Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

circPTPN22 attenuates immune microenvironment of pancreatic cancer via STAT3 acetylation

Abstract

Accumulating research implicated that circular RNAs exhibited significant roles in cancer development. Nonetheless, the role regarding circPTPN22 in pancreatic cancer remains unclear. Expression of circPTPN22 in pancreatic cancer cell lines and normal cells was determined with quantitative real-time PCR (qRT-PCR). Cell counting kit-8 assay and colony formation assay were used to measure the proliferation of pancreatic cancer cells. RNA immunoprecipitation and Western blot were employed for investigation the binding between circPTPN22 and STAT3. circPTPN22 expression was highly upregulated in pancreatic cancer tissues and cell lines. Knockdown of circPTPN22 inhibited cell proliferation and attenuates pancreatic cancer immune microenvironment. Furthermore, STAT3 acetylation was involved in these effects. circPTPN22 promoted STAT3 acetylation via inhibiting STAT3/SIRT1 interaction. circPTPN22 attenuates pancreatic cancer immune microenvironment by promoting STAT3 acetylation via inhibiting STAT3/SIRT1 interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: circPTPN22 is significant increased in pancreatic cancer.
Fig. 2: Impact of circPTPN22 on pancreatic cells.
Fig. 3: circPTPN22 promotes cell growth in vivo.
Fig. 4: Knockdown of circPTPN22 enhances intratumoral T-cell infiltration.
Fig. 5: circPTPN22 promotes STAT3 acetylation.
Fig. 6: circPTPN22 inhibits STAT3-SIRT1 interaction.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are submitted to the journal.

References

  1. Robert C, Ribas A, Schachter J, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019;20:1239–51.

    Article  CAS  PubMed  Google Scholar 

  2. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396:1817–28.

    Article  PubMed  Google Scholar 

  3. Youn JW, Hur SY, Woo JW, Kim YM, Lim MC, Park SY, et al. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: interim results of a single-arm, phase 2 trial. Lancet Oncol. 2020;21:1653–60.

    Article  CAS  PubMed  Google Scholar 

  4. Santoiemma PP, Reyes C, Wang LP, McLane MW, Feldman MD, Tanyi JL, et al. Systematic evaluation of multiple immune markers reveals prognostic factors in ovarian cancer. Gynecol Oncol. 2016;143:120–7.

    Article  CAS  PubMed  Google Scholar 

  5. Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, et al. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother. 2009;58:449–59.

    Article  PubMed  Google Scholar 

  6. Pujade-Lauraine E, Fujiwara K, Dychter SS, Devgan G, Monk BJ. Avelumab (anti-PD-L1) in platinum-resistant/refractory ovarian cancer: JAVELIN Ovarian 200 Phase III study design. Future Oncol. 2018;14:2103–13.

    Article  CAS  PubMed  Google Scholar 

  7. Adams SF, Grimm AJ, Chiang CL, Mookerjee A, Flies D, Jean S, et al. Rapid tumor vaccine using Toll-like receptor-activatedovarian cancer ascites monocytes. J Immunother Cancer. 2020;8:e000875.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hardwick NR, Frankel P, Ruel C, Kilpatrick J, Tsai W, Kos F, et al. p53-Reactive T cells are associated with clinical benefit in patients with platinum-resistant epithelial ovarian cancer after treatment with a p53 vaccine and gemcitabine chemotherapy. Clin Cancer Res. 2018;24:1315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen J, Zhao W, Ju Z, Wang L, Peng Y, Labrie M, et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 2019;79:311–9.

    Article  CAS  PubMed  Google Scholar 

  10. Yao S, Jia X, Wang F, Sheng L, Song P, Cao Y, et al. CircRNA ARFGEF1 functions as a ceRNA to promote oncogenic KSHV-encoded viral interferon regulatory factor induction of cell invasion and angiogenesis by upregulating glutaredoxin 3. PLoS Pathog. 2021;17:e1009294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan X, Wang T, Wang J. Circ_0016760 acts as a sponge of MicroRNA-4295 to enhance E2F transcription factor 3 expression and facilitates cell proliferation and glycolysis in nonsmall cell lung cancer. Cancer Biother Radiopharm. 2020. https://doi.org/10.1089/cbr.2020.3621. Online ahead of print.

  12. Yang J, Cong X, Ren M, Sun H, Liu T, Chen G, et al. Circular RNA hsa_circRNA_0007334 is predicted to promote MMP7 and COL1A1 expression by functioning as a miRNA sponge in pancreatic ductal adenocarcinoma. J Oncol. 2019;2019:7630894.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shen P, Yang T, Chen Q, Yuan H, Wu P, Cai B, et al. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing. Mol Cancer. 2021;20:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ye Z, Zhu Z, Xie J, Feng Z, Li Y, Xu X, et al. Hsa_circ_0000069 knockdown inhibits tumorigenesis and exosomes with downregulated hsa_circ_0000069 suppress malignant transformation via inhibition of STIL in pancreatic cancer. Int J Nanomed. 2020;15:9859–73.

    Article  CAS  Google Scholar 

  15. Ma S, Kong S, Gu X, Xu Y, Tao M, Shen L, et al. As a biomarker for gastric cancer, circPTPN22 regulates the progression of gastric cancer through the EMT pathway. Cancer Cell Int. 2021;21:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun X, Lu Y, Lei T. TPTEP1 suppresses high glucose-induced dysfunction in retinal vascular endothelial cells by interacting with STAT3 and targeting VEGFA. Acta Diabetol. 2021;58:759–69.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, You S, Tian Y, Lu S, Cao L, Sun Y, et al. WWP2 regulates SIRT1-STAT3 acetylation and phosphorylation involved in hypertensive angiopathy. J Cell Mol Med. 2020;24:9041–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin L, Li N, Hu X, Sun J, He Y. Identification of circ_0085616 as an upregulated and oncogenic circular RNA in cervical cancer via the miR-503-5p-mediated ATXN7L3 activation. Cancer Biother Radiopharm. 2020. https://doi.org/10.1089/cbr.2020.3865. Online ahead of print.

  19. Wu M, Sun T, Xing L. Circ_0004913 inhibits cell growth, metastasis, and glycolysis by absorbing miR-184 to regulate HAMP in hepatocellular carcinoma. Cancer Biother Radiopharm. 2020. https://doi.org/10.1089/cbr.2020.3779. Online ahead of print.

  20. Du L, Zhang L, Sun F. Puerarin inhibits the progression of bladder cancer by regulating circ_0020394/miR-328-3p/NRBP1 axis. Cancer Biother Radiopharm. 2020. https://doi.org/10.1089/cbr.2019.3382. Online ahead of print.

  21. Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan L, et al. Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis. 2019;10:55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yao Y, Chen X, Yang H, Chen W, Qian Y, Yan Z, et al. Hsa_circ_0058124 promotes papillary thyroid cancer tumorigenesis and invasiveness through the NOTCH3/GATAD2A axis. J Exp Clin Cancer Res. 2019;38:318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan Z, Cao F, Jia B, Xia L. Circ_0072088 promotes the development of non-small cell lung cancer via the miR-377-5p/NOVA2 axis. Thorac Cancer. 2020;11:2224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bian L, Zhi X, Ma L, Zhang J, Chen P, Sun S, et al. Hsa_circRNA_103809 regulated the cell proliferation and migration in colorectal cancer via miR-532-3p / FOXO4 axis. Biochem Biophys Res Commun. 2018;505:346–52.

    Article  CAS  PubMed  Google Scholar 

  25. Liang L, Zhang L, Zhang J, Bai S, Fu H. Identification of circRNA-miRNA-mRNA networks for exploring the fundamental mechanism in lung adenocarcinoma. Onco Targets Ther. 2020;13:2945–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han J, Wang F, Lan Y, Wang J, Nie C, Liang Y, et al. KIFC1 regulated by miR-532-3p promotes epithelial-to-mesenchymal transition and metastasis of hepatocellular carcinoma via gankyrin/AKT signaling. Oncogene. 2019;38:406–20.

    Article  CAS  PubMed  Google Scholar 

  27. Lv L, Wang X, Ma T. microRNA-944 inhibits the malignancy of hepatocellular carcinoma by directly targeting IGF-1R and deactivating the PI3K/Akt signaling pathway. Cancer Manag Res. 2019;11:2531–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Severin F, Frezzato F, Visentin A, Martini V, Trimarco V, Carraro S, et al. In chronic lymphocytic leukemia the JAK2/STAT3 pathway is constitutively activated and its inhibition leads to CLL cell death unaffected by the protective bone marrow microenvironment. Cancers. 2019;11:1939.

  29. Zuo XL, Chen ZQ, Wang JF, Wang JG, Liang LH, Cai J. miR-337-3p suppresses the proliferation and invasion of hepatocellular carcinoma cells through targeting JAK2. Am J Cancer Res. 2018;8:662–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu C, Zhang M, Hu J, Li H, Liu S, Li T, et al. Prognostic effect of IL-6/JAK2/STAT3 signal-induced microRNA-21-5p expression on short term recurrence of hepatocellular carcinoma after hepatectomy. Int J Clin Exp Pathol. 2018;11:4169–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yi FT, Lu QP. Mucin 1 promotes radioresistance in hepatocellular carcinoma cells through activation of JAK2/STAT3 signaling. Oncol Lett. 2017;14:7571–6.

    PubMed  PubMed Central  Google Scholar 

  32. Sun J, Tai S, Tang L, Yang H, Chen M, Xiao Y, et al. Acetylation modification during autophagy and vascular aging. Front Physiol. 2021;12:598267.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Teo WH, Lo JF, Fan YN, Huang CY, Huang TF. Ganoderma microsporum immunomodulatory protein, GMI, promotes C2C12 myoblast differentiation in vitro via upregulation of Tid1 and STAT3 acetylation. PLoS ONE. 2020;15:e0244791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Shanxi Province “1331 project” Key Innovation Team Fund; Major scientific research project of Wuxi Municipal Health Commission (No. Z201805); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0685); Dr. Changzhi Medical College Startup Fund (BS201903).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: YH, PH, QZ and CL. Data analysis and interpretation: CC, SX, HZ, YS and HH. Drafting of the manuscript: HY. Critical revision of the manuscript for important intellectual content: QZ and CL. Final approval of the manuscript and submission: YH, PH, QZ, and CL. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qiang Zhao or Changhong Lian.

Ethics declarations

Ethics approval and consent to participate

This study was reviewed and approved by the Ethics Review Board of Heping Hospital. Written informed consents were obtained from each participant. The experiment was conducted in line with the Declaration of Helsinki.

COMPETING INTERESTS

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Han, P., Chen, C. et al. circPTPN22 attenuates immune microenvironment of pancreatic cancer via STAT3 acetylation. Cancer Gene Ther 30, 559–566 (2023). https://doi.org/10.1038/s41417-021-00382-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00382-w

This article is cited by

Search

Quick links