Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor p53-mediated activation of miR-519d-3p and downregulation of E2F1 attenuates prostate cancer growth and metastasis

Subjects

Abstract

Prostate cancer (PCa) is a commonly diagnosed malignancy in men. The transcription factor p53, a well-known cancer suppressor, has been extensively analyzed in the progression of many tumor types, but its involvement in PCa remains not fully understood. Hence, this study aims to explore the possible molecular mechanism underlying p53 in the growth and metastasis of PCa. Based on bioinformatics analysis findings of GEPIA and starBase databases, p53 was demonstrated to be involved in the development of PCa by transcriptionally activating microRNA-519d-3p (miR-519d-3p) expression to suppress the expression of E2F transcription factor 1 (E2F1) and CD147. In order to verify this finding, clinically-obtained PCa tumor tissues were enrolled and commercially-purchased PCa cell lines were used to detect the cell viability, cycle, and apoptosis, as well as invasion and migration by CCK-8, flow cytometry, and Transwell assays respectively. The results of clinical tissue experiments and in vitro cell experiments showed that miR-519d-3p and p53 were poorly-expressed in PCa tissues and cell lines, while E2F1 was highly-expressed. Overexpression of miR-519d-3p led to inhibited PCa cell proliferation, invasion and migration, and p53 overexpression was found to promote miR-519d-3p expression to suppress the malignant characteristics of PCa cells, while the additional E2F1 overexpression restored the malignant traits. Moreover, ChIP analysis and dual-luciferase reporter assay confirmed the interactions among p53, miR-519d-3p, and E2F1. Mechanistically, it was found that p53 transcriptionally activated miR-519d-3p to suppress E2F1 expression. Finally, the in vitro results were further validated by in vivo experiments, which showed that miR-519d-3p prevents tumorigenesis and lymph node metastasis of PCa in nude mice via negatively regulation of E2F1 and CD147. Taken together, the findings uncover that the transcription factor p53 could upregulate miR-519d-3p expression to directly suppress the expression of E2F1, thus inhibiting PCa growth and metastasis. It highlights a novel therapeutic strategy against PCa based on the p53/miR-519d-3p/E2F1 regulatory pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of miR-519d-3p in prostate cancer tissues and cells and its correlation with prognosis of prostate cancer patients.
Fig. 2: Effects of overexpression of miR-519d-3p on proliferation, invasion, and migration of PCa cells.
Fig. 3: Effect of p53 transcriptional activation of miR-519d-3p on E2F1 expression in prostate cancer.
Fig. 4: Effects of transcriptional activation of p53 by miR-519d-3p downregulates E2F1 expression on PCa cell proliferation, invasion, and migration.
Fig. 5: miR-519d-3p downregulates the expression of CD147 by inhibiting E2F1, thus alleviating the proliferation, invasion, and migration of PCa cells.
Fig. 6: miR-519d-3p downregulates the expression of CD147 by inhibiting E2F1, thus inhibiting PCa in vivo.
Fig. 7: Molecular networks.

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Altwaijry N, Somani S, Dufes C. Targeted nonviral gene therapy in prostate cancer. Int J Nanomed. 2018;13:5753–67.

    Article  CAS  Google Scholar 

  3. Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 2016;85:375–404.

    Article  CAS  PubMed  Google Scholar 

  4. Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 2018;18:89–102.

    Article  CAS  PubMed  Google Scholar 

  5. Quinn DI, Stricker PD, Kench JG, Grogan J, Haynes AM, Henshall SM, et al. p53 nuclear accumulation as an early indicator of lethal prostate cancer. Br J Cancer. 2019;121:578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamid AA, Gray KP, Shaw G, MacConaill LE, Evan C, Bernard B, et al. Compound genomic alterations of TP53, PTEN, and RB1 tumor suppressors in localized and metastatic prostate cancer. Eur Urol. 2019;76:89–97.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Zhang YX, Kong CZ, Zhang Z, Zhu YY. Loss of P53 facilitates invasion and metastasis of prostate cancer cells. Mol Cell Biochem. 2013;384:121–7.

    Article  CAS  PubMed  Google Scholar 

  8. Sharma N, Baruah MM. The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol. 2019;21:126–44.

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Han X, Yang J, Sun J, Wei P. Overexpression of miR-519d-3p inhibits the proliferation of DU-145 prostate cancer cells by reducing TRAF4. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2018;34:16–21.

    PubMed  Google Scholar 

  10. Fornari F, Milazzo M, Chieco P, Negrini M, Marasco E, Capranico G, et al. In hepatocellular carcinoma miR-519d is upregulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3, and TIMP2. J Pathol. 2012;227:275–85.

    Article  CAS  PubMed  Google Scholar 

  11. Yu Y, Zhao D, Li K, Cai Y, Xu P, Li R, et al. E2F1 mediated DDX11 transcriptional activation promotes hepatocellular carcinoma progression through PI3K/AKT/mTOR pathway. Cell Death Dis. 2020;11:273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou Q, Wang C, Zhu Y, Wu Q, Jiang Y, Huang Y, et al. Key genes and pathways controlled By E2F1 in human castration-resistant prostate cancer cells. Onco Targets Ther. 2019;12:8961–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sang XB, Zong ZH, Wang LL, Wu DD, Chen S, Liu BL, et al. E2F-1 targets miR-519d to regulate the expression of the ras homolog gene family member C. Oncotarget 2017;8:14777–93.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liang YX, Lu JM, Mo RJ, He HC, Xie J, Jiang FN, et al. E2F1 promotes tumor cell invasion and migration through regulating CD147 in prostate cancer. Int J Oncol. 2016;48:1650–8.

    Article  CAS  PubMed  Google Scholar 

  15. Ye Y, Li SL, Wang Y, Yao Y, Wang J, Ma YY, et al. The role of CD147 expression in prostate cancer: a systematic review and meta-analysis. Drug Des Devel Ther. 2016;10:2435–42.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhou C, Liu HS, Wang FW, Hu T, Liang ZX, Lan N, et al. circCAMSAP1 promotes tumor growth in colorectal cancer via the miR-328-5p/E2F1 axis. Mol Ther. 2020;28:914–28.

    Article  CAS  PubMed  Google Scholar 

  17. Peng X, Zhang Y, Gao J, Cai C. MiR-1258 promotes the apoptosis of cervical cancer cells by regulating the E2F1/P53 signaling pathway. Exp Mol Pathol. 2020;114:104368.

    Article  CAS  PubMed  Google Scholar 

  18. Fang Z, Yang H, Chen D, Shi X, Wang Q, Gong C, et al. YY1 promotes colorectal cancer proliferation through the miR-526b-3p/E2F1 axis. Am J Cancer Res. 2019;9:2679–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kang F, Ma W, Ma X, Shao Y, Yang W, Chen X, et al. Propranolol inhibits glucose metabolism and 18F-FDG uptake of breast cancer through posttranscriptional downregulation of hexokinase-2. J Nucl Med. 2014;55:439–45.

    Article  CAS  PubMed  Google Scholar 

  20. Li Q, Ye L, Zhang X, Wang M, Lin C, Huang S, et al. FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/beta-catenin signaling. Cancer Lett. 2017;402:166–76.

    Article  CAS  PubMed  Google Scholar 

  21. Yan CQ, Lu YH, Tang SM, Fan WX. MiR-519d inhibits prostate cancer cell proliferation, cycle, and invasion via targeting NRBP1. Eur Rev Med Pharm Sci. 2018;22:2985–90.

    Google Scholar 

  22. Qi JC, Yang Z, Zhang YP, Lu BS, Yin YW, Liu KL, et al. miR-20b-5p, TGFBR2, and E2F1 form a regulatory loop to participate in epithelial to mesenchymal transition in prostate cancer. Front Oncol. 2019;9:1535.

    Article  PubMed  Google Scholar 

  23. Li D, Song H, Wu T, Xie D, Hu J, Zhao J, et al. MiR-519d-3p suppresses breast cancer cell growth and motility via targeting LIM domain kinase 1. Mol Cell Biochem. 2018;444:169–78.

    Article  CAS  PubMed  Google Scholar 

  24. Gupta S, Silveira DA, Mombach JCM. Modeling the role of microRNA-449a in the regulation of the G2/M cell cycle checkpoint in prostate LNCaP cells under ionizing radiation. PLoS One. 2018;13:e0200768.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang W, Hong W. Upregulation of miR-519d-3p inhibits viability, proliferation, and G1/S cell cycle transition of oral squamous cell carcinoma cells through targeting CCND1. Cancer Biother Radiopharm. 2020. https://doi.org/10.1089/cbr.2020.3984.

  26. Zhang G, Hu Y, Yuan W, Qiu H, Yu H, Du J. miR-519d-3p overexpression inhibits P38 and PI3K/AKT pathway via targeting VEGFA to attenuate the malignant biological behavior of non-small cell lung cancer. Onco Targets Ther. 2020;13:10257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ding J, Huang F, Wu G, Han T, Xu F, Weng D, et al. MiR-519d-3p suppresses invasion and migration of trophoblast cells via targeting MMP-2. PLoS One. 2015;10:e0120321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Li YY, Shao JP, Zhang SP, Xing GQ, Liu HJ. miR-519d-3p inhibits cell proliferation and invasion of gastric cancer by downregulating B-cell lymphoma 6. Cytogenet Genome Res. 2018;154:12–9.

    Article  CAS  PubMed  Google Scholar 

  29. Sui X, Cai J, Li H, He C, Zhou C, Dong Y, et al. p53-dependent CD51 expression contributes to characteristics of cancer stem cells in prostate cancer. Cell Death Dis. 2018;9:523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wan J, Zhang J, Zhang J. Expression of p53 and its mechanism in prostate cancer. Oncol Lett. 2018;16:378–82.

    PubMed  PubMed Central  Google Scholar 

  31. Pascal LE, Wang Y, Zhong M, Wang D, Chakka AB, Yang Z, et al. EAF2 and p53 co-regulate STAT3 activation in prostate cancer. Neoplasia 2018;20:351–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Downing SR, Russell PJ, Jackson P. Alterations of p53 are common in early stage prostate cancer. Can J Urol. 2003;10:1924–33.

    PubMed  Google Scholar 

  33. Kluth M, Harasimowicz S, Burkhardt L, Grupp K, Krohn A, Prien K, et al. Clinical significance of different types of p53 gene alteration in surgically treated prostate cancer. Int J Cancer. 2014;135:1369–80.

    Article  CAS  PubMed  Google Scholar 

  34. Kalra RS, Cheung CT, Chaudhary A, Prakash J, Kaul SC, Wadhwa R. CARF (Collaborator of ARF) overexpression in p53-deficient cells promotes carcinogenesis. Mol Oncol. 2015;9:1877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo Z, Cui R, Tili E, Croce C. Friend or Foe: MicroRNAs in the p53 network. Cancer Lett. 2018;419:96–102.

    Article  CAS  PubMed  Google Scholar 

  36. Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 2011;32:772–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zeng HZ, Qu YQ, Liang AB, Deng AM, Zhang WJ, Xiu B, et al. Expression of CD147 in advanced non-small cell lung cancer correlated with cisplatin-based chemotherapy resistance. Neoplasma. 2011;58:449–54.

    Article  CAS  PubMed  Google Scholar 

  38. Grass GD, Toole BP. How, with whom, and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep. 2015;36:e00283.

    Article  PubMed  CAS  Google Scholar 

  39. Zhu H, Zhao J, Zhu B, Collazo J, Gal J, Shi P, et al. EMMPRIN regulates cytoskeleton reorganization and cell adhesion in prostate cancer. Prostate. 2012;72:72–81.

    Article  CAS  PubMed  Google Scholar 

  40. Wang C, Xu C, Niu R, Hu G, Gu Z, Zhuang Z. MiR-890 inhibits proliferation and invasion and induces apoptosis in triple-negative breast cancer cells by targeting CD147. BMC Cancer. 2019;19:577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Qiu K, Huang Z, Huang Z, He Z, You S. miR-22 regulates cell invasion, migration, and proliferation in vitro through inhibiting CD147 expression in tongue squamous cell carcinoma. Arch Oral Biol. 2016;66:92–7.

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt AK, Pudelko K, Boekenkamp JE, Berger K, Kschischo M, Bastians H. The p53/p73-p21(CIP1) tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells. Oncogene 2021;40:436–51.

    Article  CAS  PubMed  Google Scholar 

  43. Alesse E, Zazzeroni F, Angelucci A, Giannini G, Di Marcotullio L, Gulino A. The growth arrest and downregulation of c-myc transcription induced by ceramide are related events dependent on p21 induction, Rb underphosphorylation, and E2F sequestering. Cell Death Differ. 1998;5:381–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tong R, Wu X, Liu Y, Liu Y, Zhou J, Jiang X, et al. Curcumin-induced DNA demethylation in human gastric cancer cells is mediated by the DNA-damage response pathway. Oxid Med Cell Longev. 2020;2020:2543504.

    PubMed  PubMed Central  Google Scholar 

  45. Li WF, Herkilini A, Tang Y, Huang P, Song GB, Miyagishi M, et al. The transcription factor PBX3 promotes tumor cell growth through transcriptional suppression of the tumor suppressor p53. Acta Pharmacol Sin. 2021. https://doi.org/10.1038/s41401-020-00599-9.

Download references

Funding

This study was supported by Free Exploration and Innovation Project of Xi’an Jiaotong University (Grant No.: XJJ2018138) and Natural Science Basic Research Project of Shaanxi Province (Grant No.: 2018JM7093).

Author information

Authors and Affiliations

Authors

Contributions

DZ, LX, and TC designed the study. X-JY and Q-DL were involved in data collection. DZ and LX performed the statistical analysis and preparation of figures. DZ and TC drafted and polished the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tie Chong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Yang, XJ., Luo, QD. et al. Transcription factor p53-mediated activation of miR-519d-3p and downregulation of E2F1 attenuates prostate cancer growth and metastasis. Cancer Gene Ther 29, 1001–1011 (2022). https://doi.org/10.1038/s41417-021-00405-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00405-6

This article is cited by

Search

Quick links