Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HDAC11 activity contributes to MEK inhibitor escape in uveal melanoma

Abstract

We previously demonstrated that pan-HDAC inhibitors could limit escape from MEK inhibitor (MEKi) therapy in uveal melanoma (UM) through suppression of AKT and YAP/TAZ signaling. Here, we focused on the role of specific HDACs in therapy adaptation. Class 2 UM displayed higher expression of HDACs 1, 2, and 3 than Class 1, whereas HDACs 6, 8, and 11 were uniformly expressed. Treatment of UM cells with MEKi led to modulation of multiple HDACs, with the strongest increases observed in HDAC11. RNA-seq analysis showed MEKi to decrease the expression of multiple HDAC11 target genes. Silencing of HDAC11 significantly reduced protein deacetylation, enhanced the apoptotic response to MEKi and reduced growth in long-term colony formation assays across multiple UM cell lines. Knockdown of HDAC11 led to decreased expression of TAZ in some UM cell lines, accompanied by decreased YAP/TAZ transcriptional activity and reduced expression of multiple YAP/TAZ target genes. Further studies showed this decrease in TAZ expression to be associated with increased LKB1 activation and modulation of glycolysis. In an in vivo model of uveal melanoma, silencing of HDAC11 limited the escape to MEKi therapy, an effect associated with reduced levels of Ki67 staining and increased cleaved caspase-3. We have demonstrated a novel role for adaptive HDAC11 activity in UM cells, that in some cases modulates YAP/TAZ signaling leading to MEKi escape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Treatment with a MEK inhibitor increases HDAC11 expression.
Fig. 2: Silencing of HDAC11 increases sensitivity to MEK inhibition.
Fig. 3: HDAC11 drives MEK inhibitor resistance in UM through upregulation of YAP/TAZ signaling.
Fig. 4: Silencing of HDAC11 limits escape from MEKi therapy in uveal melanoma mouse models.

Similar content being viewed by others

References

  1. Landreville S, Agapova OA, Harbour JW. Emerging insights into the molecular pathogenesis of uveal melanoma. Future Oncol. 2008;4:629–36.

    Article  CAS  Google Scholar 

  2. Schank TE, Hassel JC. Immunotherapies for the Treatment of Uveal Melanoma-History and Future. Cancers (Basel). 2019;11:1048.

  3. Onken MD, Worley LA, Tuscan MD, Harbour JW. An accurate, clinically feasible multi-gene expression assay for predicting metastasis in uveal melanoma. J Mol Diagn. 2010;12:461–8.

    Article  CAS  Google Scholar 

  4. Field MG, Harbour JW. Recent developments in prognostic and predictive testing in uveal melanoma. Curr Opin Ophthalmol. 2014;25:234–9.

    Article  Google Scholar 

  5. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.

    Article  Google Scholar 

  6. Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, et al. Mutations in GNA11 in uveal melanoma. N. Engl J Med. 2010;363:2191–9.

    Article  Google Scholar 

  7. Vader MJC, Madigan MC, Versluis M, Suleiman HM, Gezgin G, Gruis NA, et al. GNAQ and GNA11 mutations and downstream YAP activation in choroidal nevi. Br J Cancer. 2017;117:884–7.

    Article  CAS  Google Scholar 

  8. Musi E, Ambrosini G, de Stanchina E, Schwartz GK. The phosphoinositide 3-kinase alpha selective inhibitor BYL719 enhances the effect of the protein kinase C inhibitor AEB071 in GNAQ/GNA11-mutant uveal melanoma cells. Mol Cancer Ther. 2014;13:1044–53.

    Article  CAS  Google Scholar 

  9. Yu FX, Luo J, Mo JS, Liu G, Kim YC, Meng Z, et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 2014;25:822–30.

    Article  CAS  Google Scholar 

  10. Yoo JH, Shi DS, Grossmann AH, Sorensen LK, Tong Z, Mleynek TM, et al. ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma. Cancer Cell. 2016;29:889–904.

    Article  CAS  Google Scholar 

  11. Vaque JP, Dorsam RT, Feng X, Iglesias-Bartolome R, Forsthoefel DJ, Chen Q, et al. A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors. Mol Cell. 2013;49:94–108.

    Article  CAS  Google Scholar 

  12. Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell. 2014;25:831–45.

    Article  CAS  Google Scholar 

  13. Carvajal RD, Sosman JA, Quevedo JF, Milhem MM, Joshua AM, Kudchadkar RR, et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. Jama. 2014;311:2397–405.

    Article  Google Scholar 

  14. Carvajal RD, Piperno-Neumann S, Kapiteijn E, Chapman PB, Frank S, Joshua AM, et al. Selumetinib in Combination With Dacarbazine in Patients With Metastatic Uveal Melanoma: A Phase III, Multicenter, Randomized Trial (SUMIT). J Clin Oncol. 2018;36:1232–9.

    Article  CAS  Google Scholar 

  15. Faiao-Flores F, Emmons MF, Durante MA, Kinose F, Saha B, Fang B, et al. HDAC Inhibition Enhances the In Vivo Efficacy of MEK Inhibitor Therapy in Uveal Melanoma. Clin Cancer Res. 2019;25:5686–701.

    Article  CAS  Google Scholar 

  16. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    Article  CAS  Google Scholar 

  17. Emmons MF, Faiao-Flores F, Sharma R, Thapa R, Messina JL, Becker JC, et al. HDAC8 Regulates a Stress Response Pathway in Melanoma to Mediate Escape from BRAF Inhibitor Therapy. Cancer Res. 2019;79:2947–61.

    Article  CAS  Google Scholar 

  18. Landreville S, Agapova OA, Matatall KA, Kneass ZT, Onken MD, Lee RS, et al. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin Cancer Res. 2012;18:408–16.

    Article  CAS  Google Scholar 

  19. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl J Med. 2012;367:107–14.

    Article  CAS  Google Scholar 

  20. Durante MA, Rodriguez DA, Kurtenbach S, Kuznetsov JN, Sanchez MI, Decatur CL, et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat Commun. 2020;11:496.

    Article  CAS  Google Scholar 

  21. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888–902. e21

    Article  CAS  Google Scholar 

  22. Gundersen GW, Jones MR, Rouillard AD, Kou Y, Monteiro CD, Feldmann AS, et al. GEO2Enrichr: browser extension and server app to extract gene sets from GEO and analyze them for biological functions. Bioinformatics. 2015;31:3060–2.

    Article  CAS  Google Scholar 

  23. Faiao-Flores F, Alves-Fernandes D, Pennacchi PC, Sandri S. Vicente ALSA, Scapulatempo-Neto C, et al. Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells. Oncogene. 2017;36:1849.

    Article  CAS  Google Scholar 

  24. Paraiso KH, Haarberg HE, Wood E, Rebecca VW, Chen YA, Xiang Y, et al. The HSP90 inhibitor XL888 overcomes BRAF inhibitor resistance mediated through diverse mechanisms. Clin Cancer Res. 2012;18:2502–14.

  25. Faiao-Flores F, Suarez JA, Soto-Cerrato V, Espona-Fiedler M, Perez-Tomas R, Maria DA. Bcl-2 family proteins and cytoskeleton changes involved in DM-1 cytotoxic effect on melanoma cells. Tumour Biol. 2013;34:1235–43.

    Article  CAS  Google Scholar 

  26. Bi L, Ren Y, Feng M, Meng P, Wang Q, Chen W, et al. HDAC11 Regulates Glycolysis through the LKB1/AMPK Signaling Pathway to Maintain Hepatocellular Carcinoma Stemness. Cancer Res. 2021;81:2015–28.

    Article  CAS  Google Scholar 

  27. Smalley KSM. A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int J Cancer. 2003;104:527–32.

    Article  CAS  Google Scholar 

  28. Maertens O, Kuzmickas R, Manchester HE, Emerson CE, Gavin AG, Guild CJ, et al. MAPK Pathway Suppression Unmasks Latent DNA Repair Defects and Confers a Chemical Synthetic Vulnerability in BRAF-, NRAS-, and NF1-Mutant Melanomas. Cancer Discov. 2019;9:526–45.

    Article  CAS  Google Scholar 

  29. Levinzon L, Madigan M, Nguyen V, Hasic E, Conway M, Cherepanoff S. Tumour Expression of Histone Deacetylases in Uveal Melanoma. Ocul Oncol Pathol. 2019;5:153–61.

    Article  Google Scholar 

  30. Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002;277:25748–55.

    Article  CAS  Google Scholar 

  31. Liu SS, Wu F, Jin YM, Chang WQ, Xu TM. HDAC11: a rising star in epigenetics. Biomed Pharmacother. 2020;131:110607.

    Article  CAS  Google Scholar 

  32. Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol. 2009;10:92–100.

    Article  CAS  Google Scholar 

  33. Thole TM, Lodrini M, Fabian J, Wuenschel J, Pfeil S, Hielscher T, et al. Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival. Cell Death Dis. 2017;8:e2635.

    Article  CAS  Google Scholar 

  34. Gong D, Zeng Z, Yi F, Wu J. Inhibition of histone deacetylase 11 promotes human liver cancer cell apoptosis. Am J Transl Res. 2019;11:983–90.

    CAS  Google Scholar 

  35. Sun L, Marin de Evsikova C, Bian K, Achille A, Telles E, Pei H, et al. Programming and Regulation of Metabolic Homeostasis by HDAC11. EBioMedicine. 2018;33:157–68.

    Article  Google Scholar 

  36. DeRan M, Yang J, Shen CH, Peters EC, Fitamant J, Chan P, et al. Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep. 2014;9:495–503.

    Article  CAS  Google Scholar 

  37. Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL, et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol. 2015;17:490–9.

    Article  CAS  Google Scholar 

  38. Santinon G, Pocaterra A, Dupont S. Control of YAP/TAZ Activity by Metabolic and Nutrient-Sensing Pathways. Trends Cell Biol. 2016;26:289–99.

    Article  CAS  Google Scholar 

  39. Chua V, Han A, Bechtel N, Purwin TJ, Hunter E, Liao C, et al. The AMP-dependent kinase pathway is upregulated in BAP1 mutant uveal melanoma. Pigment Cell Melanoma Res. 2021;35:78–87.

Download references

Acknowledgements

This work was supported by NCI/NIH R01 CA256193 to KSMS, JDL, and JWH.

Author information

Authors and Affiliations

Authors

Contributions

SNS, FF-F, MFE, BS, CW performed the experiments. SNS, MFE, SC, JDL, IS, MAD, JWH, and KSMS analyzed the data. SNS, MFE, IS, and KSMS wrote the manuscript. MAD, JWH, JDL, and KSMS edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Keiran S. M. Smalley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriramareddy, S.N., Faião-Flores, F., Emmons, M.F. et al. HDAC11 activity contributes to MEK inhibitor escape in uveal melanoma. Cancer Gene Ther 29, 1840–1846 (2022). https://doi.org/10.1038/s41417-022-00452-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00452-7

Search

Quick links