Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CXCR4 and anti-BCMA CAR co-modified natural killer cells suppress multiple myeloma progression in a xenograft mouse model

Abstract

The highly restricted expression of B-cell maturation antigen (BCMA) on plasma cells makes it an ideal target for chimeric antigen receptor (CAR) immune cell therapy against multiple myeloma (MM), a bone marrow cancer. To improve the infiltration of ex vivo expanded human natural killer (NK) cells into the bone marrow, we electroporated these cells with mRNA encoding the chemokine receptor CXCR4. The CXCR4-modified NK cells displayed increased in vitro migration toward the bone marrow niche-expressing chemokine CXCL12/SDF-1α and augmented infiltration into the bone marrow compartments in mice. We further modified the CXCR4-NK cells by electroporation of mRNA encoding a CAR targeting BCMA. After the intravenous injection of the double-modified NK cells into a xenograft mouse model of MM, we observed significantly reduced tumor burden in the femur region of the living mice and the extended survival of the tumor-bearing mice. Collectively, this study provides the experimental evidence that the co-expression of CXCR4 and anti-BCMA CAR on NK cells is a possible effective way to control MM progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overexpression of CXCR4R334X via mRNA electroporation can improve the migration and homing capacities of NK cells.
Fig. 2: Expression of anti-BCMA mRNA CAR on NK cells and BCMA expression on different tumor cells and primary cells.
Fig. 3: In vitro activity of anti-BCMA CAR-NK cells against MM cell lines KMS-11, KMS-18, and U266.
Fig. 4: In vitro functions of BCMA CAR-modified, CXCR4-overexpressing NK cells.
Fig. 5: In vivo control of MM growth by BMCA CAR-modified, CXCR4R334X-overexpressing NK cells.

Similar content being viewed by others

References

  1. Rajkumar SV, Kumar S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020;10:94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rasch S, Lund T, Asmussen JT, Lerberg Nielsen A, Faebo Larsen R, Osterheden Andersen M, et al. Multiple myeloma associated bone disease. Cancers. 2020;12:8.

    Article  CAS  Google Scholar 

  3. Berenson A, Vardanyan S, David M, Wang J, Harutyunyan NM, Gottlieb J, et al. Outcomes of multiple myeloma patients receiving bortezomib, lenalidomide, and carfilzomib. Ann Hematol. 2017;96:449–59.

    Article  CAS  PubMed  Google Scholar 

  4. Dimopoulos MA, Terpos E. Hematology: first-line bortezomib benefits patients with multiple myeloma. Nat Rev Clin Oncol. 2009;6:683–5.

    Article  CAS  PubMed  Google Scholar 

  5. Richardson PG, Mitsiades C, Hideshima T, Anderson KC. Proteasome inhibition in the treatment of cancer. Cell Cycle. 2005;4:290–6.

    Article  CAS  PubMed  Google Scholar 

  6. Ali SA, Shi V, Maric I, Wang M, Stroncek DF, Rose JJ, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128:1688–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berdeja JG, Lin Y, Raje NS, Siegel DSD, Munshi NC, Liedtke M, et al. First-in-human multicenter study of bb2121 anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: updated results. J Clin Oncol. 2017;3515l:3010.

  8. D’Agostino M, Raje N, Anti-BCMA CAR. T-cell therapy in multiple myeloma: can we do better? Leukemia. 2020;34:21–34.

    Article  PubMed  CAS  Google Scholar 

  9. Mikkilineni L, Kochenderfer JN. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol. 2020. https://doi.org/10.1038/s41571-020-0427-6.

  10. Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7:1187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380:1726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu J, Chen LJ, Yang SS, Sun Y, Wu W, Liu YF, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci USA. 2019;116:9543–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Disco. 2020;19:185–99.

    Article  CAS  Google Scholar 

  14. Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382:545–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carlsten M, Childs RW. Genetic manipulation of NK cells for cancer immunotherapy: techniques and clinical implications. Front Immunol. 2015;6:266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Petty AJ, Heyman B, Yang Y. Chimeric antigen receptor cell therapy: overcoming obstacles to battle cancer. Cancers. 2020;12:4.

    Article  CAS  Google Scholar 

  18. Borrello I, Noonan KA. Marrow-infiltrating lymphocytes—role in biology and cancer therapy. Front Immunol. 2016;7:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ponzetta A, Benigni G, Antonangeli F, Sciumè G, Sanseviero E, Zingoni A, et al. Multiple myeloma impairs bone marrow localization of effector natural killer cells by altering the chemokine microenvironment. Cancer Res. 2015;75:4766–77.

    Article  CAS  PubMed  Google Scholar 

  20. Beider K, Nagler A, Wald O, Franitza S, Dagan-Berger M, Wald H, et al. Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood. 2003;102:1951–8.

    Article  CAS  PubMed  Google Scholar 

  21. Bonanni V, Antonangeli F, Santoni A, Bernardini G. Targeting of CXCR3 improves anti-myeloma efficacy of adoptively transferred activated natural killer cells. J Immunother Cancer. 2019;7:290.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kremer V, Ligtenberg MA, Zendehdel R, Seitz C, Duivenvoorden A, Wennerberg E, et al. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J Immunother Cancer. 2017;5:73.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levy E, Reger R, Segerberg F, Lambert M, Leijonhufvud C, Baumer Y, et al. Enhanced bone marrow homing of natural killer cells following mRNA transfection with gain-of-function variant CXCR4(R334X). Front Immunol. 2019;10:1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ng YY, Tay JCK, Wang S. CXCR1 expression to improve anti-cancer efficacy of intravenously injected CAR-NK cells in mice with peritoneal xenografts. Mol Ther Oncolytics. 2019;16:75–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Carlsten M, Levy E, Karambelkar A, Li L, Reger R, Berg M, et al. Efficient mRNA-based genetic engineering of human NK cells with high-affinity CD16 and CCR7 augments rituximab-induced ADCC against lymphoma and targets NK cell migration toward the lymph node-associated chemokine CCL19. Front Immunol. 2016;7:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Müller N, Michen S, Tietze S, Töpfer K, Schulte A, Lamszus K, et al. Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1alpha-secreting glioblastoma. J Immunother. 2015;38:197–210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pachynski RK, Zabel BA, Kohrt HE, Tejeda NM, Monnier J, Swanson CD, et al. The chemoattractant chemerin suppresses melanoma by recruiting natural killer cell antitumor defenses. J Exp Med. 2012;209:1427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wendel M, Galani IE, Suri-Payer E, Cerwenka A. Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res. 2008;68:8437–45.

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Gordon N, Kleinerman ES, Huang G, Promoting NK. cell trafficking to improve therapeutic effect of NK cell therapy on osteosarcoma. J Immunother Cancer. 2015;3:P24.

    Article  PubMed Central  Google Scholar 

  30. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 2016;35:816–26.

    Article  CAS  PubMed  Google Scholar 

  31. Björklund AT, Carlsten M, Sohlberg E, Liu LL, Clancy T, Karimi M, et al. Complete Remission with Reduction of High-Risk Clones following Haploidentical NK-Cell Therapy against MDS and AML. Clin Cancer Res. 2018;24:1834–44.

    Article  PubMed  CAS  Google Scholar 

  32. Grzywacz B, Moench L, McKenna D Jr, Tessier KM, Bachanova V, Cooley S, et al. Natural killer cell homing and persistence in the bone marrow after adoptive immunotherapy correlates with better leukemia control. J Immunother. 2019;42:65–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Du SH, Li Z, Chen C, Tan WK, Chi Z, Kwang TW, et al. Co-expansion of cytokine-induced killer cells and Vgamma9Vdelta2 T cells for CAR T-cell therapy. PLoS ONE. 2016;11:e0161820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 2013;19:2048–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Namba M, Ohtsuki T, Mori M, Togawa A, Wada H, Sugihara T, et al. Establishment of five human myeloma cell lines. Vitr Cell Dev Biol. 1989;25:723–9.

    Article  CAS  Google Scholar 

  36. Xin X, Abrams TJ, Hollenbach PW, Rendahl KG, Tang Y, Oei YA, et al. CHIR-258 is efficacious in a newly developed fibroblast growth factor receptor 3-expressing orthotopic multiple myeloma model in mice. Clin Cancer Res. 2006;12:4908–15.

    Article  CAS  PubMed  Google Scholar 

  37. Stein R, Smith MR, Chen S, Zalath M, Goldenberg DM. Combining milatuzumab with bortezomib, doxorubicin, or dexamethasone improves responses in multiple myeloma cell lines. Clin Cancer Res. 2009;15:2808–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bu DX, Singh R, Choi EE, Ruella M, Nunez-Cruz S, Mansfield KG, et al. Pre-clinical validation of B cell maturation antigen (BCMA) as a target for T cell immunotherapy of multiple myeloma. Oncotarget. 2018;9:25764–80.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Helsen C, Lau V, Hammill J, Mwawasi K, Hayes D, Afsahi A, et al. T cells engineered with T cell antigen coupler (TAC) receptors for haematological malignancies. Blood 2018;132:3267–3267.

    Article  Google Scholar 

  40. Milanesi S, Locati M, Borroni EM. Aberrant CXCR4 signaling at crossroad of WHIM syndrome and Waldenstrom’s macroglobulinemia. Int J Mol Sci. 2020;21:5696.

    Article  CAS  PubMed Central  Google Scholar 

  41. Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 2003;19:583–93.

    Article  CAS  PubMed  Google Scholar 

  42. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34:70–4.

    Article  CAS  PubMed  Google Scholar 

  43. Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EG, et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer. 2013;49:219–30.

    Article  CAS  PubMed  Google Scholar 

  44. Zsiros E, Duttagupta P, Dangaj D, Li H, Frank R, Garrabrant T, et al. The ovarian cancer chemokine landscape is conducive to homing of vaccine-primed and CD3/CD28-costimulated T cells prepared for adoptive therapy. Clin Cancer Res. 2015;21:2840–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilson MH. Consider changing the horse for your CAR-T? Mol Ther. 2018;26:1873–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galvan DL, Nakazawa Y, Kaja A, Kettlun C, Cooper LJ, Rooney CM, et al. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J Immunother. 2009;32:837–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang X, Guo H, Tammana S, Jung YC, Mellgren E, Bassi P, et al. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol Ther. 2010;18:1803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Manuri PV, Wilson MH, Maiti SN, Mi T, Singh H, Olivares S, et al. piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Hum Gene Ther. 2010;21:427–37.

    Article  CAS  PubMed  Google Scholar 

  49. O'neil RT, Saha S, Veach RA, Welch RC, Woodard LE, Rooney CM, et al. Transposon-modified antigen-specific T lymphocytes for sustained therapeutic protein delivery in vivo. Nat Commun. 2018;9:1325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ, Huls H, et al. Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res. 2008;68:2961–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang J, Lupo KB, Chambers AM, Matosevic S. Purinergic targeting enhances immunotherapy of CD73(+) solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J Immunother Cancer. 2018;6:136.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Friedman KM, Garrett TE, Evans JW, Horton HM, Latimer HJ, Seidel SL, et al. Effective Targeting of multiple B-cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells. Hum Gene Ther. 2018;29:585–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bruno B, Wäsch R, Engelhardt M, Gay F, Giaccone L, D’Agostino M, et al. European Myeloma Network perspective on CAR T-cell therapies for multiple myeloma. Haematologica. 2021. https://doi.org/10.3324/haematol.2020.276402.

  54. Mullard A. FDA approves first BCMA-targeted CAR-T cell therapy. Nat Rev Drug Discov. 2021. https://doi.org/10.1038/d41573-021-00063-1.

  55. García-Guerrero E, Sierro-Martínez B, Pérez-Simón JA. Overcoming chimeric antigen receptor (CAR) modified T-cell therapy limitations in multiple myeloma. Front Immunol. 2020;11:1128, https://doi.org/10.3389/fimmu.2020.01128.

  56. Pittari G, Vago L, Festuccia M, Bonini C, Mudawi D, Giaccone L, et al. Restoring natural killer cell immunity against multiple myeloma in the era of new drugs. Front Immunol. 2017;8:1444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chu J, Deng Y, Benson DM, He S, Hughes T, Zhang J, et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia. 2014;28:917–27.

    Article  CAS  PubMed  Google Scholar 

  58. Jiang H, Zhang W, Shang P, Zhang H, Fu W, Ye F, et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol. 2014;8:297–310.

    Article  CAS  PubMed  Google Scholar 

  59. Maroto-Martín E, Encinas J, García-Ortiz A, Alonso R, Leivas A, Paciello M, et al. NKG2D and BCMA-CAR NK cells efficiently eliminate multiple myeloma cells. A comprehensive comparison between two clinically relevant CARs. EHA Libarary. 2019;266826:PS1209.

    Google Scholar 

  60. Leivas A, Rio P, Mateos R, Paciello ML, Garcia-Ortiz A, Fernandez L, et al. NKG2D-CAR transduced primary natural killer cells efficiently target multiple myeloma cells. Blood 2018;132:590–590.

    Article  Google Scholar 

  61. Xiao L, Cen D, Gan H, Sun Y, Huang N, Xiong H, et al. Adoptive transfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Mol Ther. 2019;27:1114–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Singapore Ministry of Health’s National Medical Research Council (NMRC/CIRG/1406/2014; NMRC/OFLCG/003/2018; MOH-000465-01) and Agency for Science, Technology and Research, Singapore (IAF-PP:H19/01/a0/022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Wang.

Ethics declarations

Competing interests

SW and YYN have filed patent applications related to CAR technologies and could potentially receive licensing royalties in future.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, Y.Y., Du, Z., Zhang, X. et al. CXCR4 and anti-BCMA CAR co-modified natural killer cells suppress multiple myeloma progression in a xenograft mouse model. Cancer Gene Ther 29, 475–483 (2022). https://doi.org/10.1038/s41417-021-00365-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00365-x

This article is cited by

Search

Quick links