Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanocages displaying SIRP gamma clusters combined with prophagocytic stimulus of phagocytes potentiate anti-tumor immunity

Abstract

Antigen-presenting cells (APCs), including macrophages and dendritic cells (DCs), play a crucial role in bridging innate and adaptive immunity; thereby, innate immune checkpoint blockade-based therapy is an attractive approach for the induction of sustainable tumor-specific immunity. The interaction between the cluster of differentiation 47 (CD47) on tumor and signal-regulatory protein alpha (SIRPα) on phagocytic cells inhibits the phagocytic function of APCs, acting as a “don’t eat me” signal. Accordingly, CD47 blockade is known to increase tumor cell phagocytosis, eliciting tumor-specific CD8+ T-cell immunity. Here, we introduced a nature-derived nanocage to deliver SIRPγ for blocking of antiphagocytic signaling through binding to CD47 and combined it with prophagocytic stimuli using a metabolic reprogramming reagent for APCs (CpG-oligodeoxynucleotides). Upon delivering the clustered SIRPγ variant, the nanocage showed enhanced CD47 binding profiles on tumor cells, thereby promoting active engulfment by phagocytes. Moreover, combination with CpG potentiated the prophagocytic ability, leading to the establishment of antitumorigenic surroundings. This combination treatment could competently inhibit tumor growth by invigorating APCs and CD8+ T-cells in TMEs in B16F10 orthotopic tumor models, known to be resistant to CD47-targeting therapeutics. Collectively, enhanced delivery of an innate immune checkpoint antagonist with metabolic modulation stimuli of immune cells could be a promising strategy for arousing immune responses against cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FSγ biosynthesizes into a nanosized globular molecule by the E.coli expression system.
Fig. 2: FSγ can antagonize CD47 of cancer cells and enhance the phagocytic activity of APCs in vitro by blocking the CD47-SIRPα axis.
Fig. 3: Treatment with FSγV could form efficient antitumor immunity in vivo.
Fig. 4: FSγV-treatment with CpG could enhance phagocytosis of APCs in vitro.
Fig. 5: Combination treatment with CpG and FSγV could reinforce antitumor immunity in vivo.
Fig. 6: FSγV and CpG potentiate antitumor immunity through efficient cancer cells engulfment by phagocytes.

References

  1. Adams S, van der Laan LJ, Vernon-Wilson E, Renardel de Lavalette C, Döpp EA, Dijkstra CD, et al. Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. J Immunol. 1998;161:1853–9.

    Article  CAS  PubMed  Google Scholar 

  2. Barclay AN, Brown MH. The SIRP family of receptors and immune regulation. Nat Rev Immunol. 2006;6:457–64.

    Article  CAS  PubMed  Google Scholar 

  3. McCracken MN, Cha AC, Weissman IL. Molecular pathways: activating T cells after cancer cell phagocytosis from blockade of CD47 “Don’t Eat Me” signals. Clin Cancer Res. 2015;21:3597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bian Z, Shia L, Guo YL, Lv Z, Tang C, Niu S. Cd47-Sirpα interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells. Proc Natl Acad Sci USA. 2016;113:E5434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brooke G, Holbrook JD, Brown MH, Barclay AN. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. J Immunol. 2004;173:2562–70.

    Article  CAS  PubMed  Google Scholar 

  6. Willingham SB, Volkmer J-P, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA. 2012;109:6662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eladl E, Tremblay-Lemay R, Rastgoo N, Musani R, Chen W, Liu A, et al. Role of CD47 in hematological malignancies. J Hematol Oncol. 2020;13:96

    Article  PubMed  PubMed Central  Google Scholar 

  8. Russ A, Hua AB, Montfort WR, Rahman B, Riaz I Bin, Khalid MU, et al. Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 2018;32:480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vonderheide RH. CD47 blockade as another immune checkpoint therapy for cancer. Nat Med. 2015;21:1122–3.

    Article  CAS  PubMed  Google Scholar 

  10. Park SY, Kim IS. Harnessing immune checkpoints in myeloid lineage cells for cancer immunotherapy. Cancer Lett. 2019;452:51–8.

    Article  CAS  PubMed  Google Scholar 

  11. Lee EJ, Nam GH, Lee NK, Kih M, Koh E, Kim YK, et al. Nanocage-therapeutics prevailing phagocytosis and immunogenic cell death awakens immunity against cancer. Adv Mater. 2018;30:1705581.

    Article  CAS  Google Scholar 

  12. Feng R, Zhao H, Xu J, Shen C. CD47: the next checkpoint target for cancer immunotherapy. Critical Rev. Oncol/Hematol. 2020;152:103014.

    Article  Google Scholar 

  13. Koh E, Lee EJ, Nam GH, Hong Y, Cho E, Yang Y, et al. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials. 2017;121:121–9.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Huang Q, Xiao W, Zhao Y, Pi J, Xu H, et al. Advances in anti-tumor treatments targeting the CD47/SIRPα axis. Front Immunol. 2020;11:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, et al. Engagement of MHC class i by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy article. Nat Immunol. 2018;19:76–84.

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Madariaga ML, Wang S, Van Rooijen N, Oldenborg P-A, Yang Y-G. Lack of CD47 on nonhematopoietic cells induces split macrophage tolerance to CD47null cells. Proc Natl Acad Sci USA. 2007;104:13744–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fries LF, Brickman CM, Frank MM. Monocyte receptors for the Fc portion of IgG increase in number in autoimmune hemolytic anemia and other hemolytic states and are decreased by glucocorticoid therapy. J Immunol. 1983;131:1240–5.

    Article  CAS  PubMed  Google Scholar 

  18. Feng M, Chen JY, Weissman-Tsukamoto R, Volkmer JP, Ho PY, McKenna KM, et al. Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk. Proc Natl Acad Sci USA. 2015;112:2145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu M, O’Connor RS, Trefely S, Graham K, Snyder NW, Beatty GL. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated ‘don’t-eat-me’ signal. Nat Immunol. 2019;20:265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein nanoparticles: Promising platforms for drug delivery applications. ACS Biomater Sci Eng. 2018;4:3939–61.

    Article  CAS  PubMed  Google Scholar 

  21. Lee EJ, Lee NK, Kim IS. Bioengineered protein-based nanocage for drug delivery. Adv Drug Deliv Rev. 2016;106:157–71.

    Article  CAS  PubMed  Google Scholar 

  22. He J, Fan K, Yan X. Ferritin drug carrier (FDC) for tumor targeting therapy. J Control Release. 2019;311-312:288–300.

    Article  CAS  PubMed  Google Scholar 

  23. Lee NK, Lee EJ, Kim S, Hoon NG, Kih M, Hong Y, et al. Ferritin nanocage with intrinsically disordered proteins and affibody: A platform for tumor targeting with extended pharmacokinetics. J Control Release. 2017;267:172–80.

    Article  CAS  PubMed  Google Scholar 

  24. Kih M, Lee EJ, Lee NK, Kim YK, Lee KE, Jeong C, et al. Designed trimer-mimetic TNF superfamily ligands on self-assembling nanocages. Biomaterials. 2018;180:67–77.

    Article  CAS  PubMed  Google Scholar 

  25. Je H, Nam G-H, Kim GB, Kim W, Kim SR, Kim I-S, et al. Overcoming therapeutic efficiency limitations against TRAIL-resistant tumors using re-sensitizing agent-loaded trimeric TRAIL-presenting nanocages. J Control Release [Internet]. 2021; Available from: http://www.sciencedirect.com/science/article/pii/S0168365921000250

  26. Wang Z, Xu L, Yu H, Lv P, Lei Z, Zeng Y, et al. Ferritin nanocage-based antigen delivery nanoplatforms: Epitope engineering for peptide vaccine design. Biomater Sci. 2019;7:1794–1800.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng X, Fan K, Wang L, Ying X, Sanders AJ, Guo T, et al. TfR1 binding with H-ferritin nanocarrier achieves prognostic diagnosis and enhances the therapeutic efficacy in clinical gastric cancer. Cell Death Dis. 2020;11:92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Han J-A, Kang YJ, Shin C, Ra J-S, Shin H-H, Hong SY, et al. Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell (DC)-based vaccine development. Nanomedicine 2014;10:561–9.

    Article  CAS  PubMed  Google Scholar 

  29. Weiskopf K, Ring A, Ho C, Volkmer J-P, Levin A, Volkmer A, et al. Engineered SIRP variants as immunotherapeutic adjuvants to anticancer antibodies. Science. 2013;341:88–91.

    Article  CAS  PubMed  Google Scholar 

  30. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, et al. Template-based protein structure modeling using the RaptorX web server. Nat Protoc. 2012;7:1511–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Nam G-H, Hong Y, Choi Y, Kim GB, Kim YK, Yang Y, et al. An optimized protocol to determine the engulfment of cancer cells by phagocytes using flow cytometry and fluorescence microscopy. J Immunol Methods. 2019;470:27–32.

    Article  CAS  PubMed  Google Scholar 

  32. Wang W, Liu Z, Zhou X, Guo Z, Zhang J, Zhu P, et al. Ferritin nanoparticle-based SpyTag/SpyCatcher-enabled click vaccine for tumor immunotherapy. Nanomedicine. 2019;16:69–78.

    Article  CAS  PubMed  Google Scholar 

  33. Lee BR, Ko HK, Ryu JH, Ahn KY, Lee YH, Oh SJ, et al. Engineered human ferritin nanoparticles for direct delivery of tumor antigens to lymph node and cancer immunotherapy. Sci Rep. 2016;6:35182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lv C, Zhang S, Zang J, Zhao G, Xu C. Four-fold channels are involved in iron diffusion into the inner cavity of plant ferritin. Biochemistry. 2014;53:2232–41.

    Article  CAS  PubMed  Google Scholar 

  35. Nettleship JE, Ren J, Scott DJ, Rahman N, Hatherley D, Zhao Y, et al. Crystal structure of signal regulatory protein gamma (SIRPγ) in complex with an antibody Fab fragment. BMC Struct Biol. 2013;13:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fu C, Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunology. 2018;9:3059.

    Article  CAS  Google Scholar 

  37. Kratky W, Reis E, Sousa C, Oxenius A, Spörri R. Direct activation of antigen-presenting cells is required for CD8 + T-cell priming and tumor vaccination. Proc Natl Acad Sci USA. 2011;108:17414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Watts C, Amigorena S. Phagocytosis and antigen presentation. Semin Immunol. 2001;13:373–9.

    Article  CAS  PubMed  Google Scholar 

  39. Savina A, Amigorena S. Phagocytosis and antigen presentation in dendritic cells. Immunol Rev 2007;219:143–56.

    Article  CAS  PubMed  Google Scholar 

  40. Gaudino SJ, Kumar P. Cross-talk between antigen presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and tumorigenesis. Fron Immunology. 2019;10:360

    Article  CAS  Google Scholar 

  41. Chen J, Zhong M-C, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 2017;544:493–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cioffi M, Trabulo S, Hidalgo M, Costello E, Greenhalf W, Erkan M, et al. Inhibition of CD47 Effectively targets pancreatic cancer stem cells via dual mechanisms. Clin Cancer Res. 2015;21:2325–37.

    Article  CAS  PubMed  Google Scholar 

  43. Kadowaki N, Ho S, Antonenko S, De Waal Malefyt R, Kastelein RA, Bazan F, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med. 2001;194:863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bauer M, Redecke V, Ellwart JW, Scherer B, Kremer J-P, Wagner H, et al. Bacterial CpG-DNA triggers activation and maturation of human CD11c−, CD123+ dendritic cells. J Immunol. 2001;166:5000–7.

    Article  CAS  PubMed  Google Scholar 

  45. Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with Cd40 ligand to induce high amounts of IL-12. Eur J Immunol. 2001;31:3026–37.

    Article  CAS  PubMed  Google Scholar 

  46. O’Donnell JS, Long GV, Scolyer RA, Teng MWL, Smyth MJ. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treatment Rev. 2017;52:71–81.

    Article  CAS  Google Scholar 

  47. Martin K, Schreiner J, Zippelius A. Modulation of APC function and anti-tumor immunity by anti-cancer drugs. Front Immunology. 2015;6:501

    Article  Google Scholar 

  48. Yang Y, Nam GH, Kim GB, Kim YK, Kim IS. Intrinsic cancer vaccination. Adv Drug Deliv Rev. 2019;151-152:2–22.

    Article  CAS  PubMed  Google Scholar 

  49. Nam G-H, Lee EJ, Kim YK, Hong Y, Choi Y, Ryu M-J, et al. Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer. Nat Commun. 2018;9:2165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. J Nal Cancer Inst. 2017;109:djw332.

    Google Scholar 

  51. Gu S, Ni T, Wang J, Liu Y, Fan Q, Wang Y, et al. CD47 blockade inhibits tumor progression through promoting phagocytosis of tumor cells by M2 polarized macrophages in endometrial cancer. J Immunol Res. 2018;2018:6156757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Aaron Michael R, Roy Louis M, Andrew Curtis K, Aashish M, Kenneth SL. SIRP polypeptide compositions and methods of use. United States: U.S. Patent and Trademark Office; 2017. US 9345 (B2).

  53. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30:660–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Picardo SL, Doi J, Hansen AR. Structure and optimization of checkpoint inhibitors. Cancers. 2020;12:38.

    Article  CAS  Google Scholar 

  55. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8:1069–86.

    Article  PubMed  Google Scholar 

  56. Lv Z, Bian Z, Shi L, Niu S, Ha B, Tremblay A, et al. Loss of cell surface CD47 clustering formation and binding avidity to SIRPα facilitate apoptotic cell clearance by macrophages. J Immunol. 2015;195:661–71.

    Article  CAS  PubMed  Google Scholar 

  57. Chang C-H, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015;162:1229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim SH, Li M, Trousil S, Zhang Y, Pasca di Magliano M, Swanson KD, et al. Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma. J Invest Dermatol. 2017;137:1740–48.

    Article  CAS  PubMed  Google Scholar 

  59. Everts B, Amiel E, Huang SCC, Smith AM, Chang CH, Lam WY, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15:323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo C, Chen S, Liu W, Ma Y, Li J, Fisher PB, et al. Immunometabolism: a new target for improving cancer immunotherapy. Adv Cancer Res. 2019;143:195–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115:4742–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Celhar T, Pereira-Lopes S, Thornhill SI, Lee HY, Dhillon MK, Poidinger M, et al. TLR7 and TLR9 ligands regulate antigen presentation by macrophages. Int Immunol. 2016;70:1597–609.

    Google Scholar 

  63. Nierkens S, den Brok MH, Roelofsen T, Wagenaars JAL, Figdor CG, Ruers TJ, et al. Route of administration of the TLR9 agonist CpG critically determines the efficacy of cancer immunotherapy in mice. PLoS ONE. 2009;4:8368.

    Article  CAS  Google Scholar 

  64. Mutwiri GK, Nichani AK, Babiuk S, Babiuk LA. Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. J Control Release. 2004;97:1–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.C. and G.-H.N. contributed equally to this work. E.J.L. and I.-S.K. contributed equally to this work as corresponding authors.

Funding

This work was supported by grants from the National Research Foundation of Korea (NRF) funded by the Korean government (2017R1A3B1023418, 2018H1A2A1063186, and 2021R1C1C1008217), KU-KIST Graduate School of Converging Science and Technology Program, and KIST Institutional Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun Jung Lee or In-San Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y., Nam, GH., Kim, G.B. et al. Nanocages displaying SIRP gamma clusters combined with prophagocytic stimulus of phagocytes potentiate anti-tumor immunity. Cancer Gene Ther 28, 960–970 (2021). https://doi.org/10.1038/s41417-021-00372-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00372-y

Search

Quick links