rb by PCAF is required for nuclear localization and keratinocyte differentiation. J Cell Sci. 2010;123:3718–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ledl A, Schmidt D, Müller S. Viral oncoproteins E1A and E7 and cellular LxCxE proteins repress SUMO modification of the retinoblastoma tumor suppressor. Oncogene. 2005;24:3810–8.

    Article  CAS  PubMed  Google Scholar 

  49. Ying H, Xiao ZX. Targeting retinoblastoma protein for degradation by proteasomes. Cell Cycle. 2006;5:506–8.

    Article  CAS  PubMed  Google Scholar 

  50. Bhattacharya S, Ghosh MK. HAUSP, a novel deubiquitinase for Rb - MDM2 the critical regulator. Febs j. 2014;281:3061–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Munro S, Khaire N, Inche A, Carr S, La NB. Thangue, Lysine methylation regulates the pRb tumour suppressor protein. Oncogene. 2010;29:2357–67.

    Article  CAS  PubMed  Google Scholar 

  52. Uchida C, Miwa S, Kitagawa K, Hattori T, Isobe T, Otani S, et al. Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. Embo j. 2005;24:160–9.

    Article  CAS  PubMed  Google Scholar 

  53. Liu H, Wang J, Liu Y, Hu L, Zhang C, Xing B, et al. Human U3 protein14a is a novel type ubiquitin ligase that binds RB and promotes RB degradation depending on a leucine-rich region. Biochim Biophys Acta Mol Cell Res. 2018;1865:1611–20.

    Article  CAS  PubMed  Google Scholar 

  54. Hu Q, Ye Y, Chan LC, Li Y, Liang K, Lin A, et al. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol. 2019;20:835–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saddic LA, West LE, Aslanian A, Yates JR 3rd, Rubin SM, Gozani O, et al. Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem. 2010;285:37733–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cho H-S, Hayami S, Toyokawa G, Maejima K, Yamane Y, Suzuki T, et al. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia. 2012;14:476–IN8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dick FA, Goodrich DW, Sage J, Dyson NJ. Non-canonical functions of the RB protein in cancer. Nat Rev Cancer. 2018;18:442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dasgupta P, Padmanabhan J, Chellappan S. Rb function in the apoptosis and senescence of non-neuronal and neuronal cells: role in oncogenesis. Curr Mol Med. 2006;6:719–29.

    CAS  PubMed  Google Scholar 

  59. Harbour JW, Dean DC. Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol. 2000;2:E65–7.

    Article  CAS  PubMed  Google Scholar 

  60. Indovina P, Pentimalli F, Casini N, Vocca I, Giordano A. RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy. Oncotarget. 2015;6:17873.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–73.

    Article  CAS  PubMed  Google Scholar 

  63. Sinha S, Levine B. The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene. 2008;27:S137–S148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, et al. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol. 2000;182:41–9.

    Article  CAS  PubMed  Google Scholar 

  65. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA. 2000;97:14376–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death? Autophagy. 2005;1:66–74.

    Article  CAS  PubMed  Google Scholar 

  67. Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annu Rev Pharm Toxicol. 2001;41:367–401.

    Article  CAS  Google Scholar 

  68. Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017;17:151–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000;21:485–95.

    Article  CAS  PubMed  Google Scholar 

  71. Gu B, Zhu WG. Surf the post-translational modification network of p53 regulation. Int J Biol Sci. 2012;8:672–84.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Meek DW, Anderson CW. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol. 2009;1:a000950.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol. 2019;11:564–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liao P, Bhattarai N, Cao B, Zhou X, Jung JH, Damera K, et al. Crotonylation at serine 46 impairs p53 activity. Biochem Biophys Res Commun. 2020;524:730–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chao C, Herr D, Chun J, Xu Y. Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. Embo j. 2006;25:2615–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Li DW, Liu JP, Schmid PC, Schlosser R, Feng H, Liu WB, et al. Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities. Oncogene. 2006;25:3006–22.

    Article  CAS  PubMed  Google Scholar 

  77. Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K. DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell. 2007;25:725–38.

    Article  CAS  PubMed  Google Scholar 

  78. Castrogiovanni C, Waterschoot B, De Backer O, Dumont P. Serine 392 phosphorylation modulates p53 mitochondrial translocation and transcription-independent apoptosis. Cell Death Differ. 2018;25:190–203.

    Article  CAS  PubMed  Google Scholar 

  79. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606.

    Article  CAS  PubMed  Google Scholar 

  81. Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000;408:377–81.

    Article  CAS  PubMed  Google Scholar 

  82. Feng L, Lin T, Uranishi H, Gu W, Xu Y. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol Cell Biol. 2005;25:5389–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reed SM, Hagen J, Tompkins VS, Thies K, Quelle FW, Quelle DE. Nuclear interactor of ARF and Mdm2 regulates multiple pathways to activate p53. Cell Cycle. 2014;13:1288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol cell. 2006;24:841–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell. 2008;133:612–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tang Y, Luo J, Zhang W, Gu W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell. 2006;24:827–39.

    Article  CAS  PubMed  Google Scholar 

  87. Rokudai S, Laptenko O, Arnal SM, Taya Y, Kitabayashi I, Prives C. MOZ increases p53 acetylation and premature senescence through its complex formation with PML. Proc Natl Acad Sci. 2013;110:3895–3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li X, Wu L, Corsa CA, Kunkel S, Dou Y. Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell. 2009;36:290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang S-J, Li D, Ou Y, Jiang L, Chen Y, Zhao Y, et al. Acetylation Is Crucial for p53-Mediated Ferroptosis and Tumor Suppression. Cell Rep. 2016;17:366–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cao Z, Kon N, Liu Y, Xu W, Wen J, Yao H, et al. An unexpected role for p53 in regulating cancer cell-intrinsic PD-1 by acetylation. Sci Adv. 2021;7:eabf4148.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chao C, Wu Z, Mazur SJ, Borges H, Rossi M, Lin T, et al. Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol Cell Biol. 2006;26:6859–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Knights CD, Catania J, Giovanni SD, Muratoglu S, Perez R, Swartzbeck A, et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol. 2006;173:533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu K, Li F, Sun Q, Lin N, Han H, You K, et al. p53 β-hydroxybutyrylation attenuates p53 activity. Cell Death Dis. 2019;10:243.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kang K, Lee S-R, Piao X, Hur GM. Post-translational modification of the death receptor complex as a potential therapeutic target in cancer. Arch Pharmacal Res. 2019;42:76–87.

    Article  CAS  Google Scholar 

  95. Barbero S, Barilà D, Mielgo A, Stagni V, Clair K, Stupack D. Identification of a critical tyrosine residue in caspase 8 that promotes cell migration. J Biol Chem. 2008;283:13031–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weinlich R, Brunner T, Amarante-Mendes GP. Control of death receptor ligand activity by posttranslational modifications. Cell Mol Life Sci. 2010;67:1631–42.

    Article  CAS  PubMed  Google Scholar 

  97. Kobayashi T, Masoumi KC, Massoumi R. Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene. 2015;34:2251–60.

    Article  CAS  PubMed  Google Scholar 

  98. Powley IR, Hughes MA, Cain K, MacFarlane M. Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex. Oncogene. 2016;35:5629–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim Y, Seol D-W. TRAIL, a mighty apoptosis inducer. Mol Cells. 2003;15:283–93.

    CAS  PubMed  Google Scholar 

  100. Rossin A, Derouet M, Abdel-Sater F, Hueber A-O. Palmitoylation of the TRAIL receptor DR4 confers an efficient TRAIL-induced cell death signalling. Biochemical J. 2009;419:185–94.

    Article  CAS  Google Scholar 

  101. Tang Z, Bauer JA, Morrison B, Lindner DJ. Nitrosylcobalamin promotes cell death via S nitrosylation of Apo2L/TRAIL receptor DR4. Mol Cell Biol. 2006;26:5588–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rodríguez-Hernández A, Navarro-Villarán E, González R, Pereira S, Soriano-De Castro LB, Sarrias-Giménez A, et al. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells. Redox Biol. 2015;6:174–82.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ, et al. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy. 2015;11:28–45.

    Article  CAS  PubMed  Google Scholar 

  104. Qin J, Wang R, Zhao C, Wen J, Dong H, Wang S, et al. Notch signaling regulates osteosarcoma proliferation and migration through Erk phosphorylation. Tissue Cell. 2019;59:51–61.

    Article  CAS  PubMed  Google Scholar 

  105. Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol. 2014;16:495–501.

    Article  CAS  PubMed  Google Scholar 

  106. Klionsky DJ, Schulman BA. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol. 2014;21:336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bánréti Á, Sass M, Graba Y. The emerging role of acetylation in the regulation of autophagy. Autophagy. 2013;9:819–29.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Deng W, Ma L, Zhang Y, Zhou J, Wang Y, Liu Z, et al. THANATOS: an integrative data resource of proteins and post-translational modifications in the regulation of autophagy. Autophagy. 2018;14:296–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12:1–16.

    Article  Google Scholar 

  110. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, X, C Yu, R Kang, and D Tang, Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020. 8.

  113. Wei X, Yi X, Zhu XH, Jiang DS. Posttranslational modifications in ferroptosis. Oxid Med Cell Longev. 2020;2020:8832043.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015;34:5617–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc–activity. Curr Biol. 2018;28:2388–99. e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat cell Biol. 2020;22:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li J, Cao F, Yin H-L, Huang Z-J, Lin Z-T, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:1–13.

    PubMed  PubMed Central  Google Scholar 

  118. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;20:1181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, et al. Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. 2019;56:4880–93.

    Article  CAS  PubMed  Google Scholar 

  120. Yang L, Wang H, Yang X, Wu Q, An P, Jin X, et al. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms. Signal Transduct Target Ther. 2020;5:1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 2020;11:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang X, Du L, Qiao Y, Zhang X, Zheng W, Wu Q, et al. Ferroptosis is governed by differential regulation of transcription in liver cancer. Redox Biol. 2019;24:101211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang Y, Wei Z, Pan K, Li J, Chen Q. The function and mechanism of ferroptosis in cancer. Apoptosis. 2020;25:786–98.

    Article  CAS  PubMed  Google Scholar 

  124. Sui S, Zhang J, Xu S, Wang Q, Wang P, Pang D. Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis. 2019;10:1–17.

    Article  Google Scholar 

  125. Michie J, Kearney CJ, Hawkins ED, Silke J, Oliaro J. The immuno-modulatory effects of inhibitor of apoptosis protein antagonists in cancer immunotherapy. Cells. 2020;9:207.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13:110.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Iwai Y, Hamanishi J, Chamoto K, Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017;24:1–11.

    Article  Google Scholar 

  128. Chen J, Jiang C, Jin L, Zhang X. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27:409–16.

    Article  CAS  PubMed  Google Scholar 

  129. Horita H, Law A, Hong S, Middleton K. Identifying regulatory posttranslational modifications of PD-L1: a focus on monoubiquitinaton. Neoplasia. 2017;19:346–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hsu JM, Li CW, Lai YJ, Hung MC. Posttranslational modifications of PD-L1 and their applications in cancer therapy. Cancer Res. 2018;78:6349–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang Y, Hsu JM, Sun L, Chan LC, Li CW, Hsu JL, et al. Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res. 2019;29:83–86.

    Article  PubMed  Google Scholar 

  132. von Knethen A, Brüne B. PD-L1 in the palm of your hand: palmitoylation as a target for immuno-oncology. Signal Transduct Target Ther. 2019;4:18.

    Article  Google Scholar 

  133. Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, et al. Therapeutic targeting of replicative immortality. Semin Cancer Biol. 2015;35:S104–s128.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kupiec M. Biology of telomeres: lessons from budding yeast. FEMS Microbiol Rev. 2014;38:144–71.

    Article  CAS  PubMed  Google Scholar 

  135. Yalçin Z, Selenz C, Jacobs JJ. Ubiquitination and SUMOylation in telomere maintenance and dysfunction. Front Genet. 2017;8:67.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Peuscher MH, Jacobs JJ. Posttranslational control of telomere maintenance and the telomere damage response. Cell Cycle. 2012;11:1524–34.

    Article  CAS  PubMed  Google Scholar 

  137. Brunet A, Berger SL. Epigenetics of aging and aging-related disease. J Gerontol Ser A: Biomed Sci Med Sci. 2014;69:S17–S20.

    Article  Google Scholar 

  138. Tardat M, Déjardin J. Telomere chromatin establishment and its maintenance during mammalian development. Chromosoma. 2018;127:3–18.

    Article  CAS  PubMed  Google Scholar 

  139. Jezek M, Green EM. Histone modifications and the maintenance of telomere integrity. Cells. 2019;8:199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. de Lange T. Shelterin-mediated telomere protection. Annu Rev Genet. 2018;52:223–47.

    Article  PubMed  Google Scholar 

  141. Walker JR, Zhu XD. Post-translational modifications of TRF1 and TRF2 and their roles in telomere maintenance. Mech Ageing Dev. 2012;133:421–34.

    Article  CAS  PubMed  Google Scholar 

  142. di Fagagna FDA, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194–8.

    Article  Google Scholar 

  143. Qian Y, Chen X. Senescence regulation by the p53 protein family. Methods Mol Biol. 2013;965:37–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sherr CJ. Principles of tumor suppression. Cell. 2004;116:235–46.

    Article  CAS  PubMed  Google Scholar 

  145. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127:265–75.

    Article  CAS  PubMed  Google Scholar 

  146. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–33.

    Article  CAS  PubMed  Google Scholar 

  147. Li J, Poi MJ, Tsai M-D. Regulatory mechanisms of tumor suppressor P16INK4A and their relevance to cancer. Biochemistry. 2011;50:5566–82.

    Article  CAS  PubMed  Google Scholar 

  148. Jiao Y, Feng Y, Wang X. Regulation of tumor suppressor gene CDKN2A and encoded p16-INK4a protein by covalent modifications. Biochem (Mosc). 2018;83:1289–98.

    Article  CAS  Google Scholar 

  149. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 2008;27:589–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Harper JW, Elledge SJ. The DNA Damage Response: Ten Years After. Mol Cell. 2007;28:739–45.

    Article  CAS  PubMed  Google Scholar 

  152. Dantuma NP, van Attikum H. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J. 2016;35:6–23.

    Article  CAS  PubMed  Google Scholar 

  153. Lukas J, Lukas C, Bartek J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat cell Biol. 2011;13:1161–9.

    Article  CAS  PubMed  Google Scholar 

  154. Durocher D, Jackson SP. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin cell Biol. 2001;13:225–31.

    Article  CAS  PubMed  Google Scholar 

  155. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.

    Article  CAS  PubMed  Google Scholar 

  156. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506.

    Article  CAS  PubMed  Google Scholar 

  157. Sun Y, Jiang X, Chen S, Fernandes N, Price BD. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci. 2005;102:13182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF. Involvement of novel autophosphorylation sites in ATM activation. EMBO J. 2006;25:3504–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Li Z, Li Y, Tang M, Peng B, Lu X, Yang Q, et al. Destabilization of linker histone H1. 2 is essential for ATM activation and DNA damage repair. Cell Res. 2018;28:756–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tian B, Yang Q, Mao Z. Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat Cell Biol. 2009;11:211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lim D-S, Kim S-T, Xu B, Maser RS, Lin J, Petrini JH, et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature. 2000;404:613–7.

    Article  CAS  PubMed  Google Scholar 

  162. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001;276:42462–7.

    Article  CAS  PubMed  Google Scholar 

  163. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci. 2000;97:10389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Banin S, Moyal L, Shieh S-Y, Taya Y, Anderson C, Chessa L, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674–7.

    Article  CAS  PubMed  Google Scholar 

  165. Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB, et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J. 2004;23:4451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Shreeram S, Demidov ON, Hee WK, Yamaguchi H, Onishi N, Kek C, et al. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell. 2006;23:757–64.

    Article  CAS  PubMed  Google Scholar 

  167. Peng A, Lewellyn AL, Schiemann WP, Maller JL. Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation. Curr Biol. 2010;20:387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tang M, Li Z, Zhang C, Lu X, Tu B, Cao Z, et al. SIRT7-mediated ATM deacetylation is essential for its deactivation and DNA damage repair. Sci Adv. 2019;5:eaav1118.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Messick TE, Greenberg RA. The ubiquitin landscape at DNA double-strand breaks. J Cell Biol. 2009;187:319–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pinder JB, Attwood KM, Dellaire G. Reading, writing, and repair: the role of ubiquitin and the ubiquitin-like proteins in DNA damage signaling and repair. Front Genet. 2013;4:45.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R, et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell. 2009;136:435–46.

    Article  CAS  PubMed  Google Scholar 

  172. Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol cell Biol. 2014;15:7–18.

    Article  CAS  PubMed  Google Scholar 

  173. Fradet-Turcotte A, Canny MD, Escribano-Díaz C, Orthwein A, Leung CC, Huang H, et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature. 2013;499:50–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hoege C, Pfander B, Moldovan G-L, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 2002;419:135–41.

    Article  CAS  PubMed  Google Scholar 

  175. Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapić-Otrin V, Levine AS. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci. 2006;103:2588–93.

    Article  CAS  PubMed  Google Scholar 

  176. Bergink S, Jentsch S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature. 2009;458:461–7.

    Article  CAS  PubMed  Google Scholar 

  177. Wang Z, Zhu WG, Xu X. Ubiquitin-like modifications in the DNA damage response. Mutat Res. 2017;803-5:56–75.

    Article  Google Scholar 

  178. Gong F, Chiu L-Y, Miller KM. Acetylation reader proteins: linking acetylation signaling to genome maintenance and cancer. PLoS Genet. 2016;12:e1006272.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Gong F, Chiu L-Y, Cox B, Aymard F, Clouaire T, Leung JW, et al. Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination. Genes Dev. 2015;29:197–211.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Shi R, Wang Y, Gao Y, Xu X, Mao S, Xiao Y, et al. Succinylation at a key residue of FEN1 is involved in the DNA damage response to maintain genome stability. Am J Physiol-Cell Physiol. 2020;319:C657–C666.

    Article  CAS  PubMed  Google Scholar 

  181. Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016;7:12235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Abu-Zhayia ER, Machour FE, Ayoub N. HDAC-dependent decrease in histone crotonylation during DNA damage. J Mol Cell Biol. 2019;11:804–6.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Yu H, Bu C, Liu Y, Gong T, Liu X, Liu S, et al. Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous recombination-mediated DNA repair. Sci Adv. 2020;6:eaay4697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bao X, Liu Z, Zhang W, Gladysz K, Fung YME, Tian G, et al. Glutarylation of histone H4 lysine 91 regulates chromatin dynamics. Mol Cell. 2019;76:660–.e9.

    Article  CAS  PubMed  Google Scholar 

  185. Chatterjee S, Senapati P, Kundu TK. Post-translational modifications of lysine in DNA-damage repair. Essays Biochem. 2012;52:93–111.

    Article  CAS  PubMed  Google Scholar 

  186. Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, et al. Repression of p53 activity by Smyd2-mediated methylation. Nature. 2006;444:629–32.

    Article  CAS  PubMed  Google Scholar 

  187. Lake AN, Bedford MT. Protein methylation and DNA repair. Mutat Res. 2007;618:91–101.

    Article  CAS  PubMed  Google Scholar 

  188. Clarke TL, Sanchez-Bailon MP, Chiang K, Reynolds JJ, Herrero-Ruiz J, Bandeiras TM, et al. PRMT5-Dependent Methylation of the TIP60 Coactivator RUVBL1 Is a Key Regulator of Homologous Recombination. Mol Cell. 2017;65:900–.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Jarrold J, Davies CC. PRMTs and arginine methylation: cancer’s best-kept secret? Trends Mol Med. 2019;25:993–1009.

    Article  CAS  PubMed  Google Scholar 

  190. Gong F, Miller KM. Histone methylation and the DNA damage response. Mutat Res Rev Mutat Res. 2019;780:37–47.

    Article  CAS  PubMed  Google Scholar 

  191. Karkhanis V, Wang L, Tae S, Hu Y-J, Imbalzano AN, Sif S. Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase δ catalytic subunit gene, POLD1. J Biol Chem. 2012;287:29801–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. D’Amours D, Desnoyers S, D’Silva I, Poirier GG. Poly (ADP-ribosyl) ation reactions in the regulation of nuclear functions. Biochemical J. 1999;342:249–68.

    Article  Google Scholar 

  193. Messner S, Hottiger MO. Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol. 2011;21:534–42.

    Article  CAS  PubMed  Google Scholar 

  194. De Vos M, Schreiber V, Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharm. 2012;84:137–46.

    Article  PubMed  Google Scholar 

  195. Hou WH, Chen SH, Yu X. Poly-ADP ribosylation in DNA damage response and cancer therapy. Mutat Res Rev Mutat Res. 2019;780:82–91.

    Article  CAS  PubMed  Google Scholar 

  196. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature. 2005;434:913–7.

    Article  CAS  PubMed  Google Scholar 

  197. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932–6.

    Article  CAS  PubMed  Google Scholar 

  198. Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153:13–19.

    Article  CAS  PubMed  Google Scholar 

  199. Kieran MW, Kalluri R, Cho Y-J. The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harb Perspect Med. 2012;2:a006593.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Takahashi T, Shibuya M. The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-γ pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene. 1997;14:2079–89.

    Article  CAS  PubMed  Google Scholar 

  201. Rahimi N, Costello CE. Emerging roles of post-translational modifications in signal transduction and angiogenesis. Proteomics. 2015;15:300–9.

    Article  CAS  PubMed  Google Scholar 

  202. Dougher M, Terman BI. Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene. 1999;18:1619–27.

    Article  CAS  PubMed  Google Scholar 

  203. Matsumoto T, Bohman S, Dixelius J, Berge T, Dimberg A, Magnusson P, et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J. 2005;24:2342–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lanahan AA, Lech D, Dubrac A, Zhang J, Zhuang ZW, Eichmann A, et al. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation. 2014;130:902–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sakurai Y, Ohgimoto K, Kataoka Y, Yoshida N, Shibuya M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci. 2005;102:1076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Singh AJ, Meyer RD, Band H, Rahimi N. The carboxyl terminus of VEGFR-2 is required for PKC-mediated down-regulation. Mol Biol Cell. 2005;16:2106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Dayanir V, Meyer RD, Lashkari K, Rahimi N. Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J Biol Chem. 2001;276:17686–92.

    Article  CAS  PubMed  Google Scholar 

  208. Olsson A-K, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling? In control of vascular function. Nat Rev Mol Cell Biol. 2006;7:359–71.

    Article  CAS  PubMed  Google Scholar 

  209. Meyer RD, Srinivasan S, Singh AJ, Mahoney JE, Gharahassanlou KR, Rahimi N. PEST motif serine and tyrosine phosphorylation controls vascular endothelial growth factor receptor 2 stability and downregulation. Mol Cell Biol. 2011;31:2010–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shaik S, Nucera C, Inuzuka H, Gao D, Garnaas M, Frechette G, et al. SCFβ-TRCP suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. J Exp Med. 2012;209:1289–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hartsough EJ, Aplin AE. A STATement on vemurafenib-resistant melanoma. J Investigative Dermatol. 2013;133:1928–9.

    Article  CAS  Google Scholar 

  212. Zecchin A, Pattarini L, Gutierrez MI, Mano M, Mai A, Valente S, et al. Reversible acetylation regulates vascular endothelial growth factor receptor-2 activity. J Mol cell Biol. 2014;6:116–27.

    Article  CAS  PubMed  Google Scholar 

  213. Pasula S, Cai X, Dong Y, Messa M, McManus J, Chang B, et al. Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. J Clin Investig. 2012;122:4424–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Duval M, Bédard-Goulet S, Delisle C, Gratton J-P. Vascular endothelial growth factor-dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination: consequences on nitric oxide production from endothelial cells. J Biol Chem. 2003;278:20091–7.

    Article  CAS  PubMed  Google Scholar 

  215. Chow E, Shahid Z, Smith ET Jr., Kamionek M, Usmani SZ. Successful Treatment of Hepatitis C Infection While Receiving Concurrent Chemotherapy for AL Amyloidosis. Clin Lymphoma Myeloma Leuk. 2016;16:237–9.

    Article  PubMed  Google Scholar 

  216. Zhou HJ, Xu Z, Wang Z, Zhang H, Zhuang ZW, Simons M, et al. SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis. Nat Commun. 2018;9:3303.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Rabellino A, Andreani C, Scaglioni PP. Roles of Ubiquitination and SUMOylation in the Regulation of Angiogenesis. Curr Issues Mol Biol. 2020;35:109–26.

    Article  PubMed  Google Scholar 

  218. Hibino S, Kawazoe T, Kasahara H, Itoh S, Ishimoto T, Sakata-Yanagimoto M. et al. Inflammation-induced tumorigenesis and metastasis. Int J Mol Sci. 2021;22:5421.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26:54–74.

    Article  CAS  PubMed  Google Scholar 

  221. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    Article  CAS  PubMed  Google Scholar 

  222. Liu J, Qian C, Cao X. Post-translational modification control of innate. Immun Immun. 2016;45:15–30.

    Google Scholar 

  223. Si Y, Zhang Y, Chen Z, Zhou R, Zhang Y, Hao D, et al. Posttranslational modification control of inflammatory signaling. Adv Exp Med Biol. 2017;1024:37–61.

    Article  CAS  PubMed  Google Scholar 

  224. Huang B, Yang XD, Lamb A, Chen LF. Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway. Cell Signal. 2010;22:1282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Lu T, Stark GR. Using sequential immunoprecipitation and mass spectrometry to identify methylation of NF-κB. Methods Mol Biol. 2015;1280:383–93.

    Article  CAS  PubMed  Google Scholar 

  226. Levy D, Kuo AJ, Chang Y, Schaefer U, Kitson C, Cheung P, et al. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat Immunol. 2011;12:29–36.

    Article  CAS  PubMed  Google Scholar 

  227. Lu T, Jackson MW, Wang B, Yang M, Chance MR, Miyagi M, et al. Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc Natl Acad Sci USA. 2010;107:46–51.

    Article  CAS  PubMed  Google Scholar 

  228. Wei H, Wang B, Miyagi M, She Y, Gopalan B, Huang D-B, et al. PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB. Proc Natl Acad Sci. 2013;110:13516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Mabb A, Miyamoto S. SUMO and NF-κB ties. Cell Mol life Sci. 2007;64:1979–96.

    Article  CAS  PubMed  Google Scholar 

  230. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat cell Biol. 2008;10:1324–32.

    Article  CAS  PubMed  Google Scholar 

  231. Kim M-J, Hwang S-Y, Imaizumi T, Yoo J-Y. Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol. 2008;82:1474–83.

    Article  CAS  PubMed  Google Scholar 

  232. Xia P, Ye B, Wang S, Zhu X, Du Y, Xiong Z, et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol. 2016;17:369–78.

    Article  CAS  PubMed  Google Scholar 

  233. Bai P, Virág L. Role of poly (ADP-ribose) polymerases in the regulation of inflammatory processes. FEBS Lett. 2012;586:3771–7.

    Article  CAS  PubMed  Google Scholar 

  234. Rosado MM, Bennici E, Novelli F, Pioli C. Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology. 2013;139:428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kunze FA, Hottiger MO. Regulating Immunity via ADP-Ribosylation: Therapeutic Implications and Beyond. Trends Immunol. 2019;40:159–73.

    Article  CAS  PubMed  Google Scholar 

  236. Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev. 2020;34:341–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Hassa PO, Haenni SS, Buerki C, Meier NI, Lane WS, Owen H, et al. Acetylation of poly (ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-κB-dependent transcription. J Biol Chem. 2005;280:40450–64.

    Article  CAS  PubMed  Google Scholar 

  238. Brenner JC, Feng FY, Han S, Patel S, Goyal SV, Bou-Maroun LM, et al. PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res. 2012;72:1608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Yang Z, Li L, Chen L, Yuan W, Dong L, Zhang Y, et al. PARP-1 mediates LPS-induced HMGB1 release by macrophages through regulation of HMGB1 acetylation. J Immunol. 2014;193:6114–23.

    Article  CAS  PubMed  Google Scholar 

  240. Bohio AA, Sattout A, Wang R, Wang K, Sah RK, Guo X, et al. c-Abl–mediated tyrosine phosphorylation of PARP1 is crucial for expression of proinflammatory genes. J Immunol. 2019;203:1521–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ditsworth D, Zong WX, Thompson CB. Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem. 2007;282:17845–54.

    Article  CAS  PubMed  Google Scholar 

  242. Rubic T, Lametschwandtner G, Jost S, Hinteregger S, Kund J, Carballido-Perrig N, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol. 2008;9:1261–9.

    Article  CAS  PubMed  Google Scholar 

  243. Tannahill G, Curtis A, Adamik J, Palsson-McDermott E, McGettrick A, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496:238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Mills E, O’Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 2014;24:313–20.

    Article  CAS  PubMed  Google Scholar 

  245. Irizarry-Caro RA, McDaniel MM, Overcast GR, Jain VG, Troutman TD, Pasare C. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci. 2020;117:30628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Phan LM, Yeung SC, Lee MH. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med. 2014;11:1–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  249. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2:e1600200.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Hitosugi T, Chen J. Post-translational modifications and the Warburg effect. Oncogene. 2014;33:4279–85.

    Article  CAS  PubMed  Google Scholar 

  251. Liu, Y and W Gu. The complexity of p53-mediated metabolic regulation in tumor suppression. in Seminars in Cancer Biology. 2021. Elsevier.

  252. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005;18:283–93.

    Article  CAS  PubMed  Google Scholar 

  253. Lee C-W, Wong LL-Y, Tse EY-T, Liu H-F, Leong VY-L, Lee JM-F, et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 2012;72:4394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, et al. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 2002;277:21843–50.

    Article  CAS  PubMed  Google Scholar 

  255. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010;327:1000–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell. 2011;42:719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Zhao D, Zou S-W, Liu Y, Zhou X, Mo Y, Wang P, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer cell. 2013;23:464–76.

    Article  CAS  PubMed  Google Scholar 

  258. Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell. 2011;43:33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Zhang T, Wang S, Lin Y, Xu W, Ye D, Xiong Y, et al. Acetylation negatively regulates glycogen phosphorylase by recruiting protein phosphatase 1. Cell Metab. 2012;15:75–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, et al. Regulation of G 6 PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 2014;33:1304–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Lin R, Tao R, Gao X, Li T, Zhou X, Guan K-L, et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell. 2013;51:506–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Lin H-P, Cheng Z-L, He R-Y, Song L, Tian M-X, Zhou L-S, et al. Destabilization of fatty acid synthase by acetylation inhibits de novo lipogenesis and tumor cell growth. Cancer Res. 2016;76:6924–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464:121–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010;12:654–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Menzies KJ, Zhang H, Katsyuba E, Auwerx J. Protein acetylation in metabolism—metabolites and cofactors. Nature Reviews. Endocrinology. 2016;12:43–60.

    CAS  PubMed  Google Scholar 

  266. Hariharan N, Maejima Y, Nakae J, Paik J, DePinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circulation Res. 2010;107:1470–82.

    Article  CAS  PubMed  Google Scholar 

  267. Geng H, Liu Q, Xue C, David LL, Beer TM, Thomas GV, et al. HIF1α protein stability is increased by acetylation at lysine 709. J Biol Chem. 2012;287:35496–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Lim J-H, Lee Y-M, Chun Y-S, Chen J, Kim J-E, Park J-W. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell. 2010;38:864–78.

    Article  CAS  PubMed  Google Scholar 

  269. Lu J-Y, Lin Y-Y, Sheu J-C, Wu J-T, Lee F-J, Chen Y, et al. Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell. 2011;146:969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Risso G, Blaustein M, Pozzi B, Mammi P, Srebrow A. Akt/PKB: one kinase, many modifications. Biochemical J. 2015;468:203–14.

    Article  CAS  Google Scholar 

  271. Mei Z, Zhang X, Yi J, Huang J, He J, Tao Y. Sirtuins in metabolism, DNA repair and cancer. J Exp Clin Cancer Res. 2016;35:1–14.

    Article  Google Scholar 

  272. Zhu, S, Z Dong, X Ke, J Hou, E Zhao, K Zhang, et al. The roles of sirtuins family in cell metabolism during tumor development. in Seminars in cancer biology. 2019. Elsevier.

  273. Hsu M-C, Tsai Y-L, Lin C-H, Pan M-R, Shan Y-S, Cheng T-Y, et al. Protein arginine methyltransferase 3-induced metabolic reprogramming is a vulnerable target of pancreatic cancer. J Hematol Oncol. 2019;12:79.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Wang YP, Zhou W, Wang J, Huang X, Zuo Y, Wang TS, et al. Arginine Methylation of MDH1 by CARM1 Inhibits Glutamine Metabolism and Suppresses Pancreatic Cancer. Mol Cell. 2016;64:673–87.

    Article  CAS  PubMed  Google Scholar 

  275. Zhong X-Y, Yuan X-M, Xu Y-Y, Yin M, Yan W-W, Zou S-W, et al. CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer. Cell Rep. 2018;24:3207–23.

    Article  CAS  PubMed  Google Scholar 

  276. Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C, et al. PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol. 2017;19:1358–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Guo J, Zhang Q, Su Y, Lu X, Wang Y, Yin M, et al. Arginine methylation of ribose-5-phosphate isomerase A senses glucose to promote human colorectal cancer cell survival. Sci China Life Sci. 2020;63:1394–405.

    Article  PubMed  Google Scholar 

  278. Liu L, Zhao X, Zhao L, Li J, Yang H, Zhu Z, et al. Arginine Methylation of SREBP1a via PRMT5 Promotes De Novo Lipogenesis and Tumor Growth. Cancer Res. 2016;76:1260–72.

    Article  CAS  PubMed  Google Scholar 

  279. Yan WW, Liang YL, Zhang QX, Wang D, Lei MZ, Qu J, et al. Arginine methylation of SIRT 7 couples glucose sensing with mitochondria biogenesis. EMBO Rep. 2018;19:e46377.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Wong TL, Ng KY, Tan KV, Chan LH, Zhou L, Che N, et al. CRAF methylation by PRMT6 regulates aerobic glycolysis–driven hepatocarcinogenesis via erk-dependent PKM2 nuclear relocalization and activation. Hepatology. 2020;71:1279–96.

    Article  CAS  PubMed  Google Scholar 

  281. Pineda CT, Ramanathan S, Tacer KF, Weon JL, Potts MB, Ou Y-H, et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell. 2015;160:715–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Deng M, Yang X, Qin B, Liu T, Zhang H, Guo W, et al. Deubiquitination and activation of AMPK by USP10. Mol Cell. 2016;61:614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Lee S-W, Li C-F, Jin G, Cai Z, Han F, Chan C-H, et al. Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress. Mol Cell. 2015;57:1022–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Deng L, Jiang C, Chen L, Jin J, Wei J, Zhao L, et al. The ubiquitination of RagA GTPase by RNF152 negatively regulates mTORC1 activation. Mol Cell. 2015;58:804–18.

    Article  CAS  PubMed  Google Scholar 

  286. Jin G, Lee S-W, Zhang X, Cai Z, Gao Y, Chou P-C, et al. Skp2-mediated RagA ubiquitination elicits a negative feedback to prevent amino-acid-dependent mTORC1 hyperactivation by recruiting GATOR1. Mol Cell. 2015;58:989–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Linares JF, Duran A, Yajima T, Pasparakis M, Moscat J, Diaz-Meco MT. K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol Cell. 2013;51:283–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z, et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell. 2007;128:129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Maddika S, Kavela S, Rani N, Palicharla VR, Pokorny JL, Sarkaria JN, et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nat Cell Biol. 2011;13:728–33.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Van Themsche C, Leblanc V, Parent S, Asselin E. X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. J Biol Chem. 2009;284:20462–6.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Xu J, Liu D, Niu H, Zhu G, Xu Y, Ye D, et al. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J Exp Clin Cancer Res. 2017;36:1–14.

    Article  Google Scholar 

  292. Yang W-L, Wang J, Chan C-H, Lee S-W, Campos AD, Lamothe B, et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science. 2009;325:1134–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Chan C-H, Li C-F, Yang W-L, Gao Y, Lee S-W, Feng Z, et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 2012;149:1098–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura AJ, Hirata N, et al. The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Developmental Cell. 2009;17:800–10.

    Article  CAS  PubMed  Google Scholar 

  295. Su C-H, Chien L-J, Gomes J, Lin Y-S, Yu Y-K, Liou J-S, et al. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol. 2011;23:903–8.

    Article  CAS  Google Scholar 

  296. Ma D, Tao X, Gao F, Fan C, Wu D. miR-224 functions as an onco-miRNA in hepatocellular carcinoma cells by activating AKT signaling. Oncol Lett. 2012;4:483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Bae S, Kim S-Y, Jung JH, Yoon Y, Cha HJ, Lee H, et al. Akt is negatively regulated by the MULAN E3 ligase. Cell Res. 2012;22:873–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Shang Y, He J, Wang Y, Feng Q, Zhang Y, Guo J, et al. CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma. Oncogene. 2017;36:4191–4200.

    Article  CAS  PubMed  Google Scholar 

  299. Liu K, Li F, Han H, Chen Y, Mao Z, Luo J, et al. Parkin regulates the activity of pyruvate kinase M2. J Biol Chem. 2016;291:10307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Jiao L, Zhang H-L, Li D-D, Yang K-L, Tang J, Li X, et al. Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2). Autophagy. 2018;14:671–84.

    Article  CAS  PubMed  Google Scholar 

  301. Lee H-J, Li C-F, Ruan D, He J, Montal ED, Lorenz S, et al. Non-proteolytic ubiquitination of Hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion. Nat Commun. 2019;10:1–16.

    Google Scholar 

  302. Jiang L, Xiong J, Zhan J, Yuan F, Tang M, Zhang C, et al. Ubiquitin-specific peptidase 7 (USP7)-mediated deubiquitination of the histone deacetylase SIRT7 regulates gluconeogenesis. J Biol Chem. 2017;292:13296–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Dong C, Li Y, Niu Q, Fang H, Bai J, Yan Y, et al. SUMOylation involves in β-arrestin-2-dependent metabolic regulation in breast cancer cell. Biochemical Biophysical Res Commun. 2020;529:950–6.

    Article  CAS  Google Scholar 

  304. Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL, et al. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell. 2014;54:820–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Rao X, Duan X, Mao W, Li X, Li Z, Li Q, et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun. 2015;6:1–10.

    Article  Google Scholar 

  306. Wang T, Yu Q, Li J, Hu B, Zhao Q, Ma C, et al. O-GlcNAcylation of fumarase maintains tumour growth under glucose deficiency. Nat cell Biol. 2017;19:833–43.

    Article  PubMed  Google Scholar 

  307. Sodi VL, Bacigalupa ZA, Ferrer CM, Lee JV, Gocal WA, Mukhopadhyay D, et al. Nutrient sensor O-GlcNAc transferase controls cancer lipid metabolism via SREBP-1 regulation. Oncogene. 2018;37:924–34.

    Article  CAS  PubMed  Google Scholar 

  308. Tan EP, Villar MT, Lezi E, Lu J, Selfridge JE, Artigues A, et al. Altering O-linked β-N-acetylglucosamine cycling disrupts mitochondrial function. J Biol Chem. 2014;289:14719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu X, et al. The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun. 2017;8:1–15.

    Google Scholar 

  310. Xu H, Wu M, Ma X, Huang W, Xu Y. Function and mechanism of novel histone posttranslational modifications in health and disease. BioMed Res Int. 2021;2021:6635225.

    PubMed  PubMed Central  Google Scholar 

  311. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013;50:919–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Huang H, Tang S, Ji M, Tang Z, Shimada M, Liu X, et al. p300-mediated lysine 2-hydroxyisobutyrylation regulates glycolysis. Mol Cell. 2018;70:663–78. e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Xie Z, Zhang D, Chung D, Tang Z, Huang H, Dai L, et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol Cell. 2016;62:194–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70:5649–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Fidler IJ. The pathogenesis of cancer metastasis: the’seed and soil’hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  CAS  PubMed  Google Scholar 

  316. Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 2016;15:1–14.

    Article  Google Scholar 

  317. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol. 2004;6:931–40.

    Article  CAS  PubMed  Google Scholar 

  318. Ryu K-J, Park S-M, Park S-H, Kim I-K, Han H, Kim H-J, et al. p38 stabilizes snail by suppressing DYRK2-mediated phosphorylation that is required for GSK3β-βTrCP–induced snail degradation. Cancer Res. 2019;79:4135–48.

    Article  CAS  PubMed  Google Scholar 

  319. Sun H, Hunter T. Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search. J Biol Chem. 2012;287:42071–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Qiu Z, Dong B, Guo W, Piotr R, Longmore G, Yang X, et al. STK39 promotes breast cancer invasion and metastasis by increasing SNAI1 activity upon phosphorylation. Theranostics. 2021;11:7658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Mao L, Zhan Y-y, Wu B, Yu Q, Xu L, Hong X, et al. ULK1 phosphorylates Exo70 to suppress breast cancer metastasis. Nat Commun. 2020;11:1–12.

    Article  Google Scholar 

  322. Cai Z, Li C-F, Han F, Liu C, Zhang A, Hsu C-C, et al. Phosphorylation of PDHA by AMPK drives TCA cycle to promote cancer metastasis. Mol Cell. 2020;80:263–78. e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Lin W-H, Chang Y-W, Hong M-X, Hsu T-C, Lee K-C, Lin C, et al. STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT–MET switch and cancer metastasis. Oncogene. 2021;40:791–805.

    Article  CAS  PubMed  Google Scholar 

  324. Kim J, Kang J, Kang Y-L, Woo J, Kim Y, Huh J, et al. Ketohexokinase-A acts as a nuclear protein kinase that mediates fructose-induced metastasis in breast cancer. Nat Commun. 2020;11:1–20.

    Article  Google Scholar 

  325. Chang R, Zhang Y, Zhang P, Zhou Q. Snail acetylation by histone acetyltransferase p300 in lung cancer. Thorac Cancer. 2017;8:131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Liu C, Yang Q, Zhu Q, Lu X, Li M, Hou T, et al. CBP mediated DOT1L acetylation confers DOT1L stability and promotes cancer metastasis. Theranostics. 2020;10:1758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Zheng Y, Wu C, Yang J, Zhao Y, Jia H, Xue M, et al. Insulin-like growth factor 1-induced enolase 2 deacetylation by HDAC3 promotes metastasis of pancreatic cancer. Signal Transduct Target Ther. 2020;5:1–14.

    Google Scholar 

  328. Palmirotta R, Cives M, Della-Morte D, Capuani B, Lauro D, Guadagni F, et al. Sirtuins and cancer: role in the epithelial-mesenchymal transition. Oxidat Med Cellular Longevity. 2016;2016:3031459.

    Google Scholar 

  329. Byles V, Zhu L, Lovaas J, Chmilewski L, Wang J, Faller D, et al. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene. 2012;31:4619–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Wang B, Ye Y, Yang X, Liu B, Wang Z, Chen S, et al. SIRT 2-dependent IDH 1 deacetylation inhibits colorectal cancer and liver metastases. EMBO Rep. 2020;21:e48183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Zhang S-W, Gong C-J, Su M-B, Chen F, He T, Zhang Y-M, et al. Synthesis and in Vitro and in Vivo Biological Evaluation of Tissue-Specific Bisthiazole Histone Deacetylase (HDAC) Inhibitors. J Med Chem. 2019;63:804–15.

    Article  Google Scholar 

  332. Han LL, Jia L, Wu F, Huang C. Sirtuin6 (SIRT6) promotes the EMT of hepatocellular carcinoma by stimulating autophagic degradation of E-cadherin. Mol Cancer Res. 2019;17:2267–80.

    Article  CAS  PubMed  Google Scholar 

  333. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736–46.

    Article  CAS  PubMed  Google Scholar 

  334. Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, et al. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun. 2017;8:1–14.

    Article  Google Scholar 

  335. Garcia MR, Steinbauer B, Srivastava K, Singhal M, Mattijssen F, Maida A, et al. Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence. Cell Metab. 2017;26:842–55. e5.

    Article  Google Scholar 

  336. Gallo L, Ko J, Donoghue D. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle. 2017;16:634–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun. 2015;6:1–12.

    Article  Google Scholar 

  338. Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A, et al. Arkadia amplifies TGF-β superfamily signalling through degradation of Smad7. EMBO J. 2003;22:6458–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Liu J, Zhang C, Zhao Y, Yue X, Wu H, Huang S, et al. Parkin targets HIF-1α for ubiquitination and degradation to inhibit breast tumor progression. Nat Commun. 2017;8:1–16.

    Article  Google Scholar 

  340. Fan H, Wang X, Li W, Shen M, Wei Y, Zheng H, et al. ASB13 inhibits breast cancer metastasis through promoting SNAI2 degradation and relieving its transcriptional repression of YAP. Genes Dev. 2020;34:1359–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Sentani K, Oue N, Kondo H, Kuraoka K, Motoshita J, Ito R, et al. Increased expression but not genetic alteration of BRG1, a component of the SWI/SNF complex, is associated with the advanced stage of human gastric carcinomas. Pathobiology. 2001;69:315–20.

    Article  CAS  PubMed  Google Scholar 

  342. Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11:481–92.

    Article  CAS  PubMed  Google Scholar 

  343. Huang L-Y, Zhao J, Chen H, Wan L, Inuzuka H, Guo J, et al. SCF FBW7-mediated degradation of Brg1 suppresses gastric cancer metastasis. Nat Commun. 2018;9:1–12.

    Article  Google Scholar 

  344. Bai J, Wu K, Cao M-H, Yang Y, Pan Y, Liu H, et al. SCFFBXO22 targets HDM2 for degradation and modulates breast cancer cell invasion and metastasis. Proc Natl Acad Sci. 2019;116:11754–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017;8:1–16.

    Google Scholar 

  346. Chen D, Li Y, Zhang X, Wu H, Wang Q, Cai J, et al. Ubiquitin ligase TRIM65 promotes colorectal cancer metastasis by targeting ARHGAP35 for protein degradation. Oncogene. 2019;38:6429–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Yang F, Xu J, Li H, Tan M, Xiong X, Sun Y. FBXW2 suppresses migration and invasion of lung cancer cells via promoting β-catenin ubiquitylation and degradation. Nat Commun. 2019;10:1–16.

    Google Scholar 

  348. Avasarala S, Van Scoyk M, Rathinam MKK, Zerayesus S, Zhao X, Zhang W, et al. PRMT1 is a novel regulator of epithelial-mesenchymal-transition in non-small cell lung cancer. J Biol Chem. 2015;290:13479–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Liu Y, Li L, Liu X, Wang Y, Liu L, Peng L, et al. Arginine methylation of SHANK2 by PRMT7 promotes human breast cancer metastasis through activating endosomal FAK signalling. elife. 2020;9:e57617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Liu J, Feng J, Li L, Lin L, Ji J, Lin C, et al. Arginine methylation-dependent LSD1 stability promotes invasion and metastasis of breast cancer. EMBO Rep. 2020;21:e48597.

    Article  CAS  PubMed  Google Scholar 

  351. Goth CK, Vakhrushev SY, Joshi HJ, Clausen H, Schjoldager KT. Fine-tuning limited proteolysis: a major role for regulated site-specific O-glycosylation. Trends biochemical Sci. 2018;43:269–84.

    Article  CAS  Google Scholar 

  352. Colley, KJ, A Varki, and T Kinoshita, Cellular organization of glycosylation. 2017.

  353. Ferrer CM, Sodi VL, Reginato MJ. O-GlcNAcylation in cancer biology: linking metabolism and signaling. J Mol Biol. 2016;428:3282–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Wu D, Jin J, Qiu Z, Liu D, Luo H. Functional analysis of O-GlcNAcylation in cancer metastasis. Front Oncol. 2020;10:585288.

    Article  PubMed  PubMed Central  Google Scholar 

  355. Ferrer CM, Lu TY, Bacigalupa ZA, Katsetos CD, Sinclair DA, Reginato MJ. O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway. Oncogene. 2017;36:559–69.

    Article  CAS  PubMed  Google Scholar 

  356. Kim JH, Choi HJ, Kim B, Kim MH, Lee JM, Kim IS, et al. Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis. Nat Cell Biol. 2006;8:631–9.

    Article  CAS  PubMed  Google Scholar 

  357. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell. 2008;135:510–23.

    Article  CAS  PubMed  Google Scholar 

  358. Schmidt-Hansen B, Örnås D, Grigorian M, Klingelhöfer J, Tulchinsky E, Lukanidin E, et al. Extracellular S100A4 (mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene. 2004;23:5487–95.

    Article  CAS  PubMed  Google Scholar 

  359. Mason FM, Xie S, Vasquez CG, Tworoger M, Martin AC. RhoA GTPase inhibition organizes contraction during epithelial morphogenesis. J Cell Biol. 2016;214:603–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Miranda KJ, Loeser RF, Yammani RR. Response to Berge et al.: Comment on the Importance of S100A4 in Regulation of MMP-13. J Biol Chem. 2010;285:le24–le24.

    Article  CAS  PubMed Central  Google Scholar 

  361. Huang H-J, Zhou L-L, Fu W-J, Zhang C-Y, Jiang H, Du J, et al. β-catenin SUMOylation is involved in the dysregulated proliferation of myeloma cells. Am J Cancer Res. 2015;5:309.

    PubMed  Google Scholar 

  362. Wan J, Liu H, Chu J, Zhang H. Functions and mechanisms of lysine crotonylation. J Cell Mol Med. 2019;23:7163–9.

    Article  PubMed  PubMed Central  Google Scholar 

  363. Hou J-Y, Cao J, Gao L-J, Zhang F-P, Shen J, Zhou L, et al. Upregulation of α enolase (ENO1) crotonylation in colorectal cancer and its promoting effect on cancer cell metastasis. Biochem Biophys Res Commun. 2021;578:77–83.

    Article  CAS  PubMed  Google Scholar 

  364. Yang X-J, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol cell. 2008;31:449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Minguez P, Parca L, Diella F, Mende DR, Kumar R, Helmer-Citterich M, et al. Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol. 2012;8:599.

    Article  PubMed  PubMed Central  Google Scholar 

  366. Huang K-Y, Lee T-Y, Kao H-J, Ma C-T, Lee C-C, Lin T-H, et al. dbPTM in 2019: exploring disease association and cross-talk of post-translational modifications. Nucleic Acids Res. 2019;47:D298–D308.

    Article  CAS  PubMed  Google Scholar 

  367. Wang H, Zhao Y, Li L, McNutt MA, Wu L, Lu S, et al. An ATM- and Rad3-related (ATR) signaling pathway and a phosphorylation-acetylation cascade are involved in activation of p53/p21Waf1/Cip1 in response to 5-aza-2’-deoxycytidine treatment. J Biol Chem. 2008;283:2564–74.

    Article  CAS  PubMed  Google Scholar 

  368. Song Y, Wan X, Gao L, Pan Y, Xie W, Wang H, et al. Activated PKR inhibits pancreatic β-cell proliferation through sumoylation-dependent stabilization of P53. Mol Immunol. 2015;68:341–9.

    Article  CAS  PubMed  Google Scholar 

  369. Meng F, Qian J, Yue H, Li X, Xue K. SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase. Cell Cycle. 2016;15:1724–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Yamagata K, Daitoku H, Takahashi Y, Namiki K, Hisatake K, Kako K, et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell. 2008;32:221–31.

    Article  CAS  PubMed  Google Scholar 

  371. Ma Z, Chalkley RJ, Vosseller K. Hyper-O-GlcNAcylation activates nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling through interplay with phosphorylation and acetylation. J Biol Chem. 2017;292:9150–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol. 2006;8:1074–83.

    Article  CAS  PubMed  Google Scholar 

  373. Gao M, Karin M. Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Mol Cell. 2005;19:581–93.

    Article  CAS  PubMed  Google Scholar 

  374. Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell. 2007;28:730–8.

    Article  CAS  PubMed  Google Scholar 

  375. Wang Y, Wang F. Post-translational modifications of deubiquitinating enzymes: expanding the ubiquitin code. Front Pharm. 2021;12:685011.

    Article  CAS  Google Scholar 

  376. Tang M, Tang H, Tu B, Zhu W-G. SIRT7: a sentinel of genome stability. Open Biol. 2021;11:210047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Ito A, Lai CH, Zhao X, Saito SI, Hamilton MH, Appella E, et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 2001;20:1331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Wu S-Y, Cheng C-M. p53 sumoylation: mechanistic insights from reconstitution studies. Epigenetics. 2009;4:445–51.

    Article  CAS  PubMed  Google Scholar 

  379. Brandl A, Wagner T, Uhlig KM, Knauer SK, Stauber RH, Melchior F, et al. Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. J Mol Cell Biol. 2012;4:284–93.

    Article  CAS  PubMed  Google Scholar 

  380. Yang Y, Zhang H, Guo Z, Zou S, Long F, Wu J, et al. Global insights into lysine acylomes reveal crosstalk between lysine acetylation and succinylation in streptomyces coelicolor metabolic pathways. Mol Cell Proteomics. 2021;20:100148.

    Article  PubMed  PubMed Central  Google Scholar 

  381. Carter S, Bischof O, Dejean A, Vousden KH. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol. 2007;9:428–35.

    Article  CAS  PubMed  Google Scholar 

  382. Wang Z, Prelich G. Quality control of a transcriptional regulator by SUMO-targeted degradation. Mol Cell Biol. 2009;29:1694–706.

    Article  PubMed  PubMed Central  Google Scholar 

  383. Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, et al. SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell. 2020;38:350–65. e7.

    Article  CAS  PubMed  Google Scholar 

  384. Zeng Y, Qiu R, Yang Y, Gao T, Zheng Y, Huang W, et al. Regulation of EZH2 by SMYD2-mediated lysine methylation is implicated in tumorigenesis. Cell Rep. 2019;29:1482–98. e4.

    Article  CAS  PubMed  Google Scholar 

  385. Chu C-S, Lo P-W, Yeh Y-H, Hsu P-H, Peng S-H, Teng Y-C, et al. O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci. 2014;111:1355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Lo P-W, Shie J-J, Chen C-H, Wu C-Y, Hsu T-L, Wong C-H. O-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2. Proc Natl Acad Sci. 2018;115:7302–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Vivelo CA, Ayyappan V, Leung AKL. Poly(ADP-ribose)-dependent ubiquitination and its clinical implications. Biochemical Pharmacol. 2019;167:3–12.

    Article  CAS  Google Scholar 

  388. Pellegrino S, Altmeyer M. Interplay between ubiquitin, SUMO, and poly (ADP-ribose) in the cellular response to genotoxic stress. Front Genet. 2016;7:63.

    Article  PubMed  PubMed Central  Google Scholar 

  389. Kashima L, Idogawa M, Mita H, Shitashige M, Yamada T, Ogi K, et al. CHFR protein regulates mitotic checkpoint by targeting PARP-1 protein for ubiquitination and degradation. J Biol Chem. 2012;287:12975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Kang HC, Lee Y-I, Shin J-H, Andrabi SA, Chi Z, Gagné J-P, et al. Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci. 2011;108:14103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Gatti M, Imhof R, Huang Q, Baudis M, Altmeyer M. The ubiquitin ligase TRIP12 limits PARP1 trapping and constrains PARP inhibitor efficiency. Cell Rep. 2020;32:107985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Li M, Yu X. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell. 2013;23:693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Zhao Y, Brickner JR, Majid MC, Mosammaparast N. Crosstalk between ubiquitin and other post-translational modifications on chromatin during double-strand break repair. Trends Cell Biol. 2014;24:426–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Yang C-S, Jividen K, Spencer A, Dworak N, Ni L, Oostdyk LT, et al. Ubiquitin modification by the E3 ligase/ADP-ribosyltransferase Dtx3L/Parp9. Mol Cell. 2017;66:503–16. e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Elguero B, Gonilski Pacin D, Cárdenas Figueroa C, Fuertes M, Arzt E. Modifications in the cellular proteome and their clinical application. Med (B Aires). 2019;79:570–5.

    CAS  Google Scholar 

  396. Silsirivanit A. Glycosylation markers in cancer. Adv Clin Chem. 2019;89:189–213.

    Article  CAS  PubMed  Google Scholar 

  397. Roskoski R Jr. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharm Res. 2015;100:1–23.

    Article  CAS  Google Scholar 

  398. Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: From mechanisms to their inhibition by small molecules. Mol Cell. 2022;82:15–29.

    Article  CAS  PubMed  Google Scholar 

  399. Rawat R, Starczynowski DT, Ntziachristos P. Nuclear deubiquitination in the spotlight: the multifaceted nature of USP7 biology in disease. Curr Opin Cell Biol. 2019;58:85–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26:5420–32.

    Article  CAS  PubMed  Google Scholar 

  401. Tang X, Li G, Su F, Cai Y, Shi L, Meng Y, et al. HDAC8 cooperates with SMAD3/4 complex to suppress SIRT7 and promote cell survival and migration. Nucleic Acids Res. 2020;48:2912–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Goel PN, Grover P, Greene MI. PRMT5 and Tip60 modify FOXP3 function in tumor immunity. Crit Rev™ Immunol. 2020;40:283–95.

    Article  PubMed  Google Scholar 

  403. Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther. 2020;5:1–25.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81974437, 81472627, 82172959, 81874147). We thank Thomas Luo for editoral assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiying Wang or Jianyuan Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, L., Liu, M. et al. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 30, 529–547 (2023). https://doi.org/10.1038/s41417-022-00464-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00464-3

This article is cited by

Search

Quick links