Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ERRα coordinates actin and focal adhesion dynamics

Abstract

Cell migration depends on the dynamic organisation of the actin cytoskeleton and assembly and disassembly of focal adhesions (FAs). However, the precise mechanisms coordinating these processes remain poorly understood. We previously identified the oestrogen-related receptor α (ERRα) as a major regulator of cell migration. Here, we show that loss of ERRα leads to abnormal accumulation of actin filaments that is associated with an increased level of inactive form of the actin-depolymerising factor cofilin. We further show that ERRα depletion decreases cell adhesion and results in defective FA formation and turnover. Interestingly, specific inhibition of the RhoA-ROCK-LIMK-cofilin pathway rescues the actin polymerisation defects resulting from ERRα silencing, but not cell adhesion. Instead, we found that MAP4K4 is a direct target of ERRα and down-regulation of its activity rescues cell adhesion and FA formation in the ERRα-depleted cells. Altogether, our results highlight a crucial role of ERRα in coordinating the dynamic of actin network and FAs through the independent regulation of the RhoA and MAP4K4 pathways.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: ERRα regulates actin polymerisation.
Fig. 2: Modulation of the RhoA-ROCK-LIMK pathway rescues abnormal cofilin phosphorylation and F-actin accumulation due to ERRα depletion.
Fig. 3: ERRα promotes cell adhesion, independently of its function in modulation of actin polymerisation.
Fig. 4: Loss of ERRα alters FA formation and dynamic.
Fig. 5: MAP4K4 is a novel target gene of ERRα.
Fig. 6: ERRα modulates cell adhesion and FA formation through MAP4K4.

Data availability

All relevant data can be found within the published article and its supplementary files. FA quantification was done using a Matlab (MathWorks, Natick, MA) algorithm developed by M. Balland and R. De Mets, and the corresponding source code can be found in GitHub: https://github.com/rdemets/FA_Quantif_Matlab.

Code availability

https://github.com/rdemets/FA_Quantif_MatlabThe source code of the Focal Adhesion Analysis Server developed by M Berginski [37, 38] is also available in GitHub: https://github.com/mbergins/.

References

  1. Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM. Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol. 2010;26:315–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration during metastasis. Curr Opin Cell Biol. 2012;24:277–83.

    CAS  PubMed  Google Scholar 

  3. Ridley AJ. Cell migration: integrating signals from front to back. Science. 2003;302:1704–9.

    CAS  PubMed  Google Scholar 

  4. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev. 2014;94:235–63.

    CAS  PubMed  Google Scholar 

  5. De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell. 2017;28:1833–46.

    PubMed  PubMed Central  Google Scholar 

  6. Ridley AJ. Rho GTPase signalling in cell migration. Curr Opin Cell Biol. 2015;36:103–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lawson CD, Ridley AJ. Rho GTPase signaling complexes in cell migration and invasion. J Cell Biol. 2018;217:447–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Guan X, Guan X, Dong C, Jiao Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp Cell Res. 2020;388:111824.

    CAS  PubMed  Google Scholar 

  9. Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, et al. Coordination of Rho GTPase activities during cell protrusion. Nature. 2009;461:99–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin K, Reimann A, Fritz RD, Ryu H, Jeon NL, Pertz O. Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics. Sci Rep. 2016;6:1–14.

    Google Scholar 

  11. Seetharaman S, Etienne-Manneville S. Microtubules at focal adhesions – a double-edged sword. J Cell Sci. 2019;132:jcs232843.

    CAS  PubMed  Google Scholar 

  12. Spiering D, Hodgson L. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adhes Migr. 2011;5:170–80.

    Google Scholar 

  13. Mizuno K. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal. 2013;25:457–69.

    CAS  PubMed  Google Scholar 

  14. Kanellos G, Frame MC. Cellular functions of the ADF/cofilin family at a glance. J Cell Sci. 2016;129:3211–8.

    CAS  PubMed  Google Scholar 

  15. Gao X, Gao C, Liu G, Hu J. MAP4K4: an emerging therapeutic target in cancer. Cell Biosci. 2016;6:56.

    PubMed  PubMed Central  Google Scholar 

  16. Tripolitsioti D, Grotzer MA, Baumgartner M. The Ser/Thr kinase MAP4K4 controls pro-metastatic cell functions. J Carcinog Mutagen. 2017;8:2.

    Google Scholar 

  17. Stehbens S, Wittmann T. Targeting and transport: how microtubules control focal adhesion dynamics. J Cell Biol. 2012;198:481–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yue J, Xie M, Gou X, Lee P, Schneider MD, Wu X. Microtubules regulate focal adhesion dynamics through MAP4K4. Dev Cell. 2014;31:572–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vitorino P, Yeung S, Crow A, Bakke J, Smyczek T, West K, et al. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature. 2015;519:425–30.

    CAS  PubMed  Google Scholar 

  20. Tripolitsioti D, Kumar KS, Neve A, Migliavacca J, Capdeville C, Rushing EJ, et al. MAP4K4 controlled integrin β1 activation and c-Met endocytosis are associated with invasive behavior of medulloblastoma cells. Oncotarget. 2018;9:23220–36.

    PubMed  PubMed Central  Google Scholar 

  21. Dwyer MA, Joseph JD, Wade HE, Eaton ML, Kunder RS, Kazmin D, et al. WNT11 expression is induced by estrogen-related receptor alpha and beta-catenin and acts in an autocrine manner to increase cancer cell migration. Cancer Res. 2010;70:9298–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sailland J, Tribollet V, Forcet C, Billon C, Barenton B, Carnesecchi J, et al. Estrogen-related receptor α decreases RHOA stability to induce orientated cell migration. Proc Natl Acad Sci. 2014;111:15108–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tam IS, Giguère V. There and back again: The journey of the estrogen-related receptors in the cancer realm. J Steroid Biochem Mol Biol. 2016;157:13–9.

    CAS  PubMed  Google Scholar 

  24. Horard B, Vanacker J-M. Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand. J Mol Endocrinol. 2003;31:349–57.

    CAS  PubMed  Google Scholar 

  25. Ranhotra HS. The estrogen-related receptors in metabolism and cancer: newer insights. J Recept Signal Transduct. 2018;38:95–100.

    CAS  Google Scholar 

  26. Ranhotra HS. Estrogen-related receptor alpha and cancer: axis of evil. J Recept Signal Transduct. 2015;35:505–8.

    CAS  Google Scholar 

  27. Chang C, Kazmin D, Jasper JS, Kunder R, Zuercher WJ, McDonnell DP. The metabolic regulator ERRα, a downstream target of HER2/IGF-1, as a therapeutic target in breast cancer. Cancer Cell. 2011;20:500–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bianco S, Sailland J, Vanacker J-M. ERRs and cancers: Effects on metabolism and on proliferation and migration capacities. J Steroid Biochem Mol Biol. 2012;130:180–5.

    CAS  PubMed  Google Scholar 

  29. Ao A, Wang H, Kamarajugadda S, Lu J. Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors. Proc Natl Acad Sci. 2008;105:7821–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zou C, Yu S, Xu Z, Wu D, Ng C-F, Yao X, et al. ERRα augments HIF-1 signalling by directly interacting with HIF-1α in normoxic and hypoxic prostate cancer cells. J Pathol. 2014;233:61–73.

    CAS  PubMed  Google Scholar 

  31. Stein RA, Gaillard S, McDonnell DP. Estrogen-related receptor alpha induces the expression of vascular endothelial growth factor in breast cancer cells. J Steroid Biochem Mol Biol. 2009;114:106–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang K, Lu J, Mori T, Smith-Powell L, Synold TW, Chen S, et al. Baicalin increases VEGF expression and angiogenesis by activating the ERR{alpha}/PGC-1{alpha} pathway. Cardiovasc Res. 2011;89:426–35.

    CAS  PubMed  Google Scholar 

  33. Tennessen JM, Baker KD, Lam G, Evans J, Thummel CS. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab. 2011;13:139–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cai Q, Lin T, Kamarajugadda S, Lu J. Regulation of glycolysis and the Warburg effect by estrogen-related receptors. Oncogene. 2013;32:2079–86.

    CAS  PubMed  Google Scholar 

  35. Carnesecchi J, Forcet C, Zhang L, Tribollet V, Barenton B, Boudra R, et al. ERRα induces H3K9 demethylation by LSD1 to promote cell invasion. Proc Natl Acad Sci. 2017;114:3909–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang L, Carnesecchi J, Cerutti C, Tribollet V, Périan S, Forcet C, et al. LSD1-ERRα complex requires NRF1 to positively regulate transcription and cell invasion. Sci Rep. 2018;8:10041.

    PubMed  PubMed Central  Google Scholar 

  37. Berginski ME, Vitriol EA, Hahn KM, Gomez SM. High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS ONE. 2011;6:e22025.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Berginski ME, Gomez SM. The Focal Adhesion Analysis Server: a web tool for analyzing focal adhesion dynamics. F1000Research. 2013;2:68.

    PubMed  PubMed Central  Google Scholar 

  39. Vicente-Manzanares M, Choi CK, Horwitz AR. Integrins in cell migration – the actin connection. J Cell Sci. 2009;122:199–206.

    CAS  PubMed  Google Scholar 

  40. Juanes MA, Bouguenina H, Eskin JA, Jaiswal R, Badache A, Goode BL. Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. J Cell Biol. 2017;216:2859–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Romero S, Le Clainche C, Gautreau AM. Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J. 2020;477:1–21.

    CAS  PubMed  Google Scholar 

  42. Agaësse G, Barbollat-Boutrand L, Sulpice E, Bhajun R, Kharbili ME, Berthier-Vergnes O, et al. A large-scale RNAi screen identifies LCMR1 as a critical regulator of Tspan8-mediated melanoma invasion. Oncogene. 2017;36:446–57.

    PubMed  Google Scholar 

  43. Deblois G, Smith HW, Tam IS, Gravel S-P, Caron M, Savage P, et al. ERRα mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat Commun. 2016;7:12156.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Baumgartner M, Sillman AL, Blackwood EM, Srivastava J, Madson N, Schilling JW, et al. The Nck-interacting kinase phosphorylates ERM proteins for formation of lamellipodium by growth factors. Proc Natl Acad Sci. 2006;103:13391–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ammirati M, Bagley SW, Bhattacharya SK, Buckbinder L, Carlo AA, Conrad R, et al. Discovery of an in vivo tool to establish proof-of-concept for MAP4K4-based antidiabetic treatment. ACS Med Chem Lett. 2015;6:1128–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ndubaku CO, Crawford TD, Chen H, Boggs JW, Drobnick J, Harris SF, et al. Structure-based design of GNE-495, a potent and selective MAP4K4 inhibitor with efficacy in retinal angiogenesis. ACS Med Chem Lett. 2015;6:913–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bardet P-L, Horard B, Laudet V, Vanacker J-M. The ERRα orphan nuclear receptor controls morphogenetic movements during zebrafish gastrulation. Dev Biol. 2005;281:102–11.

    CAS  PubMed  Google Scholar 

  48. Amano M, Nakayama M, Kaibuchi K. Rho-Kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskelet Hoboken Nj. 2010;67:545–54.

    CAS  Google Scholar 

  49. Klapholz B, Brown NH. Talin – the master of integrin adhesions. J Cell Sci. 2017;130:2435–46.

    CAS  PubMed  Google Scholar 

  50. Sun Z, Costell M, Fässler R. Integrin activation by talin, kindlin and mechanical forces. Nat Cell Biol. 2019;21:25–31.

    CAS  PubMed  Google Scholar 

  51. Petrie RJ, Doyle AD, Yamada KM. Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol. 2009;10:538–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma M, Baumgartner M. Intracellular theileria annulata promote invasive cell motility through kinase regulation of the host actin cytoskeleton. PLoS Pathog. 2014;10:e1004003.

    PubMed  PubMed Central  Google Scholar 

  53. LeClaire LL, Rana M, Baumgartner M, Barber DL. The Nck-interacting kinase NIK increases Arp2/3 complex activity by phosphorylating the Arp2 subunit. J Cell Biol. 2015;208:161–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Santhana Kumar K, Tripolitsioti D, Ma M, Grählert J, Egli KB, Fiaschetti G, et al. The Ser/Thr kinase MAP4K4 drives c-Met-induced motility and invasiveness in a cell-based model of SHH medulloblastoma. SpringerPlus. 2015;4:19.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors warmly thank members of the Vanacker lab for support and discussion, as well as Séverine Périan for technical assistance. We are grateful to Sandrine Etienne-Manneville (Institut Pasteur, Paris) and Laurence Lafanechère (Institute for Advanced Biosciences, Grenoble) for reagents. We also thank the staff of PLATIM (UMS3444/CNRS, US8/INSERM, ENS de Lyon, UCBL) and IGFL microscopy facilities for their precious help with microscopy studies.

Funding

Work in our laboratory is funded by Ligue contre le Cancer (comité Rhône), Région Auvergne Rhône Alpes (grant SCUSI OPE2017_004), ANSES (grant EST15-076), and ENS Lyon (programme JoRISS).

Author information

Authors and Affiliations

Authors

Contributions

VT, JMV and CF were responsible for designing research; VT, CC, EDB, JC and CF performed research; RDM, MB, and AG contributed to analytic tools; VT, CC, JMV and CF extracted, analysed data and interpreted results; and CF wrote the paper.

Corresponding author

Correspondence to Christelle Forcet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tribollet, V., Cerutti, C., Géloën, A. et al. ERRα coordinates actin and focal adhesion dynamics. Cancer Gene Ther (2022). https://doi.org/10.1038/s41417-022-00461-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-022-00461-6

Search

Quick links