Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Homeostatic cytokines tune naivety and stemness of cord blood-derived transgenic T cells

Abstract

Engineered T-cell therapies have proven to be successful in cancer and their clinical effectiveness is directly correlated with the infused T-cell differentiation profile. Indeed, stem cell memory and central memory T cells proliferate and persist longer in vivo compared with more-differentiated T cells, while conferring enhanced antitumor activity. Here, we propose an optimized process using cord blood (CB) to generate minimally differentiated T-cell products in terms of phenotype, function, gene expression, and metabolism, using peripheral blood (PB)-derived T cells cultured with IL-2 as a standard. Phenotypically, CB-derived T cells, particularly CD4 T cells, are less differentiated than their PB counterparts when cultured with IL-2 or with IL-7 and IL-15. Furthermore, culture with IL-7 and IL-15 enables better preservation of less-differentiated CB-derived T cells compared with IL-2. In addition, transcriptomic and metabolic assessments of CB-derived transgenic T cells cultured with IL-7 and IL-15 point out their naivety and stemness signature. These relatively quiescent transgenic T cells are nevertheless primed for secondary stimulation and cytokine production. In conclusion, our study indicates that CB may be used as a source of early differentiated T cells to develop more effective adoptive cancer immunotherapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Retroviral transduction after activation results in functional cord blood (CB) and peripheral blood (PB)-derived T cells.
Fig. 2: In vitro expanded CB-derived CD4 T cells are less differentiated than PB-derived CD4 T cells when cultured with IL-2.
Fig. 3: CB-derived T cells cultured with IL-7 and IL-15 retain a less-differentiated profile than their PB counterparts.
Fig. 4: CB-derived transgenic T cells cultured with IL-7 and IL-15 retain a less-differentiated profile than those cultured with IL-2.
Fig. 5: CB-derived T cells cultured with IL-7 and IL-15 exhibit low metabolic activity.
Fig. 6: Cord blood-derived transgenic T cells cultured with IL-7 and IL-15 have a transcriptome profile consistent with high in vivo persistence and clinical effectiveness.

References

  1. 1.

    Mchayleh W, Bedi P, Sehgal R, Solh M. Chimeric antigen receptor T-cells: the future is now. J Clin Med. 2019;8:207.

    CAS  PubMed Central  Article  Google Scholar 

  2. 2.

    Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16:566–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Sukari A, Abdallah N, Nagasaka M. Unleash the power of the mighty T cells-basis of adoptive cellular therapy. Crit Rev Oncol Hematol. 2019;136:1–12.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Lesch S, Benmebarek M-R, Cadilha BL, Stoiber S, Subklewe M, Endres S, et al. Determinants of response and resistance to CAR T cell therapy. Semin Cancer Biol. 2020;65:80–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24:563–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Zhou J, Dudley ME, Rosenberg SA, Robbins PF. Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother. 2005;28:53–62.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, et al. Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients with neuroblastoma. Blood. 2011;118:6050–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell–like properties. Nat Med. 2011;17:1290–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Graef P, Buchholz VR, Stemberger C, Flossdorf M, Henkel L, Schiemann M, et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8+ central memory T cells. Immunity. 2014;41:116–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Klebanoff CA, Gattinoni L, Palmer DC, Muranski P, Ji Y, Hinrichs CS, et al. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res. 2011;17:5343–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    van der Windt GJW, Everts B, Chang C-H, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36:68–78.

    Article  CAS  Google Scholar 

  12. 12.

    Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol. 2013;43:2797–809.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Kared H, Tan SW, Lau MC, Chevrier M, Tan C, How W, et al. Immunological history governs human stem cell memory CD4 heterogeneity via the Wnt signaling pathway. Nat Commun. 2020;11:821.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Magalhaes I, Kalland I, Kochenderfer JN, Österborg A, Uhlin M, Mattsson J. CD19 chimeric antigen receptor T cells from patients with chronic lymphocytic leukemia display an elevated IFN-γ production profile. J Immunother. 2018;41:73–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, et al. Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood. 1997;89:3700–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GMA, Papagno L, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002;8:379–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Mold JE, Réu P, Olin A, Bernard S, Michaëlsson J, Rane S, et al. Cell generation dynamics underlying naive T-cell homeostasis in adult humans. PLoS Biol. 2019;17:e3000383.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    López MC, Palmer BE, Lawrence DA. naive T cells, unconventional NK and NKT cells, and highly responsive monocyte-derived macrophages characterize human cord blood. Immunobiology. 2014;219:756–65.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  19. 19.

    Lin Y, Lin J, Huang J, Chen Y, Tan J, Li Y, et al. Lower T cell inhibitory receptor level in mononuclear cells from cord blood compared with peripheral blood. Stem Cell Investig. 2019;6:35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Serrano LM, Pfeiffer T, Olivares S, Numbenjapon T, Bennitt J, Kim D, et al. Differentiation of naive cord-blood T cells into CD19-specific cytolytic effectors for posttransplantation adoptive immunotherapy. Blood. 2006;107:2643.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Frumento G, Zheng Y, Aubert G, Raeiszadeh M, Lansdorp PM, Moss P, et al. Cord blood T cells retain early differentiation phenotype suitable for immunotherapy after TCR gene transfer to confer EBV specificity. Am J Transpl. 2013;13:45–55.

    CAS  Article  Google Scholar 

  22. 22.

    Hiwarkar P, Qasim W, Ricciardelli I, Gilmour K, Quezada S, Saudemont A, et al. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells. Blood. 2015;126:2882–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Sabatino M, Hu J, Sommariva M, Gautam S, Fellowes V, Hocker JD, et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood. 2016;128:519–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Verma V, Jafarzadeh N, Boi S, Kundu S, Jiang Z, Fan Y, et al. MEK inhibition reprograms CD8+ T lymphocytes into memory stem cells with potent antitumor effects. Nat Immunol. 2021;22:53–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Kaartinen T, Luostarinen A, Maliniemi P, Keto J, Arvas M, Belt H, et al. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion. Cytotherapy. 2017;19:689–702.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood. 2013;121:573–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123:3750–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Gong W, Hoffmann J-M, Stock S, Wang L, Liu Y, Schubert M-L, et al. Comparison of IL-2 vs IL-7/IL-15 for the generation of NY-ESO-1-specific T cells. Cancer Immunol Immunother. 2019;68:1195–209.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Mazzucchelli R, Durum SK. Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol. 2007;7:144–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Liu Q, Sun Z, Chen L. Memory T cells: strategies for optimizing tumor immunotherapy. Protein Cell. 2020;11:549–64.

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Mercier-Letondal P, Marton C, Deschamps M, Ferrand C, Vauchy C, Chenut C, et al. Isolation and characterization of an HLA-DRB1*04-restricted HPV16-E7 T cell receptor for cancer immunotherapy. Hum Gene Ther. 2018;29:1202–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Sauce D, Bodinier M, Garin M, Petracca B, Tonnelier N, Duperrier A, et al. Retrovirus-mediated gene transfer in primary T lymphocytes impairs their anti-Epstein-Barr virus potential through both culture-dependent and selection process-dependent mechanisms. Blood. 2002;99:1165–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012;12:671–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Klebanoff CA, Scott CD, Leonardi AJ, Yamamoto TN, Cruz AC, Ouyang C, et al. Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J Clin Invest. 2016;126:318–34.

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining ‘T cell exhaustion’. Nat Rev Immunol. 2019;19:665–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Seresini S, Origoni M, Lillo F, Caputo L, Paganoni AM, Vantini S, et al. IFN-γ produced by human papilloma virus-18 E6-specific CD4+ T cells predicts the clinical outcome after surgery in patients with high-grade cervical lesions. J Immunol. 2007;179:7176–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Wiegering V, Eyrich M, Rutkowski S, Wölfl M, Schlegel PG, Winkler B. TH1 predominance is associated with improved survival in pediatric medulloblastoma patients. Cancer Immunol Immunother. 2011;60:693–703.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Wong MT, Ong DEH, Lim FSH, Teng KWW, McGovern N, Narayanan S, et al. A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity. 2016;45:442–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    White GP, Watt PM, Holt BJ, Holt PG. Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO- T cells. J Immunol. 2002;168:2820–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Thome JJC, Bickham KL, Ohmura Y, Kubota M, Matsuoka N, Gordon C, et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat Med. 2016;22:72–77.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Marchant A, Goetghebuer T, Ota MO, Wolfe I, Ceesay SJ, De Groote D, et al. Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guérin vaccination. J Immunol. 1999;163:2249–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zhang X, Mozeleski B, Lemoine S, Deriaud E, Lim A, Zhivaki D, et al. CD4 T cells with effector memory phenotype and function develop in the sterile environment of the fetus. Sci Transl Med. 2014;6:238ra72–238ra72.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  43. 43.

    Wing K, Ekmark A, Karlsson H, Rudin A, Suri-Payer E. Characterization of human CD25+ CD4+ T cells in thymus, cord and adult blood. Immunology. 2002;106:190–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Godfrey WR, Spoden DJ, Ge YG, Baker SR, Liu B, Levine BL, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2005;105:750–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood. 2004;104:895–903.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Li Y, Kurlander RJ. Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation. J Transl Med. 2010;8:104.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Lugli E, Gattinoni L, Roberto A, Mavilio D, Price DA, Restifo NP, et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat Protoc. 2013;8:33–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Hoffmann J-M, Schubert M-L, Wang L, Hückelhoven A, Sellner L, Stock S, et al. Differences in expansion potential of naive chimeric antigen receptor T cells from healthy donors and untreated chronic lymphocytic leukemia patients. Front Immunol. 2017;8:1956.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  49. 49.

    Pegram HJ, Purdon TJ, van Leeuwen DG, Curran KJ, Giralt SA, Barker JN, et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia. 2015;29:415–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    D’Arena G, Musto P, Cascavilla N, Di Giorgio G, Fusilli S, Zendoli F, et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica. 1998;83:197–203.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Milone MC, Bhoj VG. The pharmacology of T cell therapies. Mol Ther Methods Clin Dev. 2018;8:210–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Mueller KT, Waldron E, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, et al. Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia. Clin Cancer Res. 2018;24:6175–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Galletti G, De Simone G, Mazza EMC, Puccio S, Mezzanotte C, Bi TM, et al. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 2020;21:1552–1562.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Klein Geltink RI, Kyle RL, Pearce EL. Unraveling the complex interplay between T cell metabolism and function. Annu Rev Immunol. 2018;36:461–88.

    PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Chapman NM, Chi H. Hallmarks of T-cell exit from quiescence. Cancer Immunol Res. 2018;6:502–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    O’Sullivan D. The metabolic spectrum of memory T cells. Immunol Cell Biol. 2019;97:636–46.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  57. 57.

    Phan AT, Doedens AL, Palazon A, Tyrakis PA, Cheung KP, Johnson RS, et al. Constitutive glycolytic metabolism supports CD8+ T cell effector memory differentiation during viral infection. Immunity. 2016;45:1024–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. JVI. 2003;77:4911–27.

    CAS  Article  Google Scholar 

  59. 59.

    Pulko V, Davies JS, Martinez C, Lanteri MC, Busch MP, Diamond MS, et al. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat Immunol. 2016;17:966–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Frumento G, Verma K, Croft W, White A, Zuo J, Nagy Z, et al. Homeostatic cytokines drive epigenetic reprogramming of activated T cells into a ‘naive-memory’. Phenotype iScience. 2020;23:100989.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank healthy volunteers who participated in this study and the Activité d’Ingénierie Cellulaire et Tissulaire department of the EFS for kindly providing us umbilical cord blood units that were not compliant with banking standards. We also thank Dr. Martin Larsen for his insightful assistance with biostatistical analyses. This work was supported by the Ligue Nationale contre le Cancer, and by the MiMedi project funded by BPI France (grant no. DOS0060162/00) and the European Union through the European Regional Department Fund of the Region Bourgogne Franche-Comté (grant no. FC0013440). This work was also supported by the Agence Nationale de la Recherche (ANR) under the program “Investissements d’Avenir” with reference ANR-11-LABX-0021-LipSTIC, by the Region Bourgogne Franche-Comté (Seahorse XFe96 analyzer [Agilent], support to LipSTIC LabEX 2020 and MiMedI 2017). C.M. has benefited from a fellowship from Nancy Regional University Hospital.

Author information

Affiliations

Authors

Contributions

C.M. performed the experiments, analyzed the data, and wrote the original draft. P.M.-L. performed the experiments, analyzed the data, and helped write the manuscript. R.L. performed the gene expression experiments and revised the manuscript. O.A. and C.B. supervised the research activity execution and revised the manuscript. J.G. contributed to the conceptualization, acquired funding, and helped write the manuscript. Y.G. contributed to the conceptualization and project administration and wrote the original draft.

Corresponding authors

Correspondence to Chrystel Marton or Yann Godet.

Ethics declarations

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marton, C., Mercier-Letondal, P., Loyon, R. et al. Homeostatic cytokines tune naivety and stemness of cord blood-derived transgenic T cells. Cancer Gene Ther (2021). https://doi.org/10.1038/s41417-021-00395-5

Download citation

Search

Quick links