Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CDK4/6-USP51 axis regulates lung adenocarcinoma metastasis through ZEB1

Abstract

USP51 is a member of the deubiquitinase (DUB) family that participates in many pathophysiological processes. However, the aberrant expression and biological function of USP51 in cancer progression remain largely unclear. In this study, we demonstrated that USP51 is overexpressed in metastatic human lung adenocarcinoma and patients with high USP51 expression in their tumors have shorter overall survival than those with low expression of USP51. Moreover, we showed that USP51 promotes tumor metastasis and invasion through regulating ZEB1, which is a key transcriptional factor that induces the malignant progression of lung adenocarcinoma. In terms of molecular mechanism, USP51 is phosphorylated and activated by CDK4/6, thus resulting in the deubiquitination and stabilization of ZEB1 protein. Of note, we also confirmed that the expression of p-RB (an indicator of CDK4/6 activity), p-USP51 and ZEB1 are significantly positively correlated in human lung adenocarcinoma samples. In conclusion, these findings revealed that the CDK4/6-USP51-ZEB1 signaling pathway is a driver of lung adenocarcinoma metastasis, which could be a potential therapeutic strategy for the treatment of malignant tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: USP51 is highly expressed and functionally linked to tumor metastasis in lung adenocarcinoma.
Fig. 2: USP51 regulates lung adenocarcinoma metastasis through ZEB1.
Fig. 3: USP51 deubiquitinates ZEB1.
Fig. 4: CDK4/6 phosphorylates USP51 and contributes to the degradation of ZEB1 protein.
Fig. 5: CDK4/6-induced phosphorylation of UPS51 promotes lung adenocarcinoma metastasis.
Fig. 6: P-USP51, ZEB1 and CDK4/6 activity are positively correlated in human lung adenocarcinoma patients.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  2. Travis WD. Lung cancer pathology: current concepts. Clin Chest Med. 2020;41:67–85.

    Article  PubMed  Google Scholar 

  3. Hutchinson BD, Shroff GS, Truong MT, Ko JP. Spectrum of lung adenocarcinoma. Semin Ultrasound CT MR. 2019;40:255–64.

    Article  PubMed  Google Scholar 

  4. Twardella D, Geiss K, Radespiel-Troger M, Benner A, Ficker JH, Meyer M. [Trends in incidence of lung cancer according to histological subtype among men and women in Germany: analysis of cancer registry data with the application of multiple imputation techniques]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61:20–31.

    Article  PubMed  Google Scholar 

  5. Ahn S, Jeong JY, Kim HW, Ahn JH, Noh G, Park SS. Robotic lobectomy for lung cancer: initial experience of a single institution in Korea. Ann Cardiothorac Surg. 2019;8:226–32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Buss EJ, Wang TJC. Treatment of lung adenocarcinoma brain metastases: what is the role of radiotherapy in the age of precision medicine? Transl Lung Cancer Res. 2018;7:S318–20.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009;10:550–63.

    Article  CAS  PubMed  Google Scholar 

  8. Clague MJ, Urbe S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. 2019;20:338–52.

    Article  CAS  PubMed  Google Scholar 

  9. Fraile JM, Quesada V, Rodriguez D, Freije JM, Lopez-Otin C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene. 2012;31:2373–88.

    Article  CAS  PubMed  Google Scholar 

  10. Chen ST, Okada M, Nakato R, Izumi K, Bando M, Shirahige K. The Deubiquitinating enzyme USP7 regulates androgen receptor activity by modulating its binding to chromatin. J Biol Chem. 2015;290:21713–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dirac AM, Bernards R. The deubiquitinating enzyme USP26 is a regulator of androgen receptor signaling. Mol Cancer Res. 2010;8:844–54.

    Article  CAS  PubMed  Google Scholar 

  12. Sonego M, Pellarin I, Costa A, Vinciguerra GLR, Coan M, Kraut A, et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci Adv. 2019;5:eaav3235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ouyang L, Yan B, Liu Y, Mao C, Wang M, Liu N, et al. The deubiquitylase UCHL3 maintains cancer stem-like properties by stabilizing the aryl hydrocarbon receptor. Signal Transduct Target Ther. 2020;5:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Dexheimer TS, Ai Y, Liang Q, Villamil MA, Inglese J, et al. Selective and cell-active inhibitors of the USP1/ UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem Biol. 2011;18:1390–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen X, Yang Q, Xiao L, Tang D, Dou QP, Liu J. Metal-based proteasomal deubiquitinase inhibitors as potential anticancer agents. Cancer Metastasis Rev. 2017;36:655–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mistry H, Hsieh G, Buhrlage SJ, Huang M, Park E, Cuny GD, et al. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther. 2013;12:2651–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dai X, Lu L, Deng S, Meng J, Wan C, Huang J, et al. USP7 targeting modulates anti-tumor immune response by reprogramming Tumor-associated Macrophages in Lung Cancer. Theranostics. 2020;10:9332–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Z, Zhang H, Liu J, Cheruiyot A, Lee JH, Ordog T, et al. USP51 deubiquitylates H2AK13,15ub and regulates DNA damage response. Genes Dev. 2016;30:946–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walser F, Mulder MPC, Bragantini B, Burger S, Gubser T, Gatti M, et al. Ubiquitin phosphorylation at Thr12 modulates the DNA damage response. Mol Cell. 2020;80:423–36 e429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Atanassov BS, Mohan RD, Lan X, Kuang X, Lu Y, Lin K, et al. ATXN7L3 and ENY2 coordinate activity of multiple H2B deubiquitinases important for cellular proliferation and tumor growth. Mol Cell. 2016;62:558–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou Z, Zhang P, Hu X, Kim J, Yao F, Xiao Z, et al. USP51 promotes deubiquitination and stabilization of ZEB1. Am J Cancer Res. 2017;7:2020–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z, Li J, Ou Y, Yang G, Deng K, Wang Q, et al. CDK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism. Signal Transduct Target Ther. 2020;5:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166:21–45.

    Article  CAS  PubMed  Google Scholar 

  24. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leznicki P, Kulathu Y. Mechanisms of regulation and diversification of deubiquitylating enzyme function. J Cell Sci. 2017;130:1997–2006.

    CAS  PubMed  Google Scholar 

  26. Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem. 2017;86:159–92.

    Article  CAS  PubMed  Google Scholar 

  27. Liu T, Yu J, Deng M, Yin Y, Zhang H, Luo K, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun. 2017;8:13923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–79.

    Article  CAS  PubMed  Google Scholar 

  29. Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans. 2007;35:12–7.

    Article  CAS  PubMed  Google Scholar 

  30. Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004;1695:189–207.

    Article  CAS  PubMed  Google Scholar 

  31. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell. 2005;123:773–86.

    Article  CAS  PubMed  Google Scholar 

  32. D’Arcy P, Linder S. Molecular pathways: translational potential of deubiquitinases as drug targets. Clin Cancer Res. 2014;20:3908–14.

    Article  PubMed  CAS  Google Scholar 

  33. Hussain S, Zhang Y, Galardy PJ. DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle. 2009;8:1688–97.

    Article  CAS  PubMed  Google Scholar 

  34. Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem. 2009;78:363–97.

    Article  CAS  PubMed  Google Scholar 

  35. Eichhorn PJ, Rodon L, Gonzalez-Junca A, Dirac A, Gili M, Martinez-Saez E, et al. USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nat Med. 2012;18:429–35.

    Article  CAS  PubMed  Google Scholar 

  36. Richardson PG, Anderson KC. Bortezomib: a novel therapy approved for multiple myeloma. Clin Adv Hematol Oncol. 2003;1:596–600.

    PubMed  Google Scholar 

  37. Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Disco. 2018;17:57–78.

    Article  CAS  Google Scholar 

  38. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11:R77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, et al. Palbociclib and letrozole in advanced breast cancer. N. Engl J Med. 2016;375:1925–36.

    Article  CAS  PubMed  Google Scholar 

  40. Leonard JP, LaCasce AS, Smith MR, Noy A, Chirieac LR, Rodig SJ, et al. Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood. 2012;119:4597–607.

    Article  CAS  PubMed  Google Scholar 

  41. Dickson MA, Schwartz GK, Keohan ML, D’Angelo SP, Gounder MM, Chi P, et al. Progression-free survival among patients with well-differentiated or dedifferentiated liposarcoma treated with CDK4 inhibitor palbociclib: a phase 2 clinical trial. JAMA Oncol. 2016;2:937–40.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goel S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6 inhibition in cancer: beyond cell cycle arrest. Trends Cell Biol. 2018;28:911–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the National Natural Science Foundation of China (No. 82172801; No. 81972454).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: JL, ZZ, and SY; Development of methodology: JL, HW, YO, ZW, HJ, ZZ, and SY; Analysis and interpretation of data (for example, statistical analysis, biostatistics, computational analysis): JL, XX, WW, YL, ZZ, and SY; Writing, review of the manuscript: JL, ZZ, and SY.

Corresponding authors

Correspondence to Zhen Zhang or Shuang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xiao, X., Wang, H. et al. CDK4/6-USP51 axis regulates lung adenocarcinoma metastasis through ZEB1. Cancer Gene Ther 29, 1181–1192 (2022). https://doi.org/10.1038/s41417-021-00420-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00420-7

This article is cited by

Search

Quick links