Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting CLK4 inhibits the metastasis and progression of breast cancer by inactivating TGF-β pathway

A Correction to this article was published on 20 July 2022

This article has been updated

Abstract

Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer that is highly resistant to current therapeutic options. According to the public databases Oncomine and KM plotter, the CLK4 expression is correlated with poor patient survival in TNBC, especially in mesenchymal-like TNBC (MES-TNBC) that has strong metastatic potential. Therefore, we investigated the potential involvement of CLK4 in the metastasis and progression of MES-TNBC. In the MES-TNBC cell lines, the CLK4 expression was elevated. Notably, the RNAi-mediated silencing of CLK4 reduced the expression of multiple epithelial-mesenchymal transition (EMT) genes that mediate metastasis. Furthermore, CLK4 silencing reduced both the invasive behaviors of the cultured cells and tumor metastasis in the mouse xenograft model. It is also noteworthy that CLK4 silencing repressed the invasive and cancer stem cell (CSC) properties that are induced by the TGF-β signaling. Importantly, the pharmacological inhibition of CLK4 potently repressed the invasion and proliferation of MES-TNBC cell lines and patient-derived cells, which demonstrates its clinical applicability. Collectively, our results suggest that CLK4 plays a crucial role in invasion and proliferation of MES-TNBC, especially in the processes that are induced by TGF-β. Also, this study characterizes CLK4 as a novel therapeutic target in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CLK4 expression is elevated in invasive breast cancers and is associated with poor overall survival in patients with MES-TNBC.
Fig. 2: CLK4 silencing impairs the proliferation and invasion of MES-TNBC cells.
Fig. 3: CLK4 silencing impairs TGF-β-mediated EMT in MES-TNBC cells.
Fig. 4: CLK4 silencing impairs TGF-β-mediated induction of CSC-like properties in MES-TNBC cells.
Fig. 5: CLK4 inhibition via ML167 impairs the proliferation, invasion, and chemoresistance of MDA-MB-231 cells.
Fig. 6: CLK4 inhibition via ML167 impairs the proliferation of primary cultured breast cancer cells.
Fig. 7: CLK4 silencing impairs the metastasis of MDA-MB-231 cells in vivo.

Similar content being viewed by others

Change history

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Ahmad A. Breast cancer statistics: recent trends. Adv Exp Med Biol. 2019;1152:1–7.

    Article  CAS  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  4. Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer. 2021;124:13–26.

    Article  PubMed  Google Scholar 

  5. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Prim. 2019;5:66.

    Article  PubMed  Google Scholar 

  6. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5:28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res. 2018;8:1483–507.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018;9:3588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jiang Y-Z, Ma D, Suo C, Shi J, Xue M, Hu X, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: Subtypes and treatment strategies. Cancer Cell. 2019;35:428–440.e5.

    Article  CAS  PubMed  Google Scholar 

  10. O’Conor CJ, Chen T, González I, Cao D, Peng Y. Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker. Biomark Med. 2018;12:813–20.

    Article  PubMed  CAS  Google Scholar 

  11. Hill BS, Sarnella A, Capasso D, Comegna D, Del Gatto A, Gramanzini M, et al. Therapeutic potential of a novel αvβ3 antagonist to hamper the aggressiveness of mesenchymal triple negative breast cancer sub-type. Cancers (Basel) 2019;11:139.

    Article  CAS  Google Scholar 

  12. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, Stanger BZ, et al. Upholding a role for EMT in breast cancer metastasis. Nature 2017;547:E1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yeung KT, Yang J. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol. 2017;11:28–39.

    Article  PubMed  Google Scholar 

  15. Hao Y, Baker D, Ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 2019;20:2767.

    Article  CAS  PubMed Central  Google Scholar 

  16. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84.

    Article  CAS  PubMed  Google Scholar 

  17. Gooding AJ, Schiemann WP. Epithelial-mesenchymal transition programs and cancer stem cell phenotypes: Mediators of breast cancer therapy resistance. Mol Cancer Res. 2020;18:1257–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu S, Chen S, Zeng J. TGF β signaling: a complex role in tumorigenesis (Review). Mol Med Rep. 2018;17:699–704.

    CAS  PubMed  Google Scholar 

  19. Ding M-J, Su KE, Cui G-Z, Yang W-H, Chen L, Yang M, et al. Association between transforming growth factor-β1 expression and the clinical features of triple negative breast cancer. Oncol Lett. 2016;11:4040–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martín Moyano P, Němec V, Paruch K. Cdc-like kinases (CLKs): biology, chemical probes, and therapeutic potential. Int J Mol Sci. 2020;21:7549.

    Article  PubMed Central  CAS  Google Scholar 

  21. Iwai K, Yaguchi M, Nishimura K, Yamamoto Y, Tamura T, Nakata D, et al. Anti-tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC-dependent vulnerability. EMBO Mol Med [Internet]. 2018;10. Available from: https://doi.org/10.15252/emmm.201708289

  22. Lee H-B, Han W, Ko S, Kim M-S, Lim S, Lee K-M, et al. Abstract P6-04-02: Identification of ESR1 splice variants associated with prognosis in estrogen receptor positive breast cancer. Cancer Res. 2016;76(4 Supplement):P6-04-02-P6-04–02.

  23. Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Computational Struct Biotechnol J. 2021;19:4101–9. https://doi.org/10.1016/j.csbj.2021.07.014

    Article  CAS  Google Scholar 

  24. da Silva MR, Moreira GA, Gonçalves da Silva RA, de Almeida Alves Barbosa É, Pais Siqueira R, Teixera RR, et al. Splicing regulators and their roles in cancer biology and therapy. Biomed Res Int. 2015;2015:150514.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang HH, Ferguson ID, Thornton AM, Bastola P, Lam C, Lin Y-HT, et al. Proteasome inhibitor-induced modulation reveals the spliceosome as a specific therapeutic vulnerability in multiple myeloma. Nat Commun. 2020;11:1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell. 2018;45:681–695.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pal M, Chen H, Lee BH, Lee JYH, Yip YS, Tan NS, et al. Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework. Sci Rep. 2019;9:8997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bellomo C, Caja L, Moustakas A. Transforming growth factor β as regulator of cancer stemness and metastasis. Br J Cancer. 2016;115:761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosenthal AS, Tanega C, Shen M, Mott BT, Bougie JM, Nguyen D-T, et al. An inhibitor of the Cdc2-like kinase 4 (Clk4). In: Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD): National Center for Biotechnology Information; 2010.

  30. Wang Y, Bao Y, Zhang S, Wang Z. Splicing dysregulation in cancer: from mechanistic understanding to a new class of therapeutic targets. Sci China Life Sci. 2020;63:469–84.

    Article  CAS  PubMed  Google Scholar 

  31. Xu X, Zhang L, He X, Zhang P, Sun C, Xu X, et al. TGF-β plays a vital role in triple-negative breast cancer (TNBC) drug-resistance through regulating stemness, EMT and apoptosis. Biochem Biophys Res Commun. 2018;502:160–5.

    Article  CAS  PubMed  Google Scholar 

  32. Janik K, Popeda M, Peciak J, Rosiak K, Smolarz M, Treda C, et al. Efficient and simple approach to in vitro culture of primary epithelial cancer cells. Biosci Rep [Internet]. 2016;36. Available from: https://doi.org/10.1042/BSR20160208

  33. Campaner E, Zannini A, Santorsola M, Bonazza D, Bottin C, Cancila V, et al. Breast cancer organoids model patient-specific response to drug treatment. Cancers (Basel). 2020;12:3869.

    Article  CAS  Google Scholar 

  34. Faridi N, Bathaie SZ, Abroun S, Farzaneh P, Karbasian H, Tamanoi F, et al. Isolation and characterization of the primary epithelial breast cancer cells and the adjacent normal epithelial cells from Iranian women’s breast cancer tumors. Cytotechnology 2018;70:625–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gagliano T, Shah K, Gargani S, Lao L, Alsaleem M, Chen J, et al. PIK3Cδ expression by fibroblasts promotes triple-negative breast cancer progression. J Clin Invest. 2020;130:3188–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther. 2021;6:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Q, Zhao J, Zhang W, Chen D, Wang Y. Aberrant alternative splicing in breast cancer. J Mol Cell Biol. 2019;11:920–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. El Marabti E, Younis I. The cancer spliceome: Reprograming of alternative splicing in cancer. Front Mol Biosci. 2018;5:80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yoshida T, Kim JH, Carver K, Su Y, Weremowicz S, Mulvey L, et al. CLK2 is an oncogenic kinase and splicing regulator in breast cancer. Cancer Res. 2015;75:1516–26.

    Article  CAS  PubMed  Google Scholar 

  40. Naro C, Bielli P, Sette C Oncogenic dysregulation of pre-mRNA processing by protein kinases: challenges and therapeutic opportunities. FEBS J [Internet]. 2021;(febs.16057). Available from: https://doi.org/10.1111/febs.16057

  41. Hu Y, Zhu Q-N, Deng J-L, Li Z-X, Wang G, Zhu Y-S. Emerging role of long non-coding RNAs in cisplatin resistance. Onco Targets Ther. 2018;11:3185–94.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hatzidaki E, Daikopoulou V, Apostolou P, Ntanovasilis DA, Papasotiriou I. Increased breast cancer cell sensitivity to cisplatin using a novel small molecule inhibitor. J Cancer Res Ther. 2020;16:1393–401.

    CAS  PubMed  Google Scholar 

  43. Hill DP, Harper A, Malcolm J, McAndrews MS, Mockus SM, Patterson SE, et al. Cisplatin-resistant triple-negative breast cancer subtypes: multiple mechanisms of resistance. BMC Cancer. 2019;19:1039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, et al. Association of the epithelial-mesenchymal transition (EMT) with cisplatin resistance. Int J Mol Sci. 2020;21:4002.

    Article  CAS  PubMed Central  Google Scholar 

  46. Colak S, Ten Dijke P. Targeting TGF-β signaling in cancer. Trends Cancer 2017;3:56–71.

    Article  CAS  PubMed  Google Scholar 

  47. Xie F, Ling L, van Dam H, Zhou F, Zhang L. TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin (Shanghai). 2018;50:121–32.

    Article  CAS  Google Scholar 

  48. Cantelli G, Crosas-Molist E, Georgouli M, Sanz-Moreno V. TGFΒ-induced transcription in cancer. Semin Cancer Biol. 2017;42:60–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang M, Wu J, Mao K, Deng H, Yang Y, Zhou E, et al. Role of transforming growth factor-β1 in triple negative breast cancer patients. Int J Surg. 2017;45:72–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A2A2A05022732) and Samsung Research Funding Center of Samsung Electronics (No. SRFC-MA1501-51).

Author information

Authors and Affiliations

Authors

Contributions

EK and WH conceived the ideas. EK designed the studies, performed the experiments, and interpreted the data. EK and KG wrote and polished the manuscript. KG conducted literature search for setting up the experiments involving inhibitors. SYJ, JGJ, HKK, HBL and WH prepared the clinical samples and contributed to data analysis. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Wonshik Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, E., Kim, K., Jeon, S.Y. et al. Targeting CLK4 inhibits the metastasis and progression of breast cancer by inactivating TGF-β pathway. Cancer Gene Ther 29, 1168–1180 (2022). https://doi.org/10.1038/s41417-021-00419-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00419-0

This article is cited by

Search

Quick links