Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

METTL3-mediated N6-methyladenosine modification of DUSP5 mRNA promotes gallbladder-cancer progression

Abstract

N6-methyladenosine (m6A) RNA methylation and its associated methyltransferase METTL3 play an important role in tumorigenesis of a series of tumors. However, dysregulation of METTL3 in gallbladder cancer (GBC) remains obscure. Here, we showed that upregulated METTL3 level predicted poor prognosis and correlated with increased lymphatic metastasis and high TNM stage. Functionally, we found that METTL3 could promote cell proliferation, invasion, and migration of GBC-SD and NOZ cells. Mechanistically, we revealed the METTL3-mediated m6A-modification profile in GBC cells and identified DUSP5 as the downstream gene of METTL3. METTL3 promoted the degradation of DUSP5 mRNA in a YTHDF2-dependent manner. Rescue assays showed that downregulation of DUSP5 could attenuate the knockdown METTL3-mediated inhibition of cell proliferation, invasion, and migration of GBC-SD and NOZ cells. Thus, our finding shows that elevated METTL3 expression contributes to tumor aggression in GBC, suggesting that METTL3 is a possible prognostic predictor and therapeutic target against GBC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1: METTL3 expression is correlated with poor prognosis in GBC.
Fig. 2: Downregulation of METTL3 expression inhibited GBC cell proliferation, invasion, and migration in vitro.
Fig. 3: METTL3 regulated the expression of several tumor suppressor genes.
Fig. 4: METTL3 downregulated mRNA expression of DUSP5 in a m6A-dependent manner.
Fig. 5: METTL3 promoted the degradation of DUSP5 mRNA in a YTHDF2-dependent manner.
Fig. 6: METTL3 promotes the GBC progression by downregulating DUSP5 expression.

Similar content being viewed by others

References

  1. Misra S, Chaturvedi A, Misra NC, Sharma ID. Carcinoma of the gallbladder. Lancet Oncol. 2003;4:167–76.

    Article  Google Scholar 

  2. Baiu I, Visser B. Gallbladder cancer. JAMA 2018;320:1294.

    Article  Google Scholar 

  3. Lazcano-Ponce EC, Miquel JF, Muñoz N, Herrero R, Ferrecio C, Wistuba II, et al. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J Clin. 2001;51:349–64.

    Article  CAS  Google Scholar 

  4. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–5.

    Article  CAS  Google Scholar 

  5. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.

    Article  CAS  Google Scholar 

  6. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7.

    Article  CAS  Google Scholar 

  7. Patil DP, Pickering BF, Jaffrey SR. Reading m(6)A in the Transcriptome: m(6)A-Binding Proteins. Trends Cell Biol. 2018;28:113–27.

    Article  CAS  Google Scholar 

  8. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014;505:117–20.

    Article  Google Scholar 

  9. Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3’-end processing. Nucleic Acids Res. 2017;45:11356–70.

    Article  CAS  Google Scholar 

  10. Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 2014;16:191–8.

    Article  CAS  Google Scholar 

  11. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, et al. 5’ UTR m(6)A promotes cap-independent translation. Cell 2015;163:999–1010.

    Article  CAS  Google Scholar 

  12. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger rna translation Efficiency. Cell 2015;161:1388–99.

    Article  CAS  Google Scholar 

  13. Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67:2254–70.

    Article  CAS  Google Scholar 

  14. Yang X, Zhang S, He C, Xue P, Zhang L, He Z, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer. 2020;19:46.

    Article  CAS  Google Scholar 

  15. Xie A, Hanif S, Ouyang J, Tang Z, Kong N, Kim NY, et al. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine 2020;56:102821.

    Article  Google Scholar 

  16. Chen HD, Huang CS, Xu QC, Li F, Huang XT, Wang JQ, et al. Therapeutic targeting of CDK7 suppresses tumor progression in intrahepatic Cholangiocarcinoma. Int J Biol Sci. 2020;16:1207–17.

    Article  CAS  Google Scholar 

  17. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:176.

    Article  Google Scholar 

  18. Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 2020;69:1193–205.

    Article  CAS  Google Scholar 

  19. Xie H, Li J, Ying Y, Yan H, Jin K, Ma X, et al. METTL3/YTHDF2 m(6) a axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer. J Cell Mol Med. 2020;24:4092–104.

    Article  CAS  Google Scholar 

  20. Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62:335–45.

    Article  CAS  Google Scholar 

  21. Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 2018;415:11–9.

    Article  CAS  Google Scholar 

  22. Li F, Yi Y, Miao Y, Long W, Long T, Chen S, et al. N(6)-Methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma. Cancer Res. 2019;79:5785–98.

    Article  CAS  Google Scholar 

  23. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369–76.

    Article  CAS  Google Scholar 

  24. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 2021;593:597–601.

    Article  CAS  Google Scholar 

  25. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.

    Article  CAS  Google Scholar 

  26. Ding J, Li J, Wang H, Tian Y, Xie M, He X, et al. Long noncoding RNA CRNDE promotes colorectal cancer cell proliferation via epigenetically silencing DUSP5/CDKN1A expression. Cell Death Dis. 2017;8:e2997.

    Article  CAS  Google Scholar 

  27. Min H, He W. Long non-coding RNA ARAP1-AS1 promotes the proliferation and migration in cervical cancer through epigenetic regulation of DUSP5. Cancer Biol Ther. 2020;21:907–14.

    Article  CAS  Google Scholar 

  28. Du M, Zhuang Y, Tan P, Yu Z, Zhang X, Wang A. microRNA-95 knockdown inhibits epithelial-mesenchymal transition and cancer stem cell phenotype in gastric cancer cells through MAPK pathway by upregulating DUSP5. J Cell Physiol. 2020;235:944–56.

    Article  CAS  Google Scholar 

  29. Wang R, Bao HB, Du WZ, Chen XF, Liu HL, Han DY, et al. P68 RNA helicase promotes invasion of glioma cells through negatively regulating DUSP5. Cancer Sci. 2019;110:107–17.

    Article  CAS  Google Scholar 

  30. Wang L, Hu J, Qiu D, Gao H, Zhao W, Huang Y, et al. Dual-specificity phosphatase 5 suppresses ovarian cancer progression by inhibiting IL-33 signaling. Am J Transl Res. 2019;11:844–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu T, Sun H, Liu S, Yang Z, Li L, Yao N, et al. The suppression of DUSP5 expression correlates with paclitaxel resistance and poor prognosis in basal-like breast cancer. Int J Med Sci. 2018;15:738–47.

    Article  CAS  Google Scholar 

  32. Zhang Q, Xing Y, Jiang S, Xu C, Zhou X, Zhang R, et al. Integrated analysis identifies DUSP5 as a novel prognostic indicator for thyroid follicular carcinoma. Thorac Cancer. 2020;11:336–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.C., F. L., and S. C. performed the experiments and conducted bioinformatics analysis of the sequencing data. S.C. prepared plasmids and lentiviral vectors. Z.Z. and P.G. interpreted the clinical data and revised the paper. H.C. and W.G. designed the experiments, interpreted the data, wrote the paper, and supervised the study.

Corresponding author

Correspondence to Wen-Zong Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HD., Li, F., Chen, S. et al. METTL3-mediated N6-methyladenosine modification of DUSP5 mRNA promotes gallbladder-cancer progression. Cancer Gene Ther 29, 1012–1020 (2022). https://doi.org/10.1038/s41417-021-00406-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00406-5

This article is cited by

Search

Quick links