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BACKGROUND: While immune checkpoint inhibitors are becoming a standard of care for multiple types of cancer, the majority of
patients do not respond to this form of immunotherapy. New approaches are required to overcome resistance to immunotherapies.
METHODS: We investigated the effects of adenoviral p53 (Ad-p53) gene therapy in combination with immune checkpoint
inhibitors and selective IL2 or IL15 CD122/132 agonists in the aggressive B16F10 tumor model resistant to immunotherapies. To
assess potential mechanisms of action, pre- and post- Ad-p53 treatment biopsies were evaluated for changes in gene-expression
profiles by Nanostring IO 360 assays.
RESULTS: The substantial synergy of “triplet” Ad-p53+ CD122/132+ anti-PD-1 therapy resulted in potential curative effects
associated with the complete tumor remissions of both the primary and contralateral tumors. Interestingly, contralateral tumors,
which were not injected with Ad-p53 showed robust abscopal effects resulting in statistically significant decreases in tumor size
and increased survival (p < 0.001). None of the monotherapies or doublet treatments induced the complete tumor regressions. Ad-
p53 treatment increased interferon, CD8+ T cell, immuno-proteosome antigen presentation, and tumor inflammation gene
signatures. Ad-p53 treatment also decreased immune-suppressive TGF-beta, beta-catenin, macrophage, and endothelium gene
signatures, which may contribute to enhanced immune checkpoint inhibitor (CPI) efficacy. Unexpectedly, a number of previously
unidentified, strongly p53 downregulated genes associated with stromal pathways and IL10 expression identified novel anticancer
therapeutic applications.
CONCLUSIONS: These results imply the ability of Ad-p53 to induce efficacious local and systemic antitumor immune responses with
the potential to reverse resistance to immune checkpoint inhibitor therapy when combined with CD122/132 agonists and immune
checkpoint blockade. Our findings further imply that Ad-p53 has multiple complementary immune mechanisms of action, which
support future clinical evaluation of triplet Ad-p53, CD122/132 agonist, and immune checkpoint inhibitor combination treatment.
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BACKGROUND
Immune checkpoint inhibitor therapy has become a new
standard of care for multiple recurrent and metastatic cancers.
However, most cancer patients do not respond to this form of
treatment [1]. Various approaches are being tested to increase
immune checkpoint blockade efficacy, including a combination
with immune-stimulating cytokines [2, 3]. Interleukin 2 (IL2) and
interleukin 15 (IL15) belong to a family of immune-stimulating
cytokines sharing a common beta chain (CD122) and gamma-
chain (CD132) receptor known to drive the proliferation and
cytolytic activity of CD8+ T cells and natural killer (NK) cells.
Selective CD122/132 agonists have been developed with
minimal alpha chain (CD25) binding that mitigates the genera-
tion of capillary leak toxicities and the induction of immune-
suppressive T regs [4–7].
TP53 is the prototypic tumor suppressor that regulates

responses to a wide range of cell stressors, including cell cycle
arrest, cellular senescence, apoptosis, DNA damage repair,

hypoxia, oncogenic stress, and epithelial-mesenchymal transition
(EMT) [8]. Ad-p53 is a replication impaired adenoviral vector
encoding expression of the wild-type p53 tumor suppressor
protein, which has demonstrated antitumor effects in preclinical
and clinical studies as a monotherapy and in combination with
other treatment modalities [9–13].
We evaluated Ad-p53 tumor suppressor therapy in a murine

tumor model known to be highly resistant to immunotherapy in
combination with IL2/IL15 CD122/132 agonists and immune
checkpoint blockade. We observed substantial synergy supporting
further development of triplet Ad-p53, CD122/132 agonist, and
immune checkpoint inhibitor combination treatment.

METHODS
Animals, tumor inoculation, and measurements
C57BL/6 (B6) mice (6–8 weeks of age, ten animals per treatment group)
were injected subcutaneously into the right flank with B16F10 melanoma
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cells (ATCC, 5 × 105 cells/mouse) to form the “Primary Tumor.” Treatment
started when tumors reached approximately 60 mm3 in size (designated
Day 1). On day 14, animals were inoculated on the contralateral side with
B16F10 cells to form “Secondary tumor,” and primary and secondary tumor
growth followed for up to 60 days. Animals were sacrificed when tumors
reached ~2000mm3.

Viral vectors
Replication-deficient human type 5 adenovirus (Ad5) encoding for
expression of p53 tumor suppressor gene was used. The construction,
properties, and purification of the vector have been reported elsewhere for
Ad-p53 vectors [11]. Four doses of viral vectors or PBS were administered,
intratumorally, at 48-h intervals (5 × 109 viral particles/dose, in 50 µl total
volume).

Anti-PD-1 treatment
Animals were treated with intraperitoneal anti-PD-1(10 mg/kg) every 3 days
starting on Day 1, over a 30-day period following implantation of the
primary tumor. The anti-PD-1 monoclonal antibody clone RMP1-14 was
obtained from Bioxcell, West Lebanon, NH. Outcome measures were
subcutaneous tumor growth, measured twice per week by caliper
measurements. The tumor growth was monitored by measuring the
length (L) and width (w) of the tumor, and tumor volume was calculated
using the following formula: volume= 0.523 L(w)2. Treatment outcomes
were evaluated by measurement of tumor volumes in primary and
contralateral tumors and their statistical analyses by t test, analysis of
variance (ANOVA), Kruskal-Wallis ANOVA, and by comparisons of survival
using Kaplan–Meier and log-rank tests.

CD122/ CD132 agonist treatment
To generate the CD122/CD132 agonist (IL-2 based), recombinant murine
IL-2 (eBioscience or R&D Systems Minneapolis, MN), and S4B6-1 antimouse
IL-2 antibody (Bioxcell, West Lebanon, NH or BD Biosciences) were
combined to form immunocomplexes before administration. The immu-
nocomplexes were prepared by incubating the anti-IL-2 monoclonal with
IL-2 for 15min at room temperature. The murine IL-2 (eBioscience or R&D
Systems Minneapolis, MN) was mixed with the S4B6-1 antimouse IL2
antibody (Bioxcell, West Lebanon, NH or BD Biosciences) at a molar ratio of
2:1. The IL-2/S4B6 mAb immunocomplexes were administered intraper-
itoneally (IP) at 2.5 µg IL-2/dose on days 2, 6, and 10 (palpable tumors were
identified as day 0). Similarly, to generate the IL-15 based CD122/ CD132
agonist, immunocomplexes were prepared from recombinant murine IL-15
(eBioscience) and recombinant soluble murine IL-15Rα-Fc (R&D Systems).
The immunocomplex was suspended in 0.1% bovine serum albumin (BSA)/
PBS, mixed, and incubated for 30min at 37 °C before injection. The reagent
is 2 μg of IL-15 complexed with 12 μg of IL-15Rα-Fc in 300 μL 0.1% bovine
serum albumin (BSA)/PBS and was similarly injected IP after tumors
became palpable. These IL2 and IL15 immune cytokine complexes have
selective CD122/132 receptor activation with reduced toxicities and
greater efficacy than their native IL2 or IL15 cytokines [2, 3, 14–16].

Nanostring transcriptome gene-expression analyses of Ad-
p53 treatment
We also describe in this report, the initial transcriptome results of gene-
expression profiles induced by Ad-p53 treatment performed as part of a
new clinical trial combining Ad-p53 and anti-PD-1 or anti-PD-L1 in patients
with recurrent head and neck squamous cell carcinoma (HNSCC) and other
solid tumors approved for immune checkpoint inhibitor therapy
NCT03544723. RNA was isolated from pre- and post-treatment samples
and compared using Nanostring IO 360 gene-expression panel (Nanostring
Technologies Seattle, WA). This panel tests expression of 770 genes
involved in neoplasm pathology, tumor microenvironment, and cancer
immune responses. Samples were processed and analyzed as described
[17]. mRNA expression was measured with the nCounter technology,
provided by NanoString Technologies. nCounter uses probes with
barcodes attached to DNA oligonucleotides that directly bind to RNA.
The sample preparation and analyses were performed according to the
manufacturer’s protocol using The PanCancer IO 360 gene-expression
panel that includes 770 genes. Gene-expression signatures were defined as
described previously [17, 18]. The normalization was performed by
correcting for the expression of technical controls and 30 housekeeping
genes included in the panel. nCounter gene-expression data were
obtained for pre- and post-treatment biopsies.

Statistical analysis
Graph Pad Prism 8.0 software was employed for statistical analyses. A
statistical analysis of variance (ANOVA) was employed to compare treatment
effects on tumor size. For survival comparisons, Kaplan–Meier survival
estimates, and the log-rank test were utilized. Fisher’s exact test was
employed for the comparison of complete remission rates. The statistically
significant p values were less than or equal to 0.05. All statistically significant
results were confirmed in repeated experiments.

RESULTS
Ad-p53 has local and abscopal effects with reversal of anti-PD-
1 resistance
We evaluated the ability of Ad-p53 to reverse resistance to
immune checkpoint inhibitor therapy in the B16F10 melanoma
tumor model, which is known to be refractory to immunother-
apy. Mimicking clinical applications, we allowed tumors to
progress on anti-PD-1 treatment before intratumoral administra-
tion of Ad-p53 therapy to tumors in one flank with contralateral
tumors not injected with Ad-p53. The local treatment effects on
the Ad-p53-injected tumor are shown in Fig. 1. Ad-p53+ anti-PD-
1 combination treatment-induced statistically significant
decreases in tumor growth compared to either anti-PD-1 or
Ad-p53 therapy alone. The evaluation of tumor growth using
ANOVA statistical analysis confirmed synergistic effects of the
combination treatment over either agent used as monotherapy
(p= 0.0001). We observed only minimal anti-PD-1 monotherapy
efficacy with results similar to the tumor progression seen for
control PBS treatment. In contrast, treatment with Ad-p53
monotherapy resulted in significantly decreased tumor growth
and Ad-p53 + anti-PD-1 combination therapy reversed anti-PD-1
treatment resistance (see Fig. 1). The treatment with a combina-
tion of Ad-luciferase (Ad-Luc) and anti-PD-1 did not enhance the
effect of anti-PD-1 therapy (see Supplemental Fig. 1).
As shown in Fig. 2, abscopal, systemic antitumor effects of

localized Ad-p53 treatment were observed in contralateral tumors
that were not injected with Ad-p53. Consistent with the
synergistic effect seen in the suppression of Ad-p53 injected
tumors, we also observed a statistically significant abscopal effect
with decreased growth in the contralateral tumors that did not
receive Ad-p53 tumor suppressor therapy. These findings imply
that the combination treatment (Ad-p53+ anti-PD1) induced
systemic immunity mediating the abscopal effects. Contralateral
tumors in animals whose primary tumor had been treated with
Ad-p53 alone showed significantly delayed tumor growth (p=
0.046) compared to the growth rate of the primary tumors treated
with anti-PD-1 alone. An even greater abscopal effect on
contralateral tumor growth (p= 0.0243) was observed in mice
whose primary tumors were treated with combined Ad-p53+
anti-PD-1.
With respect to survival, combined Ad-p53 and anti-PD-1

therapy demonstrated a statistically significant increase in survival
compared to Ad-p53 therapy alone (p= 0.0167) and anti-PD-1
therapy alone (p < 0.001) (see Fig. 3). Consistent with the
synergistic effects on tumor growth, the increase in median
survival for the combined Ad-p53 and anti-PD-1 group was more
than additive compared to the effects of Ad-p53 and anti-PD-1
treatments.

Local and systemic efficacy by “Triplet” Ad-p53+ immune
checkpoint blockade+ CD122/133 agonist therapy
In a subsequent series of experiments, we evaluated the effects
of combining IL2 or IL15 CD122/CD132 agonists with Ad-p53
tumor suppressor and immune checkpoint blockade. The
treatment efficacy was evaluated by assessing tumor volumes
(in primary and contralateral tumors), the complete tumor
response rates, and survival. The results demonstrated unex-
pected, substantial synergy of the “Triplet”Ad-p53+ CD122/
132+ anti-PD-1 therapies that resulted in potentially curative
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treatment associated with the complete tumor remissions of
both the primary and contralateral tumors with significantly
superior abscopal effects on distant tumors not injected with Ad-
p53 tumor suppressor therapy. As demonstrated in Figs. 4, 5, and
6, the triplet Ad-p53+ CD122/132+ anti-PD-1 therapy was the
only treatment that resulted in complete tumor remissions and
long-term survival.

Significant improvement of local efficacy of “Triplet” Ad-
p53+ immune checkpoint blockade+ CD122/133 agonist
therapy in the primary tumor injected with Ad-p53
In regard to the primary tumor volume as shown in Fig. 4,
there was enhanced efficacy of Ad-p53+ CD122/132, Ad-p53+
anti-PD-1, and Ad-p53+ CD122/132+ anti-PD-1 treatments

compared to any of the therapies alone. Importantly, a statistical
analysis of variance (ANOVA) comparison of tumor volumes on
Day 30 determined that the synergy of the antitumor effects was
only maintained in the “Triplet” Ad-p53+ CD122/132+ anti-PD-1
treatment combination (p value <0.0001 overall and p value
<0.0001 separately compared to every other treatment group).
There was severe tumor progression during CD122/132, anti-PD-
1, and CD122/132+ anti-PD-1 therapies, which were reversed by
combination with Ad-p53 therapy. There was variation between
the primary tumor growth rates for the PBS controls shown in
Figs. 1 and 4. This is most likely the result of the highly
exponential growth characteristics of the B16F10 tumor which
can account for larger variations between experiments than for
other tumor models.

Fig. 2 Abscopal effect of Ad-p53 in contralateral tumors not injected with Ad-p53. Contralateral tumor volume over time in mice whose
primary tumor had received either anti-PD-1, Ad-p53, or a combination of Ad-p53+ anti-PD-1 treatment. Consistent with the synergistic effect
observed in the suppression of the primary tumor growth, we also observed a statistically significant abscopal effect with decreased growth in
the contralateral (secondary) tumors that did not receive tumor suppressor therapy. These findings imply that the combination treatment (Ad-
p53+ anti-PD1) induced systemic immunity mediating the abscopal effects. Contralateral tumors in animals whose primary tumor had been
treated with Ad-p53 alone showed significantly delayed tumor growth (p= 0.046) compared to the growth rate of the primary tumors treated
with anti-PD-1 alone. An even greater abscopal effect on contralateral tumor growth (p= 0.0243) was observed in mice whose primary tumors
were treated with combined Ad-p53+ anti-PD-1. Tumor size=mm3 and was measured from the day of tumor implantation.

Fig. 1 Local effects on Ad-p53-injected tumors+ anti-PD-1 therapy. Ad-p53+ anti-PD-1 combination treatment-induced statistically
significant decreases in tumor growth compared to either anti-PD-1 or Ad-p53 therapy alone. The evaluation of tumor growth using ANOVA
statistical analysis confirmed synergistic effects of the combination treatment over either agent used as monotherapy (p= 0.0001). Anti-PD-1
monotherapy had minimal efficacy with substantial tumor progression similar to animals control PBS treatment. The treatment with Ad-p53
monotherapy resulted in significantly delayed tumor growth and Ad-p53+ anti-PD-1 combination therapy reversed anti-PD-1 treatment
resistance. The tumor size=mm3 and was measured after treatments were started (designated Day 1) when tumors reached approximately
60 mm3 in size.
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Superior abscopal/systemic effects of “Triplet” Ad-p53 tumor
suppressor immune therapy
As shown in Fig. 5, abscopal, systemic antitumor effects in
contralateral tumors that were not injected with Ad-p53 were
significantly superior for Ad-p53 “Triplet” therapy. Figure 5 depicts
contralateral tumor volumes over time in mice receiving the three
most effective tumor treatments with either the combination of
Ad-p53+ IL2 CD122/132, Ad-p53+ anti-PD-1, or Ad-p53+ IL2
CD122/132+ anti-PD-1. A statistical analysis of variance (ANOVA)
comparison of these contralateral tumor volumes determined
synergy of the antitumor effects of Ad-p53+ IL2 CD122/132+
anti-PD-1 treatment (p value= 0.0435). Similar results were
observed with IL15 derived CD122/132 treatments (see Supple-
mental Fig. 2).

“Triplet” Ad-p53+ CD122/132+ anti-PD-1 treatment induces
complete tumor responses
It is generally appreciated that the complete tumor responses to
therapy are associated with important therapeutic benefits and

are required for curative outcomes. As shown in Fig. 6 for the p53
treatment groups and their controls, only Ad-p53+ CD122/132+
anti-PD-1 treatment resulted in the complete tumor remissions of
both the primary and contralateral tumors. The complete tumor
responses of both the primary and contralateral tumors were
observed in 60% of the Ad-p53+ CD122/132+ anti-PD-1 treat-
ment group (six of ten animals) and there were no complete
tumor responses in any of the 70 animals in the other treatment
groups (p value <0.0001 by two-sided Fisher’s Exact test
comparing Ad-p53+ CD122/132+ anti-PD-1 treatment group vs.
animals in all other treatment groups; p value <0.011 by two-sided
Fisher’s Exact test comparing Ad-p53+ CD122/132+ anti-PD-1
treatment group vs. any other treatment group). Unexpectedly,
the complete tumor responses were durable and were maintained
after 40 days in 50% of the Ad-p53+ CD122/132+ anti-PD-1
treatment group presumably curing these animals of these
tumors. Taken together, these findings indicate that of all the
Ad-p53 therapies, only the triplet combination Ad-p53+ CD122/
132+ anti-PD-1 treatment resulted in curative efficacy by

Fig. 4 Substantially superior efficacy of “Triplet” Ad-p53+ IL2 CD122/132 agonist+ anti-PD-1 therapy. There was significantly enhanced
efficacy of Triplet Ad-p53+ CD122/132+ anti-PD-1 treatment compared to any of the other singlet or doublet therapies. Importantly, a
statistical analysis of variance (ANOVA) comparison of tumor volumes on Day 30 determined that the synergy of the antitumor effects was
only maintained in the “Triplet” Ad-p53+ CD122/132+ anti-PD-1 treatment combination (p value <0.0001 overall and p value
<0.0001 separately compared to every other treatment group). Tumor size=mm3 and was measured after treatments were started
(designated Day 1) when tumors reached ~60mm3 in size.

Fig. 3 Kaplan–Meier survival curves showing superior efficacy for Ad-p53+ anti-PD-1 therapy. Kaplan–Meier survival curves for mice
treated with either PBS, anti-PD-1, Ad-p53, or a combination of these agents. The results show no significant difference in the survival of
animals treated with PBS or anti-PD-1, increased survival in those treated with Ad-p53, and a significant enhancement of survival in animals
treated with a combination of Ad-p53+ anti-PD-1 over that observed in mice treated with either Ad-p53 (p= 0.0167), or anti-PD-1 (p < 0.001)
monotherapy.
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inducing powerful local and systemic antitumor immunity
mediating substantial abscopal effects.

“Triplet” Ad-p53+ CD122/132+ anti-PD-1 treatment results
in extended survival
The Kaplan–Meier survival curves shown in Fig. 7 demonstrate the
substantial synergy of triplet Ad-p53+ CD122/132+ anti-PD-1
therapy compared to mice treated with either PBS or Ad-p53
monotherapy, or the doublet therapies CD122/132+ anti-PD-1,
Ad-p53+ CD122/132 or Ad-p53+ anti-PD-1. There was a statisti-
cally significant difference in these survival curves by the log-rank
test (p < 0.0001 overall; p value <0.0003 comparing Ad-p53+
CD122/132+ anti-PD-1 treatment group vs. any other treatment
group). The median survival of the triplet Ad-p53+ CD122/132+

anti-PD-1 therapy group had not been reached after 40 days and
80% of this treatment group were still alive. In stark contrast, 98%
(49/50) of animals in the other treatment groups had died by Day
30 and had median survivals ranging between 10 and 28 days.
In summary, these findings indicate that of all the Ad-p53

therapies, only the triplet combination Ad-p53+ CD122/132+
anti-PD-1 treatment resulted in potentially curative efficacy and
long-term survival by inducing synergistic local and systemic
antitumor immunity with substantial abscopal effects.

Gene-expression profiles induced by Ad-p53 treatment
To assess the gene-expression profiles most modulated by Ad-p53
treatment, mRNA isolated from pre- and post-Ad-p53 treatment
biopsies in a patient with recurrent HNSCC were compared using

Fig. 5 Substantially superior abscopal/systemic efficacy of “Triplet” Ad-p53+ IL2 CD122/132 agonist+ anti-PD-1 therapy. Consistent
with the unexpected, substantially increased synergistic effects of Ad-p53+ CD122/132+ anti-PD-1 treatment on the primary tumor growth,
we also observed a surprisingly powerful and statistically significant abscopal effect of triplet Ad-p53+ CD122/132+ anti-PD-1 treatment
compared to the other Ad-p53 treatment groups. A statistical analysis of variance (ANOVA) comparison of these contralateral tumor volumes
determined synergy of the anti-tumor effects of Ad-p53+ CD122/132+ anti-PD-1 treatment (p value= 0.0435 overall). Only the Ad-p53+
CD122/132+ anti-PD-1 group demonstrated a statistically significant decrease in contralateral tumor growth vs. the Ad-p53+ anti-PD-1 group
(p value= 0.0360). Tumor size=mm3 and was measured from the day of tumor implantation.

Fig. 6 “Triplet” Ad-p53+ CD122/132+ anti-PD-1 treatment induces complete tumor responses. Only the Ad-p53+ CD122/132+ anti-PD-1
treatment resulted in complete tumor remissions of both the primary and contralateral tumors. The complete tumor responses of both the
primary and contralateral tumors were observed in 60% of the Ad-p53+ CD122/132+ anti-PD-1 treatment group (six of ten animals) and
there were no complete tumor responses in any of the 70 animals in the other treatment groups (p value <0.0001 by two-sided Fisher’s Exact
test comparing Ad-p53+ CD122/132+ anti-PD-1 treatment group vs. animals in all other treatment groups; p value <0.011 by two-sided
Fisher’s Exact test comparing Ad-p53+ CD122/132+ anti-PD-1 treatment group vs. any other treatment group).
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the Nanostring IO 360 gene-expression panel. The Nanostring IO
360 dataset was analyzed for genes substantially up- or down-
regulated as a result of p53 treatment defined by a greater than or
less than tenfold change from baseline.
A total of 23 strongly modulated genes out of the 770 gene set

met these criteria. These genes with at least a tenfold change in
expression represented a highly, statistically significant gene
subset most substantially effected by p53 treatment (p value
<0.00001 by two-sided Fisher’s Exact test compared to genes with
less than a tenfold change from baseline). These genes may be
grouped into immune modulatory, stroma/fibrosis, and tumor
suppressor/cell cycle functional categories as listed in Table 1 and
Fig. 8. Unexpectedly, many of these genes were found to be
involved in immune responses and antistroma/fibrosis functions
which are not typically associated with p53 tumor suppressor
mechanisms of action.
With respect to immune response modulating genes, expres-

sion of the proinflammatory S100A8 and S100A9 genes were
upregulated post-treatment by 35- and 15-fold, respectively.
These genes are involved in pattern recognition receptor (PRR),
damage-associated molecular patterns (DAMPs), and pathogen-
associated molecular patterns (PAMPs), which are key to the
initiation of immune responses. The IFN gamma-regulated
chemokines CXCL8,9,10,11,13 were all upregulated by 10- > 25-
fold, reflecting their role in antitumor immune responses. The
gene encoding Serpin B5 (maspin) was upregulated by >30-fold
and recent data indicate that maspin expression correlates with
the activation and proliferation of CD8+ T-cell subsets and thus
can modify the host immune response [19, 20].
In regard to the downregulation of gene expression contribut-

ing to increased antitumor immune responses, PLA2G2A which
suppresses interferon-induced genes [21] had the greatest down-
regulation by >90-fold after Ad-p53 treatment. In addition,
PLA2G2A is a direct target for beta-catenin-dependent Wnt
signaling [22] and has been implicated in the regulation of Notch,
TGF-beta, and Hedgehog signaling pathways [22]. The Wnt-beta-
catenin and TGF-beta signaling pathways contribute to a lack of T-
cell infiltration in tumors and inhibit immune checkpoint blockade
therapy [23, 24]. The principal effector of the Wnt pathway, the

CTNNB1 gene encoding beta-catenin was decreased by 3.6-fold,
reflecting decreases in multiple components of beta-catenin
signaling. The Ad-p53 therapy resulted in a decrease in the
immune-suppressive chemokines CCL18 by >27-fold and CCL14
by >25-fold. CD209 (DC-SIGN), MARCO, and RELN genes function
in the downregulation of the immune system through IL10 and
inhibitory tumor-associated macrophage mechanisms respectively
[25–27]. CD209 is downregulated by >20-fold, MARCO is down-
regulated by >18-fold, and RELN by >17-fold.
Regarding antistromal/fibrosis effects, several chemokine genes

associated with stoma/fibrosis formation were downregulated by
9–27-fold, including CCL18, CXCL14, CXCL12. Another fibrosis-
related gene is secreted frizzled receptor 1 (sFRP1), which was
downregulated by >24-fold. Multiple genes with antistromal/
fibrosis effects were upregulated by Ad-p53 treatment. CXCL10
and CXCL11 are known to attenuate bleomycin-induced pulmon-
ary fibrosis CXCL10 and CXCL11 were increased by 25- and >10-
fold, respectively, reflecting an antifibrotic activity of Ad-p53.
Similarly, low levels of IL-1RN (IL-1 receptor antagonist) are
associated with idiopathic pulmonary fibrosis and the IL-1RN gene
was upregulated by tenfold.
The gene showing the greatest upregulation after the Ad-p53

treatment was the transcription factor SOX2 (42-fold upregulation
post-treatment). SOX2 (SRY-Box Transcription Factor 2) is asso-
ciated with repressing tumorigenic HPV transcription [28]. The
gene encoding Serpin B5 (maspin) was upregulated by >30-fold
and has tumor suppressor antiangiogenic functions. Other highly
upregulated genes with tumor suppressor and/or cell cycle
inhibitory activities are LAMB3, LAMC2, and IL1RN, which were
increased by 10- to 15-fold. PLA2G2A and SFRP1, which are
associated with oncogenic cell cycling activity were down-
regulated by 90- and 24-fold, respectively. Similarly, NGFR, GAS1,
and PRLP have pleiotropic cell cycling properties and were
inhibited by 14.49- to 10-fold following the Ad-p53 treatment.
In addition to the individual genes in the Nanostring IO 360

dataset, the pre- and post-treatment biopsies data were also
analyzed for gene signatures associated with immune activation,
immune suppression, and antistromal/fibrosis functions. As shown
in Fig. 8, Interferon-gamma, CD8+ T-cell profiles, Cytotoxicity and
iNOS (inducible nitric oxide synthase, NOS2) profiles were
increased consistent with activation of antitumor immune
responses, whereas immunosuppressive pathways exemplified
by IL-10 and TGF-beta and stroma signatures were down-
regulated, respectively.
Surprisingly, in addition to modulating immune mediators for

antitumor immune responses, the Ad-p53 therapy downregulated
multiple gene pathways implicated in stroma/fibrosis formation.
The stroma-related gene pathway (which comprises >50 gene
products (see Supplemental Table 1) encompassing extracellular
matrix remodeling, cell adhesion, myeloid cells, collagens,
angiogenesis, and metastasis was unexpectedly, strongly down-
regulated by Ad-p53 treatment.

DISCUSSION
While immune checkpoint inhibitors are being increasingly
employed in cancer treatment, most cancer patients do not
respond to this form of immunotherapy [1]. Similarly, genetically
engineered versions of IL2 and IL15 cytokines with selective
CD122/132 receptor activation have reduced toxicities and greater
efficacy than their native proteins but the majority of tumors do
not respond to these treatments either [2, 3]. The syngeneic
B16F10 melanoma is known to be resistant to these immu-
notherapies and is a useful model to explore novel immunother-
apeutic approaches. In our studies, loco-regional Ad-p53 tumor
suppressor gene therapy reversed resistance to both immune
checkpoint inhibitor and selective CD122/CD132 IL2 and IL15
therapies, demonstrating unexpected synergies with abscopal

Fig. 7 “Triplet” Ad-p53+ CD122/132+ anti-PD-1 treatment
extends survival. Kaplan–Meier survival curves for mice treated
with either PBS, CD122/132+ anti-PD-1, Ad-p53, or the combination
of Ad-p53+ CD122/132, Ad-p53+ anti-PD-1 and Ad-p53+ CD122/
132+ anti-PD-1. There was a statistically significant difference in
these survival curves by the log-rank test (p < 0.0001 overall; p value
<0.0003 comparing Ad-p53+ CD122/132+ anti-PD-1 treatment
group vs. any other treatment group). These results also demon-
strate an unexpected, substantial synergy of Ad-p53+ CD122/132+
anti-PD-1 therapy. The median survival of the Ad-p53+ CD122/
132+ anti-PD-1 therapy group had not been reached after 40 days
and 80% of this treatment group were still alive without evidence of
any remaining tumors. In stark contrast, 98% (49/50) of animals in
the other treatment groups had died by Day 30 and had median
survivals ranging between 10 and 28 days.
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effects on distant tumors that were not treated with Ad-p53.
Remarkably, the “Triplet” therapy combining Ad-p53 with selective
CD122/CD132 agonists and immune checkpoint blockade resulted
in the complete tumor remissions and potentially curative
outcomes that significantly surpassed the efficacy of all other
doublet and monotherapies tested, which did not generate
complete responses nor extended survivals.
These promising preclinical results led to the initiation of a

Phase 1/2 clinical trial of combined Ad-p53 and anti-PD-1 therapy
in patients with recurrent HNSCC. As reported elsewhere [29],
preliminary evaluation of pre- and post-Ad-p53 treatment biopsies
were evaluated for changes in gene-expression profiles and
revealed increased interferon signaling, CD8+ T-cell signaling and
the tumor inflammation signature, which are all associated with
increased responses to immune checkpoint inhibitors [17, 18, 30].
The Ad-p53 treatment also decreased known immune-suppressive
TGF-beta and beta-catenin signaling, which may also contribute to
enhanced immune checkpoint inhibitor efficacy.
In the present report, we examined the gene signatures

associated with the Ad-p53 treatment more thoroughly to provide
additional insights into the potential mechanism of actions for the
observed synergies with IL2/IL15 agonists and immune check-
point blockade. We identified 23 strongly modulated genes with
at least a tenfold change in expression representing a highly,
statistically significant gene subset most substantially effected by
Ad-p53 treatment. These genes may be grouped into immune
modulatory, stroma/fibrosis, and tumor suppressor/cell cycle
functional categories. Unexpectedly, many of these genes were
found to be involved in immune responses and antistroma/fibrosis
functions, which are not typically associated with p53 tumor
suppressor mechanisms of action.
With respect to immune response modulating genes, expres-

sion of the proinflammatory S100A8 and S100A9 genes were up-
regulated post-treatment by 35- and 15-fold, respectively. These
genes are involved in pattern recognition receptor (PRR), damage-
associated molecular patterns (DAMPs), and pathogen-associated
molecular patterns (PAMPs), which are key to the initiation of
immune responses [31]. The IFN gamma-regulated chemokines
CXCL8,9,10,11,13 were all upregulated by 10- > 25-fold, reflecting
their role in antitumor immune responses. The gene encoding
Serpin B5 (maspin) was upregulated by >30-fold and data indicate
that the maspin expression correlates with the activation and
proliferation of CD8+ T-cell subsets and thus can modify the host
immune response [19, 20]. Additional mechanistic studies,
particularly involving an analysis of the cell types mediating
antitumor immune responses will be needed to confirm and
extend these initial gene signature findings.

In regard to the downregulation of gene expression contribut-
ing to increased antitumor immune responses, PLA2G2A which
suppresses interferon-induced genes [21] had the greatest down-
regulation by >90-fold after the Ad-p53 treatment. In addition,
PLA2G2A is a direct target for beta-catenin-dependent Wnt
signaling [22] and has been implicated in the regulation of Notch,
TGF-beta, and Hedgehog signaling pathways [21]. The Wnt-beta-
catenin and TGF-beta signaling pathways contribute to a lack of T-
cell infiltration in tumors and inhibit immune checkpoint blockade
therapy [23, 24]. The principal effector of the Wnt pathway, the
CTNNB1 gene encoding beta-catenin was decreased by 3.6-fold,
reflecting decreases in multiple components of beta-catenin
signaling. The Ad-p53 therapy resulted in a decrease in the
immune-suppressive chemokines CCL18 by >27-fold and CCL14
by >25-fold. CD209 (DC-SIGN), MARCO, and RELN genes function
in the downregulation of the immune system through IL10 and
inhibitory tumor-associated macrophage mechanisms, respec-
tively [25–27]. CD209 is downregulated by >20-fold, MARCO is
downregulated by >18-fold, and RELN by >17-fold.
Surprisingly, in addition to modulating immune mediators for

antitumor immune responses, Ad-p53 therapy downregulated
multiple gene pathways implicated in stroma/fibrosis formation.
The stroma-related gene pathway (which comprises >50 gene
products (see Supplemental Table 1) encompassing extracellular
matrix remodeling, cell adhesion, myeloid cells, collagens,
angiogenesis, and metastasis was unexpectedly, strongly down-
regulated by Ad-p53 treatment. Several chemokine genes
associated with stoma/fibrosis formation [32] were downregu-
lated by 9- to 27-fold, including CCL18, CXCL14, CXCL12.
Another fibrosis-related gene is secreted frizzled receptor 1
(sFRP1) [33], which was downregulated by >24-fold. Multiple
genes with antistromal/fibrosis effects were upregulated by Ad-
p53 treatment. CXCL10 and CXCL11 are known to attenuate
bleomycin-induced pulmonary fibrosis [34] and were increased
by 25- and >10-fold, respectively, reflecting antifibrotic activity
of Ad-p53. Similarly, low levels of IL-1RN (IL-1 receptor
antagonist) are associated with idiopathic pulmonary fibrosis
[35] and the IL-1RN gene was upregulated by tenfold consistent
with antifibrosis effects.
Regarding tumor suppressor/cell cycle inhibitory functions, the

gene showing the greatest upregulation after Ad-p53 treatment
was the transcription factor SOX2 (42-fold upregulation post-
treatment). SOX2 (SRY-Box Transcription Factor 2) is associated
with the repression of tumorigenic HPV transcription [28]. The
gene encoding Serpin B5 (maspin) was upregulated by >30-fold
and has tumor suppressor and antiangiogenic functions [36]. Other
highly upregulated genes with tumor suppressor and/or cell cycle
inhibitory activities are laminin-5 (LAMB3, LAMC2) [37] and IL1RN,
which were increased by 10- to 15-fold. PLA2G2A [21] and SFRP1
[33] which are associated with oncogenic cell cycling activity were
downregulated by 90- and 24-fold, respectively. Similarly, NGFR
[38], GAS1 [39], and PRLP [40] have pleiotropic cell cycling
properties and were inhibited by 14.49- to 10-fold following Ad-
p53 treatment. Of particular relevance, NGFR is known to inhibit
p53 and NGFR ablation enhances p53 activity [40].
In summary, loco-regional Ad-p53 tumor suppressor gene

therapy reversed resistance to both immune checkpoint inhibitor
and selective CD122/CD132 IL2 and IL15 therapies with substantial
synergies. Remarkably, the “Triplet” therapy combining Ad-p53
with selective CD122/CD132 agonists and immune checkpoint
blockade resulted in the complete tumor remissions and
potentially curative outcomes that significantly surpassed the
efficacy of all other doublet and monotherapies tested none of
which resulted in complete responses nor extended survivals.
With respect to potential mechanisms of action, gene-expression
profiling comparing pre- and post-Ad-p53 tumor biopsies showed
strong upregulation of genetic pathways involved in antitumor
immune responses, including IFN-gamma activation, an increased

Fig. 8 Concomitant upregulation of immune activating and
downregulation of immune-suppressive/stromal gene pathways.
Ad-p53 treatment increased immunstimulatory interferon-gamma
(IFN-g), Cytotoxicity (Cytotox), CD8+ T cells, and nitric oxide
synthase 2 (NOS2) signatures while decreasing expression of
immune inhibitory and stroma forming interleukin 10 (IL-10) and
transforming growth factor- beta (TGF-b) signatures.
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CD8+ T-cell signature, with concomitant downregulation of TGF-
beta and IL10 gene profiles. Unexpectedly, the Ad-p53 treatment
substantially reduced fibrotic/stroma gene pathways. A number of
previously unidentified, strongly p53 downregulated genes
associated with stromal pathways and IL10 expression identified
novel anticancer therapeutic applications. Ad-p53 treatment also
decreased immune-suppressive TGF-beta and beta-catenin signal-
ing, which may also contribute to enhanced immune checkpoint
inhibitor efficacy. These mechanistic gene profiling insights should
be confirmed in a larger number of treatment samples and
combined with analyses of the cell types mediating antitumor
immune responses to extend our initial findings. The evaluation of
the safety of the combined treatments will also need to be
assessed in future development studies. Taken together, our initial
results imply the ability of Ad-p53 to induce efficacious local and
systemic antitumor immune responses with the potential to
reverse resistance to immune checkpoint inhibitor therapy when
combined with IL2 and IL15 CD122/132 agonists supporting
further clinical development of this triplet therapy.

DATA AVAILABILITY
The data supporting the conclusions of this article are either incorporated in the
manuscript, its supplemental section or available by the corresponding author upon
reasonable request.
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